Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Drugs Metabolism“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Drugs Metabolism" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Drugs Metabolism"
Lambie, David G., und Ralph H. Johnson. „Drugs and Folate Metabolism“. Drugs 30, Nr. 2 (August 1985): 145–55. http://dx.doi.org/10.2165/00003495-198530020-00003.
Der volle Inhalt der QuelleDesouza, Cyrus, Mary Keebler, Dennis B. McNamara und Vivian Fonseca. „Drugs Affecting Homocysteine Metabolism“. Drugs 62, Nr. 4 (2002): 605–16. http://dx.doi.org/10.2165/00003495-200262040-00005.
Der volle Inhalt der QuelleJann, Michael W., Y. W. Francis Lam, Eric C. Gray und Wen-Ho Chang. „REVERSIBLE METABOLISM OF DRUGS“. Drug Metabolism and Drug Interactions 11, Nr. 1 (Januar 1994): 1–24. http://dx.doi.org/10.1515/dmdi.1994.11.1.1.
Der volle Inhalt der QuelleReiher, Jean. „Metabolism of Antiepileptic Drugs“. Journal of Clinical Neurophysiology 2, Nr. 3 (Juli 1985): 309. http://dx.doi.org/10.1097/00004691-198507000-00007.
Der volle Inhalt der QuelleFranceschini, Guido, und Rodolfo Paoletti. „Drugs controlling triglyceride metabolism“. Medicinal Research Reviews 13, Nr. 2 (März 1993): 125–38. http://dx.doi.org/10.1002/med.2610130202.
Der volle Inhalt der QuelleGhiselli, Giancarlo, und Marco Maccarana. „Drugs affecting glycosaminoglycan metabolism“. Drug Discovery Today 21, Nr. 7 (Juli 2016): 1162–69. http://dx.doi.org/10.1016/j.drudis.2016.05.010.
Der volle Inhalt der QuelleKostner, G. M. „Drugs affecting lipid metabolism“. Chemistry and Physics of Lipids 51, Nr. 1 (Juli 1989): 73–74. http://dx.doi.org/10.1016/0009-3084(89)90068-6.
Der volle Inhalt der QuelleDurrington, P. „Drugs Affecting Lipid Metabolism“. International Journal of Cardiology 45, Nr. 2 (Juni 1994): 153–54. http://dx.doi.org/10.1016/0167-5273(94)90276-3.
Der volle Inhalt der QuelleSitar, Daniel S. „Metabolism of Thioamide Antithyroid Drugs“. Drug Metabolism Reviews 22, Nr. 5 (Januar 1990): 477–502. http://dx.doi.org/10.3109/03602539008991448.
Der volle Inhalt der QuelleKelly, Patrick, und Barry Kahan. „Review: Metabolism of Immunosuppressant Drugs“. Current Drug Metabolism 3, Nr. 3 (01.06.2002): 275–87. http://dx.doi.org/10.2174/1389200023337630.
Der volle Inhalt der QuelleDissertationen zum Thema "Drugs Metabolism"
Bai, Shuang. „Effect of immunosuppressive agents on drug metabolism in rats“. Thesis, Full text (PDF) from UMI/Dissertation Abstracts International, 2001. http://wwwlib.umi.com/cr/utexas/fullcit?p3008270.
Der volle Inhalt der QuelleBritt, Adrian John. „Cocaine metabolism in Pseudomonas maltophilia MB11L“. Thesis, University of Cambridge, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.386328.
Der volle Inhalt der Quelle王漪雯 und Belinda Wong. „Haloperidol metabolism in man and animals“. Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 1993. http://hub.hku.hk/bib/B3121194X.
Der volle Inhalt der QuelleWong, Belinda. „Haloperidol metabolism in man and animals /“. [Hong Kong] : University of Hong Kong, 1993. http://sunzi.lib.hku.hk/hkuto/record.jsp?B13671546.
Der volle Inhalt der QuelleDaneshmend, T. K. „Observations on presystemic metabolism of drugs in man“. Thesis, University of Bristol, 1985. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.482894.
