Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Drug delivery to brain“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Drug delivery to brain" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Drug delivery to brain"
Rahman, Ruman, Emma Campbell, Henry Brem, Monica Pearl, Jordan Green, Miroslaw Janowski, Piotr Walczak et al. „SCIDOT-08. CHILDREN’S BRAIN TUMOUR DRUG DELIVERY CONSORTIUM (CBTDDC)“. Neuro-Oncology 21, Supplement_6 (November 2019): vi274. http://dx.doi.org/10.1093/neuonc/noz175.1149.
Der volle Inhalt der QuelleAiran, Raag. „Stimulating brain drug delivery“. Science Translational Medicine 12, Nr. 564 (07.10.2020): eabe8119. http://dx.doi.org/10.1126/scitranslmed.abe8119.
Der volle Inhalt der QuelleBodor, Nicholas, und Peter Buchwald. „Brain-Targeted Drug Delivery“. American Journal of Drug Delivery 1, Nr. 1 (2003): 13–26. http://dx.doi.org/10.2165/00137696-200301010-00002.
Der volle Inhalt der QuelleHoag, Hannah. „Drug delivery: Brain food“. Nature 510, Nr. 7506 (Juni 2014): S6—S7. http://dx.doi.org/10.1038/510s6a.
Der volle Inhalt der QuelleBelmaker, R. H., und G. Agam. „Deep Brain Drug Delivery“. Brain Stimulation 6, Nr. 3 (Mai 2013): 455–56. http://dx.doi.org/10.1016/j.brs.2012.05.001.
Der volle Inhalt der QuelleJiang, Xinguo. „Brain Drug Delivery Systems“. Pharmaceutical Research 30, Nr. 10 (07.08.2013): 2427–28. http://dx.doi.org/10.1007/s11095-013-1148-7.
Der volle Inhalt der QuelleKumar, Pankaj, Varun Garg und Neeraj Mittal. „Nose to Brain Drug Delivery System: A Comprehensive Review“. Drug Delivery Letters 10, Nr. 4 (20.11.2020): 288–99. http://dx.doi.org/10.2174/2210303110999200526123006.
Der volle Inhalt der QuelleJoshi, Shailendra, Phillip M. Meyers und Eugene Ornstein. „Intracarotid Delivery of Drugs“. Anesthesiology 109, Nr. 3 (01.09.2008): 543–64. http://dx.doi.org/10.1097/aln.0b013e318182c81b.
Der volle Inhalt der QuelleBahadur, Shiv, Nidhi Sachan, Ranjit K. Harwansh und Rohitas Deshmukh. „Nanoparticlized System: Promising Approach for the Management of Alzheimer’s Disease through Intranasal Delivery“. Current Pharmaceutical Design 26, Nr. 12 (06.05.2020): 1331–44. http://dx.doi.org/10.2174/1381612826666200311131658.
Der volle Inhalt der QuelleDeepti R. Damle, Dr. Archana D. Kajale, Dr. Madhuri A. Channawar und Dr. Shilpa R. Gawande. „A review: Brain specific delivery“. GSC Biological and Pharmaceutical Sciences 13, Nr. 2 (30.11.2020): 068–79. http://dx.doi.org/10.30574/gscbps.2020.13.2.0349.
Der volle Inhalt der QuelleDissertationen zum Thema "Drug delivery to brain"
Huynh, Grace. „Convection administered drug delivery to the brain“. Diss., Search in ProQuest Dissertations & Theses. UC Only, 2007. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:3251934.
Der volle Inhalt der QuelleBoltman, Taahirah. „Liposomal drug delivery to brain cancer cells“. University of the Western Cape, 2015. http://hdl.handle.net/11394/4706.
