Dissertationen zum Thema „Drug delivery to brain“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit Top-50 Dissertationen für die Forschung zum Thema "Drug delivery to brain" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Sehen Sie die Dissertationen für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.
Huynh, Grace. „Convection administered drug delivery to the brain“. Diss., Search in ProQuest Dissertations & Theses. UC Only, 2007. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:3251934.
Der volle Inhalt der QuelleBoltman, Taahirah. „Liposomal drug delivery to brain cancer cells“. University of the Western Cape, 2015. http://hdl.handle.net/11394/4706.
Der volle Inhalt der QuelleNeuroblastomas (NBs) are the most common solid extra-cranial tumours diagnosed in childhood and characterized by a high risk of tumour relapse. Like in other tumour types, there are major concerns about the specificity and safety of available drugs used for the treatment of NBs, especially because of potential damage to the developing brain. Many plant-derived bioactive compounds have proved effective for cancer treatment but are not delivered to tumour sites in sufficient amounts due to compromised tumour vasculature characterized by leaky capillary walls. Betulinic acid (BetA) is one such naturally-occurring anti-tumour compound with minimum to no cytotoxic effects in healthy cells and rodents. BetA is however insoluble in water and most aqueous solutions, thereby limiting its therapeutic potential as a pharmaceutical product. Liposomes are self-assembling closed colloidal structures composed of one or more concentric lipid bilayers surrounding a central aqueous core. The unique ability of liposomes to entrap hydrophilic molecules into the core and hydrophobic molecules into the bilayers renders them attractive for drug delivery systems. Cyclodextrins (CDs) are non-reducing cyclic oligosaccharides which proximate a truncated core, with features of a hydrophophilic outer surface and hydrophobic inner cavity for forming host-guest inclusion complexes with poorly water soluble molecules. CDs and liposomes have recently gained interest as novel drug delivery vehicles by allowing lipophilic/non-polar molecules into the aqueous core of liposomes, hence improving the therapeutic load, bioavailability and efficacy of many poorly water-soluble drugs. The aim of the study was to develop nano-drug delivery systems for BetA in order to treat human neuroblastoma (NB) cancer cell lines. This was achieved through the preparation of BetA liposomes (BetAL) and improving the percent entrapment efficiency (% EE) of BetA in liposomes through double entrapment of BetA and gamma cyclodextrin BetA inclusion complex (γ-CD-BetA) into liposomes (γ-CD-BetAL). We hypothesized that the γ-CD-BetAL would produce an increased % EE compared to BetAL, hence higher cytotoxic effects. Empty liposomes (EL), BetAL and γ-CD-BetAL were synthesized using the thin film hydration method followed by manual extrusion. Spectroscopic and electron microscopic characterization of these liposome formulations showed size distributions of 1-4 μm (before extrusion) and less than 200 nm (after extrusion). As the liposome size decreased, the zeta-potential (measurement of liposome stability) decreased contributing to a less stable liposomal formulation. Low starting BetA concentrations were found to be more effective in entrapping higher amounts of BetA in liposomes while the incorporation of γ-CD-BetA into liposomes enhanced the % EE when compared to BetAL, although this was not statistically significant. Cell viability studies using the WST-1 assay showed a time-and concentration-dependent decrease in SK-N-BE(2) and Kelly NB cell lines exposed to free BetA, BetAL and γ-CD-BetAL at concentrations of 5-20 ug/ml for 24, 48 and 72 hours treatment durations. The observed cytotoxicity of liposomes was dependant on the % EE of BetA. The γ-CD-BetAL was more effective in reducing cell viability in SK-N-BE(2) cells than BetAL whereas BetAL was more effective in KELLY cells at 48-72 hours. Exposure of all cells to EL showed no toxicity while free BetA was more effective overall than the respective liposomal formulations. The estimated IC₅₀ values following exposure to free BetA and BetAL were similar and both showed remarkable statistically significant decrease in NB cell viability, thus providing a basis for new hope in the effective treatment of NBs.
Lungare, Shital. „Development of novel delivery systems for nose-to-brain drug delivery“. Thesis, Aston University, 2017. http://publications.aston.ac.uk/37491/.
Der volle Inhalt der QuelleCharlton, Stuart Thomas. „Drug delivery to the brain via intranasal administration“. Thesis, University of Nottingham, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.275962.
Der volle Inhalt der QuelleIbegbu, Madu Daniel. „Functionalised dextran nanoparticles for drug delivery to the brain“. Thesis, University of Portsmouth, 2015. https://researchportal.port.ac.uk/portal/en/theses/functionalised-dextran-nanoparticles-for-drug-delivery-to-the-brain(c2da4093-315e-4647-90e1-4340acf2b8bd).html.
Der volle Inhalt der QuelleOng, Qunya. „Local drug delivery for treatment of brain tumor associated edema“. Thesis, Massachusetts Institute of Technology, 2014. http://hdl.handle.net/1721.1/95865.
Der volle Inhalt der QuelleCataloged from PDF version of thesis.
Includes bibliographical references (pages 115-127).