Der volle Inhalt der QuellePriston, Melanie Jane. „Studies on the pharmacokinetics and metabolism of mitozantrone“. Thesis, University of Exeter, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.303766.
Der volle Inhalt der QuellePereira, Maria J. „Effects of immunosuppressive drugs on human adipose tissue metabolism“. Doctoral thesis, University of Gothenburg, 2012. http://hdl.handle.net/10400.1/4916.
Der volle Inhalt der QuelleThe immunosuppressive agents (IAs) rapamycin, cyclosporin A and tacrolimus, as well as glucocorticoids are used to prevent rejection of transplanted organs and to treat autoimmune disorders. Despite their desired action on the immune system, these agents have serious longterm metabolic side-effects, including dyslipidemia and new onset diabetes mellitus after transplantation. The overall aim is to study the effects of IAs on human adipose tissue glucose and lipid metabolism, and to increase our understanding of the molecular mechanisms underlying the development of insulin resistance during immunosuppressive therapy. In Paper I and II, it was shown that rapamycin and the calcineurin inhibitors, cyclosporin A and tacrolimus, at therapeutic concentrations, had a concentration-dependent inhibitory effect on basal and insulin-stimulated glucose uptake in human subcutaneous and omental adipocytes. Rapamycin inhibited mammalian target of rapamycin complex (mTORC) 1 and 2 assembly and phosphorylation of protein kinase B (PKB) at Ser473 and of the PKB substrate AS160, and this leads to impaired insulin signalling (Paper I). On the other hand, cyclosporin A and tacrolimus had no effects on expression or phosphorylation of insulin signalling proteins (insulin receptor substrate 1 and 2, PKB, AS160), as well as the glucose transport proteins, GLUT4 and GLUT1 (Paper II). Instead, removal of GLUT4 from the cell surfasse was observed, probably mediated through increased endocytosis, as shown in L6 musclederived cells. These studies suggest a different mechanism for cyclosporin A and tacrolimus, in comparison to rapamycin, with respect to impairment of glucose uptake in adipocytes. In Paper III, all three IAs increased isoproterenol-stimulated lipolysis and enhanced phosphorylation of one of the main lipases involved in lipolysis, hormone-sensitive lipase. The agents also inhibited lipid storage, and tacrolimus and rapamycin down-regulated gene expression of lipogenic genes in adipose tissue. All three IAs increased interleukin-6 (IL-6), but not tumor necrosis factor α (TNF-α ) or adiponectin, gene expression and secretion. In Paper IV, we proposed that FKBP5 is a novel gene regulated by dexamethasone, a synthetic glucocorticoid, in both subcutaneous and omental adipose tissue. FKBP5 expression in subcutaneous adipose tissue is correlated with clinical and biochemical markers of insulin resistance and adiposity. In addition, the FKBP5 gene product was more abundant in omental than in subcutaneous adipose tissue. In conclusion, adverse effects of immunosuppressive drugs on human adipose tissue glucose and lipid metabolism can contribute to the development of insulin resistance, type 2 diabetes and dyslipidemia in patients on immunosuppressive therapy. The cellular mechanisms that are described in this thesis should be further explored in order to mitigate the metabolic perturbations caused by current immunosuppressive therapies. The findings in this thesis could potentially also provide novel pharmacological mechanisms for type 2 diabetes as well as other forms of diabetes.
Godwin, Bryan. „Discrete sliding mode control of drug infusions“. Thesis, Georgia Institute of Technology, 1991. http://hdl.handle.net/1853/16806.
Der volle Inhalt der QuelleBenchaoui, Hafid Abdelaali. „Factors affecting the pharmacokinetics, metabolism and efficacy of anthelmintic drugs“. Thesis, University of Glasgow, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.284569.
Der volle Inhalt der QuelleNgulube, Thabale Jack. „The interaction of anti-malarial drugs and steroid hormone metabolism“. Thesis, University of Leeds, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.329825.