Der volle Inhalt der QuelleNeuroblastomas (NBs) are the most common solid extra-cranial tumours diagnosed in childhood and characterized by a high risk of tumour relapse. Like in other tumour types, there are major concerns about the specificity and safety of available drugs used for the treatment of NBs, especially because of potential damage to the developing brain. Many plant-derived bioactive compounds have proved effective for cancer treatment but are not delivered to tumour sites in sufficient amounts due to compromised tumour vasculature characterized by leaky capillary walls. Betulinic acid (BetA) is one such naturally-occurring anti-tumour compound with minimum to no cytotoxic effects in healthy cells and rodents. BetA is however insoluble in water and most aqueous solutions, thereby limiting its therapeutic potential as a pharmaceutical product. Liposomes are self-assembling closed colloidal structures composed of one or more concentric lipid bilayers surrounding a central aqueous core. The unique ability of liposomes to entrap hydrophilic molecules into the core and hydrophobic molecules into the bilayers renders them attractive for drug delivery systems. Cyclodextrins (CDs) are non-reducing cyclic oligosaccharides which proximate a truncated core, with features of a hydrophophilic outer surface and hydrophobic inner cavity for forming host-guest inclusion complexes with poorly water soluble molecules. CDs and liposomes have recently gained interest as novel drug delivery vehicles by allowing lipophilic/non-polar molecules into the aqueous core of liposomes, hence improving the therapeutic load, bioavailability and efficacy of many poorly water-soluble drugs. The aim of the study was to develop nano-drug delivery systems for BetA in order to treat human neuroblastoma (NB) cancer cell lines. This was achieved through the preparation of BetA liposomes (BetAL) and improving the percent entrapment efficiency (% EE) of BetA in liposomes through double entrapment of BetA and gamma cyclodextrin BetA inclusion complex (γ-CD-BetA) into liposomes (γ-CD-BetAL). We hypothesized that the γ-CD-BetAL would produce an increased % EE compared to BetAL, hence higher cytotoxic effects. Empty liposomes (EL), BetAL and γ-CD-BetAL were synthesized using the thin film hydration method followed by manual extrusion. Spectroscopic and electron microscopic characterization of these liposome formulations showed size distributions of 1-4 μm (before extrusion) and less than 200 nm (after extrusion). As the liposome size decreased, the zeta-potential (measurement of liposome stability) decreased contributing to a less stable liposomal formulation. Low starting BetA concentrations were found to be more effective in entrapping higher amounts of BetA in liposomes while the incorporation of γ-CD-BetA into liposomes enhanced the % EE when compared to BetAL, although this was not statistically significant. Cell viability studies using the WST-1 assay showed a time-and concentration-dependent decrease in SK-N-BE(2) and Kelly NB cell lines exposed to free BetA, BetAL and γ-CD-BetAL at concentrations of 5-20 ug/ml for 24, 48 and 72 hours treatment durations. The observed cytotoxicity of liposomes was dependant on the % EE of BetA. The γ-CD-BetAL was more effective in reducing cell viability in SK-N-BE(2) cells than BetAL whereas BetAL was more effective in KELLY cells at 48-72 hours. Exposure of all cells to EL showed no toxicity while free BetA was more effective overall than the respective liposomal formulations. The estimated IC₅₀ values following exposure to free BetA and BetAL were similar and both showed remarkable statistically significant decrease in NB cell viability, thus providing a basis for new hope in the effective treatment of NBs.
Lungare, Shital. „Development of novel delivery systems for nose-to-brain drug delivery“. Thesis, Aston University, 2017. http://publications.aston.ac.uk/37491/.
Der volle Inhalt der QuelleCharlton, Stuart Thomas. „Drug delivery to the brain via intranasal administration“. Thesis, University of Nottingham, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.275962.
Der volle Inhalt der QuelleIbegbu, Madu Daniel. „Functionalised dextran nanoparticles for drug delivery to the brain“. Thesis, University of Portsmouth, 2015. https://researchportal.port.ac.uk/portal/en/theses/functionalised-dextran-nanoparticles-for-drug-delivery-to-the-brain(c2da4093-315e-4647-90e1-4340acf2b8bd).html.
Der volle Inhalt der QuelleOng, Qunya. „Local drug delivery for treatment of brain tumor associated edema“. Thesis, Massachusetts Institute of Technology, 2014. http://hdl.handle.net/1721.1/95865.
Der volle Inhalt der QuelleCataloged from PDF version of thesis.
Includes bibliographical references (pages 115-127).
Brain tumor associated edema, a common feature of malignant brain neoplasms, is a significant cause of morbidity from brain tumor. Systemic administration of corticosteroids, the standard of care, is highly effective but can introduce serious systemic complications. Agents that inhibit the vascular endothelial growth factor (VEGF) pathway, such as cediranib, are promising alternatives, but are also associated with systemic toxicity as VEGF is essential for normal physiological functions. A miniature drug delivery device was developed for local drug delivery in rodents. It comprises of a drug reservoir and a cap with orifice(s) through which drug is released. Drug release kinetics is dependent on the payload, the drug solubility, and the surface area for diffusion. Sustained releases of dexamethasone (DXM), dexamethasone sodium phosphate (DSP), and solid dispersion of cediranib (AZD/PVP) were achieved. Employing the solid dispersion technique to increase the solubility of cediranib was necessary to enhance its release. Therapeutic efficacy and systemic toxicity of local drug administration via our devices were examined in an intracranial 9L gliosarcoma rat model. Local delivery of DSP was effective in reducing edema but led to DXM induced weight loss at high doses in a pilot study. DXM, which is much less water-soluble than DSP, was used subsequently to reduce the dose delivered. The use of DXM enabled long-term, sustained zero-order release and a higher payload than DSP. Local deliveries of DXM and AZD/PVP were demonstrated to be as effective as systemic dosing in alleviating edema. Edema reduction was associated with survival benefit, despite continuous tumor progression. Animals treated with locally delivered DXM did not suffer from body weight loss and corticosterone suppression, which are adverse effects induced by systemic DXM. Local drug administration using our device is superior to traditional systemic administration as it minimizes systemic toxicity and allows increased drug concentration in the tumor by circumventing the blood brain barrier. A much lower dose can therefore be utilized to achieve similar efficacy. Our drug delivery system can be used with other therapeutic agents targeting brain tumor to achieve therapeutic efficacy without systemic toxicity.
by Qunya Ong.