Brain tumor associated edema, a common feature of malignant brain neoplasms, is a significant cause of morbidity from brain tumor. Systemic administration of corticosteroids, the standard of care, is highly effective but can introduce serious systemic complications. Agents that inhibit the vascular endothelial growth factor (VEGF) pathway, such as cediranib, are promising alternatives, but are also associated with systemic toxicity as VEGF is essential for normal physiological functions. A miniature drug delivery device was developed for local drug delivery in rodents. It comprises of a drug reservoir and a cap with orifice(s) through which drug is released. Drug release kinetics is dependent on the payload, the drug solubility, and the surface area for diffusion. Sustained releases of dexamethasone (DXM), dexamethasone sodium phosphate (DSP), and solid dispersion of cediranib (AZD/PVP) were achieved. Employing the solid dispersion technique to increase the solubility of cediranib was necessary to enhance its release. Therapeutic efficacy and systemic toxicity of local drug administration via our devices were examined in an intracranial 9L gliosarcoma rat model. Local delivery of DSP was effective in reducing edema but led to DXM induced weight loss at high doses in a pilot study. DXM, which is much less water-soluble than DSP, was used subsequently to reduce the dose delivered. The use of DXM enabled long-term, sustained zero-order release and a higher payload than DSP. Local deliveries of DXM and AZD/PVP were demonstrated to be as effective as systemic dosing in alleviating edema. Edema reduction was associated with survival benefit, despite continuous tumor progression. Animals treated with locally delivered DXM did not suffer from body weight loss and corticosterone suppression, which are adverse effects induced by systemic DXM. Local drug administration using our device is superior to traditional systemic administration as it minimizes systemic toxicity and allows increased drug concentration in the tumor by circumventing the blood brain barrier. A much lower dose can therefore be utilized to achieve similar efficacy. Our drug delivery system can be used with other therapeutic agents targeting brain tumor to achieve therapeutic efficacy without systemic toxicity.
by Qunya Ong.
Ph. D.
Sharma, Gitanjali. „Dual Modified Liposomes for Drug and Gene Delivery to Brain“. Diss., North Dakota State University, 2014. https://hdl.handle.net/10365/27310.
Der volle Inhalt der QuelleBin, Bostanudin Mohammad Fauzi. „Butylglyceryl-modified polysaccharide nanoparticles for drug delivery to the brain“. Thesis, University of Portsmouth, 2016. https://researchportal.port.ac.uk/portal/en/theses/butylglycerylmodified-polysaccharide-nanoparticles-for-drug-delivery-to-the-brain(a91de9ba-3070-40a4-bf66-400f4d63027d).html.
Der volle Inhalt der QuelleMolnár, Éva. „Modified-chitosan nanoparticles for drug delivery through the blood-brain barrier“. Thesis, University of Portsmouth, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.494005.
Der volle Inhalt der QuelleToman, Petr. „Nanoparticles from alkylglyceryl-modified polysaccharides for drug delivery to the brain“. Thesis, University of Portsmouth, 2012. https://researchportal.port.ac.uk/portal/en/theses/nanoparticles-from-alkylglycerylmodified-polysaccharides-for-drug-delivery-to-the-brain(7c977729-1e45-45d9-b826-f1729a8d784c).html.
Der volle Inhalt der QuelleSafdar, Shahana. „Peptide-targeted nitric oxide delivery for the treatment of glioblatoma multiforme“. Diss., Georgia Institute of Technology, 2012. http://hdl.handle.net/1853/45797.
Der volle Inhalt der QuelleDi, Mauro Primiano Pio. „Development of novel and multifunctional polymeric nanoparticles for brain targeted drug delivery“. Doctoral thesis, Universitat Ramon Llull, 2015. http://hdl.handle.net/10803/285236.
Der volle Inhalt der QuelleLos sistemas de liberación controlada de medicamentos, mediante la administración dirigida individualmente a células y tejidos, se han convertido en una técnica innovadora para tratar enfermedades como el cáncer. Existe una necesidad urgente para lograr una liberación eficaz y segura que incluya una mínima absorción no específica para los tejidos sanos. Entre los sistemas nanopartículados a base de polímeros para la administración de fármacos, las nanopartículas (NPs) han representado una oportunidad prometedora como sistema de suministro. Entre sus ventajas se puede destacar su perfil de degradación en compuestos hidrosolubles y no tóxicos, que se eliminan siguiendo las vías metabólicas normales del organismo. Por otro lado, presentan una elevada capacidad de modificar la farmacocinética y el perfil de distribución del medicamento en los tejidos. En esta tesis se ha desarrollado una nano-plataforma específica y versátil para la liberación de paclitaxel (PTX) a través de la barrera hematoencefálica (BHE) con el objetivo de mejorar su efecto terapéutico sobre las células de glioma humano. Se ha sintetizado un nuevo polímero biodegradable gracias al cual se han obtenido NPs personalizadas a medida. El método permite modificar el tipo administración dirigida de los fármacos para conseguir un transporte y una liberación de las moléculas de principio activo eficiente y segura. Se ha desarrollado el objetivo de seguir una estrategia de selección dual que consiste en transportar el PTX desde la sangre hasta el cerebro y luego dirigirse a las células de glioma. Para ello se ha empleado la funcionalización con marcadores capaces de atravesar eficientemente la BHE a través de un receptor de membrana que también está sobre-expresado en las células de glioma humano. Para evaluar el perfil biológico de las NPs se han explorado sus propiedades in vivo y dada la urgente necesidad de una evaluación fiable, se han adoptado nuevas estrategias para radiomarcar NPs con el objetivo de investigar su destino in vivo, la estabilidad en entornos biológicos, la biodistribución y la farmacocinética.