Der volle Inhalt der QuelleBücher zum Thema "Drugs Metabolism"
Catapano, A. L., A. M. Gotto, Louis C. Smith und Rodolfo Paoletti, Hrsg. Drugs Affecting Lipid Metabolism. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-1703-6.
Der volle Inhalt der QuellePaoletti, Rodolfo, David Kritchevsky und William L. Holmes, Hrsg. Drugs Affecting Lipid Metabolism. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/978-3-642-71702-4.
Der volle Inhalt der QuelleGotto, A. M., R. Paoletti, L. C. Smith, A. L. Catapano und A. S. Jackson, Hrsg. Drugs Affecting Lipid Metabolism. Dordrecht: Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-009-0311-1.
Der volle Inhalt der QuelleL, Catapano Alberico, und International Symposium on Drugs Affecting Lipid Metabolism, (11th : 1992 : Florence, Italy), Hrsg. Drugs affecting lipid metabolism. Dordrecht: Kluwer Academic Publishers, 1993.
Den vollen Inhalt der Quelle findenRodolfo, Paoletti, Kritchevsky David 1920-, Holmes William L. 1918- und Drugs Affecting Lipid Metabolism Meeting (1986 : Florence, Italy), Hrsg. Drugs affecting lipid metabolism. Berlin: Springer-Verlag, 1987.
Den vollen Inhalt der Quelle findenGarth, Powis, Hrsg. Anticancer drugs: Reactive metabolism and drug interactions. Oxford, England: Pergamon Press, 1994.
Den vollen Inhalt der Quelle finden1949-, Gibson G. Gordon, Hrsg. Progress in drug metabolism. New York: John Wiley, 1988.
Den vollen Inhalt der Quelle finden1938-, Bieck Peter R., Hrsg. Colonic drug absorption and metabolism. New York: M. Dekker, 1993.
Den vollen Inhalt der Quelle findenKritchevsky, David, William L. Holmes und Rodolfo Paoletti, Hrsg. Drugs Affecting Lipid Metabolism VIII. Boston, MA: Springer US, 1985. http://dx.doi.org/10.1007/978-1-4613-2459-1.
Der volle Inhalt der QuelleInternational Symposium on Drugs Affecting Lipid Metabolism (8th 1983 Philadelphia, Pa.). Drugs affecting lipid metabolism VIII. New York: Plenum Press, 1985.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Drugs Metabolism"
Dwyer, B. E., und C. G. Wasterlain. „Intermediary Metabolism“. In Antiepileptic Drugs, 79–100. Berlin, Heidelberg: Springer Berlin Heidelberg, 1985. http://dx.doi.org/10.1007/978-3-642-69518-6_4.
Der volle Inhalt der QuelleStene, Danny O., und Robert C. Murphy. „Metabolism of Sulfidopeptide Leukotrienes“. In Prostanoids and Drugs, 37–46. New York, NY: Springer US, 1989. http://dx.doi.org/10.1007/978-1-4684-7938-6_6.
Der volle Inhalt der QuelleVuilhorgne, M., C. Gaillard, G. J. Sanderink, I. Royer, B. Monsarrat, J. Dubois und M. Wright. „Metabolism of Taxoid Drugs“. In ACS Symposium Series, 98–110. Washington, DC: American Chemical Society, 1994. http://dx.doi.org/10.1021/bk-1995-0583.ch007.
Der volle Inhalt der QuelleTatum, William O. „Metabolism and Antiseizure Drugs“. In Epilepsy Case Studies, 87–93. Cham: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-01366-4_20.
Der volle Inhalt der QuelleMeyer, Markus R., und Hans H. Maurer. „Drugs of Abuse (Including Designer Drugs)“. In Metabolism of Drugs and Other Xenobiotics, 429–63. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2012. http://dx.doi.org/10.1002/9783527630905.ch16.
Der volle Inhalt der QuelleRiedmaier, Stephan, und Ulrich M. Zanger. „Cardiovascular Drugs“. In Metabolism of Drugs and Other Xenobiotics, 331–63. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2012. http://dx.doi.org/10.1002/9783527630905.ch12.