Els sistemes d'alliberament controlat de medicaments, mitjançant l'administració dirigida individualment a cèl•lules i teixits, s'han convertit en una tècnica innovadora per tractar malalties com el càncer. Hi ha una necessitat urgent per aconseguir un alliberament eficaç i segura que inclogui una mínima absorció no específica per als teixits sans. Entre els sistemes nanoparticulats a base de polímers per a l'administració de fàrmacs, les nanopartícules (NPs) han representat una oportunitat prometedora com a sistema de subministrament. Entre els seus avantatges es pot destacar el seu perfil de degradació en en compostos hidrosolubles i no tòxics, que s'eliminen seguint les vies metabòliques normals de l'organisme. D'altra banda, presenten una elevada capacitat de modificar la farmacocinètica i el perfil de distribució del medicament en els teixits. En aquesta tesi s'ha desenvolupat una nano‐plataforma específica i versàtil per a l'alliberament de paclitaxel (PTX) a través de la barrera hematoencefàlica (BHE) amb l'objectiu de millorar el seu efecte terapèutic sobre les cèl•lules de glioma humà. S'ha sintetitzat un nou polímer biodegradable gràcies al qual s'han obtingut NPs personalitzades a mida. El mètode permet modificar el tipus administració dirigida dels fàrmacs per aconseguir un transport i un alliberament de les molècules de principi actiu eficient i segura. S'ha desenvolupat l'objectiu de seguir una estratègia de selecció dual que consisteix a transportar el PTX des de la sang fins al cervell i després dirigir‐se a les cèl•lules de glioma. Per a això s'ha emprat la funcionalització amb marcadors capaços de travessar eficientment la BHE a través d'un receptor de membrana que també està sobre-expressat en les cèl•lules de glioma humà. Per avaluar el perfil biològic de les NPs s'han explorat les seves propietats in vivo i donada la urgent necessitat d'una avaluació fiable, s'han adoptat noves estratègies per radiomarcar NPs amb l'objectiu d'investigar la seva destinació in vivo, l'estabilitat en entorns biològics, la biodistribució i la farmacocinètica.
Krishan, Mansi. „Enhanced Intranasal Delivery of Gemcitabine to the Central Nervous System“. University of Cincinnati / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1384850749.
Der volle Inhalt der QuelleGuduru, Rakesh. „Bionano Electronics: Magneto-Electric Nanoparticles for Drug Delivery, Brain Stimulation and Imaging Applications“. FIU Digital Commons, 2013. http://digitalcommons.fiu.edu/etd/979.
Der volle Inhalt der QuelleMeng, Weina. „Evaluation of a nanoparticle drug delivery vehicle in medulloblastoma and organotypic brain cell cultures“. Thesis, University of Nottingham, 2006. http://eprints.nottingham.ac.uk/13933/.
Der volle Inhalt der QuelleAgarwal, Abhiruchi. „Nanocarrier mediated therapies for the gliomas of the brain“. Diss., Georgia Institute of Technology, 2011. http://hdl.handle.net/1853/39468.
Der volle Inhalt der QuelleHashmi, Sumaiya F. „A DNA Computer for Glioblastoma Multiforme Diagnosis and Drug Delivery“. Scholarship @ Claremont, 2013. http://scholarship.claremont.edu/cmc_theses/799.
Der volle Inhalt der QuelleAryal, Muna. „Transient disruption of vascular barriers using focused ultrasound and microbubbles for targeted drug delivery in the brain“. Thesis, Boston College, 2014. http://hdl.handle.net/2345/bc-ir:104127.