Der volle Inhalt der QuelleSchwab, Matthias, Elke Schaeffeler und Hiltrud Brauch. „Anticancer Drugs“. In Metabolism of Drugs and Other Xenobiotics, 365–78. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2012. http://dx.doi.org/10.1002/9783527630905.ch13.
Der volle Inhalt der QuelleKhojasteh, Siamak Cyrus, Harvey Wong und Cornelis E. C. A. Hop. „Approved Drugs“. In Drug Metabolism and Pharmacokinetics Quick Guide, 193–200. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-5629-3_11.
Der volle Inhalt der QuelleMoore, Michael R., Kenneth E. L. McColl, Claude Rimington und Abraham Goldberg. „Drugs, Chemicals, and Porphyria“. In Disorders of Porphyrin Metabolism, 139–65. Boston, MA: Springer US, 1987. http://dx.doi.org/10.1007/978-1-4684-1277-2_5.
Der volle Inhalt der QuelleChung, Y. L., und J. R. Griffiths. „Using Metabolomics to Monitor Anticancer Drugs“. In Oncogenes Meet Metabolism, 55–78. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/2789_2008_089.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Drugs Metabolism"
Ge, Xiaowei, Fátima C. Pereira, Yifan Zhu, Michael Wagner und Ji-Xin Cheng. „Unveiling the impact of drug on single cell metabolism in human gut microbiome by an SRS-FISH platform“. In Frontiers in Optics. Washington, D.C.: Optica Publishing Group, 2023. http://dx.doi.org/10.1364/fio.2023.fm6e.3.
Der volle Inhalt der QuelleTourlomousis, Filippos, und Robert C. Chang. „2D and 3D Multiscale Computational Modeling of Dynamic Microorgan Devices as Drug Screening Platforms“. In ASME 2015 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/imece2015-52734.
Der volle Inhalt der QuelleMrkalić, Emina, Marina Ćendić Serafinović, Ratomir Jelić, Stefan Stojanović und Miroslav Sovrlić. „INFLUENCE OF QUERCETIN ON THE BINDING OF TIGECYCLINE TO HUMAN SERUM ALBUMIN“. In 1st INTERNATIONAL Conference on Chemo and BioInformatics. Institute for Information Technologies, University of Kragujevac, 2021. http://dx.doi.org/10.46793/iccbi21.363m.
Der volle Inhalt der QuellePogodaeva, P. S. „Changes in the parameters of a clinical blood test in rats using hypoglycemic agents for the potentiation of drugs with a hepatoprotective effect“. In SPbVetScience. FSBEI HE St. Petersburg SUVM, 2023. http://dx.doi.org/10.52419/3006-2023-11-28-34.
Der volle Inhalt der QuelleRautiola, Davin, und Ronald A. Siegel. „Nasal Spray Device for Administration of Two-Part Drug Formulations“. In 2019 Design of Medical Devices Conference. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/dmd2019-3216.
Der volle Inhalt der QuelleBešlo, Drago, Dejan Agić, Vesna Rastija, Maja Karnaš, Domagoj Šubarić und Bono Lučić. „Analysis of prediction of water solubility and lipophilicity of coumarins by free cheminformatics tools“. In 2nd International Conference on Chemo and Bioinformatics. Institute for Information Technologies, University of Kragujevac, 2023. http://dx.doi.org/10.46793/iccbi23.657d.
Der volle Inhalt der QuelleAbduldayeva, Aigul, und Ainagul Kazbekova. „Dynamics of lipid metabolism in the combined therapy of antihypertensive and hypolipidemic drugs in patients with metabolic syndrome“. In Diabetes Kongress 2023 - 57. Jahrestagung der DDG. Georg Thieme Verlag, 2023. http://dx.doi.org/10.1055/s-0043-1767897.