Der volle Inhalt der QuelleThe physiology of the vasculature in the central nervous system (CNS) which includes the blood-brain-barrier (BBB) and other factors, prevents the transport of most anticancer agents to the brain and restricts delivery to infiltrating brain tumors. The heterogeneous vascular permeability in tumor vessels (blood-tumor barrier; BTB), along with several other factors, creates additional hurdles for drug treatment of brain tumors. Different methods have been used to bypass the BBB/BTB, but they have their own limitations such as being invasive, non-targeted or requiring the formulation of new drugs. Magnetic Resonance Imaging guided Focused Ultrasound (MRIgFUS), when combined with circulating microbubbles, is an emerging noninvasive method to temporarily permeabilize the BBB and BTB. The purpose of this thesis was to use this alternative approach to deliver chemotherapeutic agents through the BBB/BTB for brain tumor treatment in a rodent model to overcome the hinderances encountered in prior approaches tested for drug delivery in the CNS. The results presented in thesis demonstrate that MRIgFUS can be used to achieve consistent and reproducible BBB/BTB disruption in rats. It enabled us to achieve clinically-relevant concentrations of doxorubicin (~ 4.8±0.5 µg/g) delivered to the brain with the sonication parameters (0.69 MHz; 0.55 MPa; 10 ms bursts; 1 Hz PRF; 60 s duration), microbubble concentration (Definity, 10 µl/kg), and liposomoal doxorubicin (Lipo-DOX) dose (5.67 mg/kg) used. The resulting doxorubicin concentration was reduced by 32% when the agent was injected 10 minute after the last sonication. Three weekly sessions of FUS and Lipo-DOX appeared to be safe in the rat brain, despite some minor tissue damage. Importantly, the severe neurotoxicity seen in earlier works using other approaches does not appear to occur with delivery via FUS-BBB disruption. The resuls from three weekly treatments of FUS and Lipo-DOX in a rat glioma model are highly promising since they demonstrated that the method significantly inhibits tumor growth and improves survival. Animals that received three weekly sessions of FUS + Lipo-DOX (N = 8) had a median survival time that was increased significantly (P<0.001) compared to animals who received Lipo-DOX only (N = 6), FUS only (N = 8), or no treatment (N = 7). Median survival for animals that received FUS + Lipo-DOX was increased by 100% relative to untreated controls, whereas animals who received Lipo-DOX alone had only a 16% improvement. Animals who received only FUS showed no improvement. No tumor cells were found in histology in 4/8 animals in the FUS + Lipo-DOX group, and only a few tumor cells were detected in two animals. Tumor doxorubicin concentrations increased monotonically (823±600, 1817±732 and 2432±448 ng/g) in the control tumors at 9, 14 and 17 days respectively after administration of Lipo-DOX. With FUS-induced BTB disruption, the doxorubicin concentrations were enhanced significantly (P<0.05, P<0.01, and P<0.0001 at days 9, 14, and 17, respectively) and were greater than the control tumors by a factor of two or more (2222±784, 3687±796 and 5658±821 ng/g) regardless of the stage of tumor growth. The transfer coefficient Ktrans was significantly (p<0.05) enhanced compared to control tumors only at day 9 but not at day 14 or 17. These results suggest that FUS-induced enhancements in tumor drug delivery for Lipo-DOX are relatively consistent over time, at least in this tumor model. These results are encouraging for the use of large drug carriers, as they suggest that even large/late-stage tumors can benefit from FUS-induced drug enhancement. Corresponding enhancements in Ktrans were found variable in large/late-stage tumors and not significantly different than controls, perhaps reflecting the size mismatch between the liposomal drug (~100 nm) and Gd-DTPA (molecular weight: 938 Da). Overall, this thesis research provides pre-clinical data toward the development of MRIgFUS as a noninvasive method for the delivery of agents such as Lipo-DOX across the BBB/BTB to treat patients with diseases of the central nervous system
Thesis (PhD) — Boston College, 2014
Submitted to: Boston College. Graduate School of Arts and Sciences
Discipline: Physics
Spencer, Kevin C. (Keven Collen). „A biocompatible, local drug delivery platform for the chronic treatment of neurological disorders of the brain“. Thesis, Massachusetts Institute of Technology, 2017. http://hdl.handle.net/1721.1/109685.
Der volle Inhalt der QuelleCataloged from PDF version of thesis.
Includes bibliographical references (pages 148-158).
Many neurological disorders are now classified as circuit disorders, in which the underlying pathology arises from a failure in dynamic communication between anatomically distinct regions of the brain. Systemic therapies are often not effective due to their untargeted nature. The injectrode is a multifunctional probe designed to treat neurological disorders through targeted chemical and electrical stimulation directly to a focal point within the implicated neural circuit. This thesis details the characterization and biocompatibility of the injectrode for the treatment of neurological disorders on chronic timescales. In vitro and in vivo infusion tests were conducted to validate the ability to deliver nanoliter scale volumes (10-1000 n1) of drug to targeted brain structures over the course of an eight week implantation period. Muscimol was delivered to deep brain structures to demonstrate effective modulation of neural activity and behavior. These findings highlight the utility of a local chemical delivery approach to treat circuit diseases of the brain. Glial scar is a major barrier to neural probe function. A main objective of this thesis is focused on understanding the process of glial scar formation from a materials perspective. Micromotion and mechanical mismatch are thought to be key drivers of scar formation. This hypothesis was investigated using a novel 3D in vitro glial scar model, which replicates the magnitude and frequency of micromotions that are observed in vivo. Astrocytes were found to have a significant increase in cellular area and perimeter in response to micromotion compared to static control wells. These findings were applied to improve the biocompatibility of the injectrode. Hydrogel coatings, with moduli matched to brain tissue, were formed to mitigate the effects of micromotion. These coatings were found to reduce local strain by up to 70%. In vivo studies were conducted to explore the impact that implant diameter and modulus have on scar formation. Hydrogel coated implants (E=1 1.6 kPa) were found to significantly reduce scarring at 8 weeks post implantation, compared to uncoated implants (E=70 GPa). Size effects from increasing the overall implant diameter were also observed, highlighting the importance of considering both mechanical and geometric factors when designing chronic neural implants.
by Kevin C. Spencer.
Ph. D.
Giesen, Beatriz [Verfasser], und Ulf Dietrich [Gutachter] Kahlert. „Gold Nanoparticles as Drug Delivery Systems for Brain Cancer Therapy / Beatriz Giesen ; Gutachter: Ulf Dietrich Kahlert“. Düsseldorf : Universitäts- und Landesbibliothek der Heinrich-Heine-Universität Düsseldorf, 2021. http://d-nb.info/1237883814/34.
Der volle Inhalt der QuelleSalam, Al-Maliki Shanta Taher. „Nose to Brain Delivery of Antiepileptic Drugs Using Nanoemulsions“. University of Toledo Health Science Campus / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=mco1449771501.
Der volle Inhalt der QuelleRegberg, Jakob. „Cell-penetrating peptide based nanocomplexes for oligonucleotide delivery“. Doctoral thesis, Stockholms universitet, Institutionen för neurokemi, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-133794.
Der volle Inhalt der QuelleDearborn, Kristina Ok-Hee. „The Characterization of Non-Ionic Surfactant Vesicles: A Release Rate Study for Drug Delivery“. [Tampa, Fla] : University of South Florida, 2006. http://purl.fcla.edu/usf/dc/et/SFE0001493.
Der volle Inhalt der QuelleMistry, Alpesh. „The development and application of biological models for evaluation of direct nose-to-brain drug delivery systems“. Thesis, University of Nottingham, 2009. http://eprints.nottingham.ac.uk/10654/.
Der volle Inhalt der QuellePawar, Shilpa. „The design and evaluation of a targeted nanoparticulate drug delivery system for the treatment of brain cancer“. Thesis, University of Central Lancashire, 2018. http://clok.uclan.ac.uk/25463/.
Der volle Inhalt der QuelleDaas, Mohammad. „The development of a drug delivery system using brain endothelial non-antibody binding domains as transport carriers“. Thesis, Open University, 2018. http://oro.open.ac.uk/55108/.
Der volle Inhalt der QuelleShukla, Anshu. „A Model for Studying Vasogenic Brain Edema“. VCU Scholars Compass, 2006. http://hdl.handle.net/10156/1690.
Der volle Inhalt der QuelleSánchez, Purrà Maria. „Development of novel vesicle-like nanocarriers for targeted drug delivery“. Doctoral thesis, Universitat Ramon Llull, 2015. http://hdl.handle.net/10803/288318.
Der volle Inhalt der QuelleLas dificultades existentes en la administración de ciertos fármacos, que se traduce en una considerable reducción de su eficacia terapéutica, ha llevado a la exploración de un nuevo campo en el desarrollo de fármacos, el uso de polímeros como transportadores de estos. Estos polímeros se presentan como vehículos transportadores que aportan protección al fármaco, evitando así su degradación i permitiendo su distribución dirigida hasta la diana terapéutica, disminuyendo a su vez los efectos secundarios. Una combinación adecuada del polímero transportador con el fármaco, permite la liberación de este en el tejido dónde debe desarrollar su efecto terapéutico. Aun así, con tal de garantizar el éxito de estos sistemas de distribución de fármacos, estos deben cumplir una serie de requisitos por lo que respecta a tamaño, carga superficial, composición, capacidad de encapsular i liberar un fármaco, funcionalización i biocompatibilidad. En este trabajo, se ha explorado la fabricación de varios sistemas de distribución de fármacos con la finalidad de aportar conocimiento sobre la modificación de estos polímeros, que permitan obtener plataformas de distribución de fármacos que reúnan los requisitos previamente mencionados. Por un lado, se ha obtenido un sistema termosensible i versátil a través de una estrategia de core-shell, que permite ajustar su tamaño i su comportamiento termosensible, como también su modificación superficial mediante un método fácil i rápido basado en química clásica. Por otro lado, la preparación de sistemas polimersómicos se ha explorado mediante polimerización RAFT, es decir, utilizando una química más sofisticada, que permite la síntesis de copolímeros de multibloque amfifílicos i auto-ensamblables, desde dos a cinco bloques, de manera controlada, obteniendo polímeros de peso molecular determinado con distribución de peso molecular muy estrecha. De manera similar al anterior sistema, la modulación de la proporción entre bloques i del número de bloques permite el control del tamaño de las nanoestructuras formadas i de su capacidad de encapsular fármacos. Finalmente, los sistemas polimersómicos desarrollados se han comparado con un sistema de distribución de fármacos muy bien establecido, como son los liposomas, por lo que respecta a su funcionalización, encapsulación i liberación de fármacos, como potenciales sistemas de distribución de fármacos para el tratamiento de metástasis de cáncer de mama al cerebro a través de una estrategia de doble funcionalización, con tal de evaluar la idoneidad del sistema desarrollado en este trabajo.