Der volle Inhalt der QuelleLei, Xiang-He, Shawn Noble und Barry R. Bochner. „Abstract B42: Metabolic pathway changes induced by a PIK3 mutation and reverted by drugs“. In Abstracts: AACR Special Conference: Metabolism and Cancer; June 7-10, 2015; Bellevue, WA. American Association for Cancer Research, 2016. http://dx.doi.org/10.1158/1557-3125.metca15-b42.
Der volle Inhalt der QuelleBing, Cheng, Guo Ke, Alex Wong und Karen Crasta. „Abstract B59: Autophagy mediates senescence and supports survival upon treatment with anti-mitotic drugs“. In Abstracts: AACR Special Conference: Metabolism and Cancer; June 7-10, 2015; Bellevue, WA. American Association for Cancer Research, 2016. http://dx.doi.org/10.1158/1557-3125.metca15-b59.
Der volle Inhalt der QuelleMa, Liang, Jeremy Barker, Changchun Zhou, Biaoyang Lin und Wei Li. „A Perfused Two-Chamber System for Anticancer Drug Screening“. In ASME 2010 International Manufacturing Science and Engineering Conference. ASMEDC, 2010. http://dx.doi.org/10.1115/msec2010-34326.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Drugs Metabolism"
Chipiso, Kudzanai. Biomimetic Tools in Oxidative Metabolism: Characterization of Reactive Metabolites from Antithyroid Drugs. Portland State University Library, Januar 2000. http://dx.doi.org/10.15760/etd.3078.
Der volle Inhalt der QuelleXiang, Kemeng, Huiming Hou und Ming Zhou. The efficacy of Cerus and Cucumis Polypeptide injection combined with Bisphosphonates on postmenopausal women with osteoporosis:A protocol for systematic review and meta-analysis. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, Mai 2022. http://dx.doi.org/10.37766/inplasy2022.5.0067.
Der volle Inhalt der QuelleHawkins, David R. Determination of Drug Pharmacokinetics and Metabolic Profile. Volume 2. Fort Belvoir, VA: Defense Technical Information Center, März 1988. http://dx.doi.org/10.21236/ada192428.
Der volle Inhalt der QuelleJin, Dachuan, Gao Peng, Shunqin Jin, Tao Zhou, Baoqiang Guo und Guangming Li. Comparison of therapeutic effects of anti-diabetic drugs on non-alcoholic fatty liver disease patients without diabetes: A network meta-analysis. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, November 2022. http://dx.doi.org/10.37766/inplasy2022.11.0014.
Der volle Inhalt der QuelleHalim, Nader. Regulation of Brain Glucose Metabolic Patterns by Protein Phosphorlyation and Drug Therapy. Fort Belvoir, VA: Defense Technical Information Center, März 2007. http://dx.doi.org/10.21236/ad1013984.
Der volle Inhalt der QuelleGhosal, Samit, und Binayak Sinha. The cardiovascular benefits of GLP1-RA are directly related to their positive effect on glycaemic control: A meta-regression analysis. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, Januar 2022. http://dx.doi.org/10.37766/inplasy2022.1.0071.
Der volle Inhalt der QuelleLiu, Shuang, Zheng-Miao Wang, Dong-Mei Lv und Yi-Xuan Zhao. Advances in highly active one-carbon metabolism in cancer diagnosis, treatment, and drug resistance: a systematic review. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, November 2022. http://dx.doi.org/10.37766/inplasy2022.11.0099.
Der volle Inhalt der QuelleHu, Yang Yang, Xing Zhang, Yue Luo und Yadong Wang. Systematic review and Meta analysis of the efficacy and safety of rifaximin in the prevention and treatment of hepatic encephalopathy. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, Februar 2023. http://dx.doi.org/10.37766/inplasy2023.2.0061.
Der volle Inhalt der QuelleCytryn, Eddie, Mark R. Liles und Omer Frenkel. Mining multidrug-resistant desert soil bacteria for biocontrol activity and biologically-active compounds. United States Department of Agriculture, Januar 2014. http://dx.doi.org/10.32747/2014.7598174.bard.
Der volle Inhalt der Quelle