The existing difficulties in the delivery of certain drugs, having a direct influence on their therapeutic efficiency, has lead to the exploration of a new field in pharmaceuticals, the use of polymers as drug carriers. Polymers are presented as carrier vehicles, which provide drug protection preventing its degradation and targeted delivery to the site of action diminishing side effects. An appropriate combination of the drug and the polymer allows the release of the drug in the tissue where it has to develop its therapeutic effect. However, in order to ensure the success of these drug delivery systems, they must fulfil a list of requirements according to size, surface charge, composition, drug loading capacity and release, targetability and biocompatibility. In this work, the fabrication of diverse drug delivery systems has been explored in order to provide know-how regarding polymers’ tunability to achieve delivery platforms that fulfil the aforementioned requirements. On one hand, a versatile thermo-responsive delivery system has been obtained trough a core-shell approach, allowing the tailoring of its size and thermosensitivity, while providing a simple and fast method to decorate its surface by means of classic chemistry. On the other hand, the preparation of polymersomic systems was explored by RAFT polymerization, a more sophisticated chemistry, which allowed the synthesis of self-assembling amphiphilic multiblock copolymers, ranging from diblock to pentablock, in a controlled manner, obtaining predetermined molecular weight polymers with narrow molecular weight distributions. Similarly to the previous system, the tunability of blocks ratio and number allowed the control over nanostructures size and loading capacity. Finally, polymersomes have been compared with a very well established delivery system, such as liposomes, in terms of targeting and drug loading and release, as potential drug delivery systems to breast cancer metastasis in the brain through a dual-targeting approach, in order to evaluate the suitability of the system developed in this work.
Bonakdar, Mohammad. „Microdevices for Investigating Pulsed Electric Fields-Mediated Therapies at Cellular and Tissue Level“. Diss., Virginia Tech, 2016. http://hdl.handle.net/10919/81384.
Der volle Inhalt der QuellePh. D.
Fuchs, Ferdinand Christian. „Sugar conjugates of 3-hydroxy-4-pyridinones : synthesis and investigations into their potential for drug delivery to the brain“. Thesis, King's College London (University of London), 2015. http://kclpure.kcl.ac.uk/portal/en/theses/sugar-conjugates-of-3hydroxy4pyridinones(f2b6e057-2a29-4895-a84e-3b42a50968ed).html.
Der volle Inhalt der QuelleJain, Anjana. „Delivery of Cdc42, Rac1, and Brain-derived Neurotrophic Factor to Promote Axonal Outgrowth After Spinal Cord Injury“. Diss., Georgia Institute of Technology, 2007. http://hdl.handle.net/1853/16210.
Der volle Inhalt der QuelleSonawane, Amit. „Evaluation of novel efflux transport inhibitor for the improvement of drug delivery through epithelial cell monolayer“. Thesis, University of Bradford, 2015. http://hdl.handle.net/10454/14424.
Der volle Inhalt der QuelleManickavasagam, Dharani. „Preparation and Characterization of Polymersomes for Nose-to-Brain Delivery of Combination Therapeutics in Neuroinflammation Treatment“. Kent State University / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=kent1555522694193999.
Der volle Inhalt der QuelleHägerström, Helene. „Polymer gels as pharmaceutical dosage forms : rheological performance and physicochemical interactions at the gel-mucus interface for formulations intended for mucosal drug delivery /“. Uppsala : Acta Universitatis Upsaliensis, 2003. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-3538.
Der volle Inhalt der QuelleSalade, Laurent. „Development and Characterization of formulations for the nose-to-brain delivery of ghrelin and the management of cachexia“. Doctoral thesis, Universite Libre de Bruxelles, 2019. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/293518.
Der volle Inhalt der QuelleDoctorat en Sciences biomédicales et pharmaceutiques (Pharmacie)
info:eu-repo/semantics/nonPublished
Osburg, Berit. „Drug delivery of oligonucleotides at the blood brain barrier a therapeutic strategy for inflammatory diseases of the central nervous system /“. [S.l.] : [s.n.], 2003. http://archiv.ub.uni-marburg.de/diss/z2003/0551/.
Der volle Inhalt der QuellePourbaghi, Masouleh Milad. „Development of lipid nanocapsules for antiangiogenic treatment of glioblastoma and evaluation of their potential for nose-to-brain drug delivery“. Thesis, Angers, 2018. http://www.theses.fr/2018ANGE0037.
Der volle Inhalt der QuelleGlioblastoma (GB), the most aggressive, and the most frequent primary tumor of the brain in adults, present a prominent vascular proliferation. Innovative therapeutic agents targeting both angiogenesis and tumor cells are urgently required, along with competent systems for their delivery to the brain tumor. One such agent is sorafenib (SFN), a tyrosine kinase inhibitor. However, poor aqueoussolubility and undesirable side effects limit its clinical application. The first objective of this thesis was to encapsulate this drug inside lipid nanocapsules(LNCs) to overcome these drawbacks. We developed LNCs with a high SFN encapsulation efficiency (>90%) that inhibited in vitro angiogenesis and the viability of the human U87MG GB cell line. Intratumoral delivery of SFN-LNCs in mice bearing intracerebral U87MG tumors induced early tumor vascular normalization which could be used to improve the efficacy of chemotherapy and radiotherapy in the treatment of GB. The second objective was to define whether intranasal delivery of LNCs could be an alternative non-invasive route. In this regard, we investigated through Förster resonance energy transfer, the fate of dye-loaded LNCs across Calu-3 cell monolayers, a model of the nasal mucosa. We showed that employment of LNCs dramatically increased the delivery of the dye acrossCalu-3 cell monolayer but they were rapidly degraded after their uptake. These data highlight that LNCs are suitable nanocarriers for the local delivery of SFN but must be redesigned for enhancing their nose-to-brain delivery
Tawfik, Mohamed [Verfasser], und Bernhard A. [Gutachter] Sabel. „Nanoparticles delivery to the central nervous system in-vivo : PVP nanoparticles for brain drug delivery and neuroprotection with siRNA-caspase-3 / Mohamed Tawfik ; Gutachter: Bernhard A. Sabel“. Magdeburg : Universitätsbibliothek Otto-von-Guericke-Universität, 2021. http://nbn-resolving.de/urn:nbn:de:gbv:ma9:1-1981185920-387735.
Der volle Inhalt der QuelleBielecki, Peter. „Advanced Mesoporous Silica Nanoparticles for the Treatment of Brain Tumors“. Case Western Reserve University School of Graduate Studies / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=case159558503832021.
Der volle Inhalt der QuelleGonçalves, Vanessa Santos Silva. „Overcoming Central Nervous System-barriers by the development of hybrid structured systems for nose-to-brain drug delivery using clean technologies“. Doctoral thesis, Universidade Nova de Lisboa, Instituto de Tecnologia Química e Biológica António Xavier, 2016. http://hdl.handle.net/10362/56395.
Der volle Inhalt der Quelleinfo:eu-repo/semantics/publishedVersion
Connell, John J. „Selective permeabilisation of the blood-brain barrier at sites of metastasis“. Thesis, University of Oxford, 2014. http://ora.ox.ac.uk/objects/uuid:8c027208-8ea6-4de4-be78-ccead5121509.
Der volle Inhalt der QuelleZhang, Yajie. „Multimodal Imaging PLGA Nanocapsules as Protein Carrier for Potential Neurorepair in Ischemic Brain“. Doctoral thesis, Universitat Autònoma de Barcelona, 2020. http://hdl.handle.net/10803/671000.
Der volle Inhalt der QuelleEl desarrollo de sistemas nanoparticulados capaces de proporcionar las funcionalidades necesarias a las nuevas nanomedicinas ofreciendo la posibilidad de combinar la detección no invasiva de enfermedades con tratamientos individualizados están convirtiendo en realidad la medicina personalizada. Además, los progresos en teranóstica están configurando el progreso de la administración de fármacos guiados por imagen que mejoran la eficiencia del tratamiento visualizando su biodistribución, el efecto sobre las dianas moleculares y celulares específicas y los efectos terapéuticos correspondientes. Esta tesis tiene como finalidad el diseño y la síntesis de nano-biomateriales teranósticos dirigidos a la neuroreparación en el contexto de un ictus isquémico con el objetivo de estimular la angiogénesis en la zona de afectación. Para ello, se han encapsulado factores de crecimiento secretados por las células progenitoras endoteliales (EPCs-secretoma), con demostrado potencial para inducir angiogénesis, en nanocápsulas magnéticas biocompatibles y biodegradables de poli (D, L ácido co-glicólico) (PLGA). Por otra parte, las cápsulas de PLGA se han funcionalizado con varios agentes de contraste permitiendo tanto la retención magnética como su visualización in vitro o in vivo. Los principales objetivos conseguidos en esta tesis son: 1) optimización de nanocápsulas magnéticas de PLGA para favorecer su retención en la zona a tratar y la encapsulación y liberación controlados de proteínas terapéuticas; 2) funcionalización modular de las nanocápsulas con agentes de contraste para: resonancia magnética de imagen, fluorescencia a cuatro longitudes de onda diferentes i tomografía de emisión de positrones y 3) nuevas aproximaciones para mejorar la acumulación cerebral de las nanocápsulas en ratones y aumentar la carga de secretoma encapsulado en las mismas.
Advancements in nanoparticulated systems capable of providing the necessary functionalities to new nanomedicines and offering the possibility to combine non-invasive disease detection with individualized treatments are facilitating personalized medicine to become a reality. Besides, the progress in theranostics is shaping the development of image-guided drug delivery improving the efficiency of pharmaceuticals by visualizing their biodistributions, effects on specific molecular and cellular targets, and the corresponding therapeutic effects. This thesis is devoted to engineering theranostic magnetic nano-biomaterials to address neurorepair in the context of an ischemic stroke by enhancing local angiogenesis. Growth factors secreted by endothelial progenitor cells (EPCs-secretome), with proved potential to induce angiogenesis, were encapsulated into magnetic poly(D,L lactic co glycolic acid) (PLGA) nanocapsules. Additionally, this PLGA-drug delivery system was functionalized with versatile imaging reporters allowing magnetic retention and in vitro/in vivo product tracking. The main accomplished objectives of the thesis are: 1) optimization of PLGA nanocapsules for magnetically targeted delivery and controlled encapsulation and release of proteins, 2) modular functionalization of PLGA nanocapsules with versatile imaging reporters: magnetic resonance imaging, fluorescence at four different wavelengths and positron emission tomography and 3) improved approaches to enhance mice brain accumulation of the nanocapsules and to increase EPCs-secretome loading.
Kohli, Neha. „Amelioration of Amyloid Burden in Advanced Human and Mouse Alzheimer's Disease Brains by Oral Delivery of Myelin Basic Protein Bioencapsulated in Plant Cells“. Master's thesis, University of Central Florida, 2012. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/5380.
Der volle Inhalt der QuelleM.S.
Masters
Molecular Biology and Microbiology
Medicine
Biotechnology
Munson, Jennifer Megan. „Novel nanocarriers for invasive glioma“. Diss., Georgia Institute of Technology, 2011. http://hdl.handle.net/1853/41226.
Der volle Inhalt der QuelleAttarhaie, Tehrani Mahtab. „Anatomical Expression and Functional Role of the G-Protein Coupled Estrogen Receptor 1 in the Song System of Zebra Finches (Taeniopygia guttata)“. Kent State University / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=kent152416406994131.
Der volle Inhalt der QuelleHaraszti, Reka A. „Engineered Exosomes for Delivery of Therapeutic siRNAs to Neurons“. eScholarship@UMMS, 2018. https://escholarship.umassmed.edu/gsbs_diss/971.
Der volle Inhalt der QuelleThomas, Sean Casey. „A Developed and Characterized Orthotopic Rat Glioblastoma Multiforme Model“. Thesis, Virginia Tech, 2020. http://hdl.handle.net/10919/100772.
Der volle Inhalt der QuelleMaster of Science
Treating glioblastoma multiforme (GBM), a form of cancer found in the brain, has not been very successful; patients rarely live two years following diagnosis, and there have been no major breakthrough advances in treatment to improve this outlook for decades. We have been working on two treatments which we hope to combine. The first is high-frequency electroporation (H-FIRE), which uses electrical pulses to kill GBM cells while leaving healthy cells alive and blood vessels intact. The second is QUAD-CTX, which combines a toxin with two types of protein that attach to other proteins that are more common on the surface of GBM cells than healthy cells. We have shown these to be effective at disproportionately killing human GBM cells growing in a lab setting. Before H-FIRE and QUAD-CTX may be tested on humans, we need to show them to be effective in an animal model, specifically rats. I have chosen rat glioma cells that will behave similarly to human GBM and a rat species that will not have an immune response to them. I have made these cells bioluminescent so that we may monitor the tumors as they grow and respond to our treatments. I have also shown that QUAD-CTX kills these rat glioma cells, as does H-FIRE. Because of this work, we are ready to begin testing these two treatments in rats.
Beccaria, Kévin. „Evaluation de la diffusion intracérébrale des drogues antinéoplasiques après ouverture de la barrière hémato-encéphalique induite par ultrasons : Application aux gliomes malins de l’enfant Brainstem Blood-Brain Barrier Disruption and Enhanced Drug Delivery with an Unfocused Ultrasound Device – A Preclinical Study in Healthy and Tumor-Bearing Mice Ultrasound-Induced Blood-Brain Barrier Disruption for the Treatment of Gliomas and other Primary CNS Tumors Blood-Brain Barrier Disruption with Low-Intensity Pulsed Ultrasound for the Treatment of Pediatric Brain Tumors: A Review and Perspectives“. Thesis, université Paris-Saclay, 2020. http://www.theses.fr/2020UPASS044.
Der volle Inhalt der QuelleHigh-grade gliomas represent about 15% of pediatric brain tumors. No progress has been made in the treatment of these tumors during the last decades, and their prognosis remains dismal. The blood-brain barrier (BBB) plays a major role in the failure of medical treatments since it prevents most molecules to reach the brain, thus limiting the delivery of antineoplastic drugs to brain tumors. Disruption of the BBB (BBBD) with low intensity pulsed ultrasound in association with intravenous microbubbles is a technique that allows for safe, transient, and localized opening of the BBB. In this thesis, we confirmed the capacity of a new microbubble contrast agent to induce BBBD with ultrasound. We showed that opening of the BBB in the brainstem is possible with a nonfocused ultrasound device (SonoCloud®), in both healthy mice and a murine model of DIPG. We were able to increase irinotecan and panobinostat delivery in the brainstem of both healthy and tumor-bearing mice after BBBD, but we did not observe increased in overall survival. Preliminary studies have also been performed with checkpoints inhibitors and natural killer cells in a murine model of supra-tentorial high-grade glioma, but we were not able to increase survival in these models anymore. Finally, we prepared the first clinical trial that will evaluate the feasibility and tolerance of ultrasound-induced BBBD with the SonoCloud® device in the pediatric population. This trial will begin during the first semester of 2020
Critchley, Helen. „Intranasal drug delivery“. Thesis, University of Nottingham, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.236046.
Der volle Inhalt der QuelleIrwin, Michael Garnet. „Patient maintained drug delivery“. Thesis, Click to view the E-thesis via HKUTO, 2003. http://sunzi.lib.hku.hk/hkuto/record/B31981847.
Der volle Inhalt der Quelle