Ph. D.
Sharma, Gitanjali. „Dual Modified Liposomes for Drug and Gene Delivery to Brain“. Diss., North Dakota State University, 2014. https://hdl.handle.net/10365/27310.
Der volle Inhalt der QuelleBin, Bostanudin Mohammad Fauzi. „Butylglyceryl-modified polysaccharide nanoparticles for drug delivery to the brain“. Thesis, University of Portsmouth, 2016. https://researchportal.port.ac.uk/portal/en/theses/butylglycerylmodified-polysaccharide-nanoparticles-for-drug-delivery-to-the-brain(a91de9ba-3070-40a4-bf66-400f4d63027d).html.
Der volle Inhalt der QuelleMolnár, Éva. „Modified-chitosan nanoparticles for drug delivery through the blood-brain barrier“. Thesis, University of Portsmouth, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.494005.
Der volle Inhalt der QuelleToman, Petr. „Nanoparticles from alkylglyceryl-modified polysaccharides for drug delivery to the brain“. Thesis, University of Portsmouth, 2012. https://researchportal.port.ac.uk/portal/en/theses/nanoparticles-from-alkylglycerylmodified-polysaccharides-for-drug-delivery-to-the-brain(7c977729-1e45-45d9-b826-f1729a8d784c).html.
Der volle Inhalt der QuelleBücher zum Thema "Drug delivery to brain"
Morales, Javier O., und Pieter J. Gaillard, Hrsg. Nanomedicines for Brain Drug Delivery. New York, NY: Springer US, 2021. http://dx.doi.org/10.1007/978-1-0716-0838-8.
Der volle Inhalt der QuelleHammarlund-Udenaes, Margareta, Elizabeth C. M. de Lange und Robert G. Thorne, Hrsg. Drug Delivery to the Brain. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4614-9105-7.
Der volle Inhalt der QuelleAgrahari, Vivek, Anthony Kim und Vibhuti Agrahari, Hrsg. Nanotherapy for Brain Tumor Drug Delivery. New York, NY: Springer US, 2021. http://dx.doi.org/10.1007/978-1-0716-1052-7.
Der volle Inhalt der QuellePeptide drug delivery to the brain. New York: Raven Press, 1991.
Den vollen Inhalt der Quelle findenHammarlund-Udenaes, Margareta, Elizabeth C. M. de Lange und Robert G. Thorne. Drug delivery to the brain: Physiological concepts, methodologies, and approaches. Herausgegeben von American Association of Pharmaceutical Scientists. New York: AAPS Press, 2014.
Den vollen Inhalt der Quelle findenG, De Boer A., Hrsg. Drug tranport(ers) and the diseased brain: Proceedings of the Esteve Foundation Symposium 11, held between 6 and 9 October 2004, S'Agaró (Girona), Spain. Amsterdam, Netherlands: Elsevier, 2005.
Den vollen Inhalt der Quelle findenGutiérrez, Lucía M. Neuro-oncology and cancer targeted therapy. New York: Nova Biomedical Books, 2010.
Den vollen Inhalt der Quelle findenHolowka, Eric P., und Sujata K. Bhatia. Drug Delivery. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4939-1998-7.
Der volle Inhalt der QuelleWang, Binghe, Teruna J. Siahaan und Richard Soltero, Hrsg. Drug Delivery. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2005. http://dx.doi.org/10.1002/0471475734.
Der volle Inhalt der QuelleSchäfer-Korting, Monika, Hrsg. Drug Delivery. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-00477-3.
Der volle Inhalt der QuelleBuchteile zum Thema "Drug delivery to brain"
Potschka, Heidrun. „Targeting the Brain – Surmounting or Bypassing the Blood–Brain Barrier“. In Drug Delivery, 411–31. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-00477-3_14.
Der volle Inhalt der QuelleO’Reilly, Meaghan A., und Kullervo Hynynen. „Ultrasound and Microbubble-Mediated Blood-Brain Barrier Disruption for Targeted Delivery of Therapeutics to the Brain“. In Targeted Drug Delivery, 111–19. New York, NY: Springer US, 2018. http://dx.doi.org/10.1007/978-1-4939-8661-3_9.
Der volle Inhalt der QuelleHynynen, Kullervo. „Macromolecular Delivery Across the Blood–Brain Barrier“. In Macromolecular Drug Delivery, 175–85. Totowa, NJ: Humana Press, 2008. http://dx.doi.org/10.1007/978-1-59745-429-2_13.
Der volle Inhalt der QuelleGuarnieri, Michael, Benjamin S. Carson und George I. Jallo. „Catheters for Chronic Administration of Drugs into Brain Tissue“. In Drug Delivery Systems, 109–17. Totowa, NJ: Humana Press, 2008. http://dx.doi.org/10.1007/978-1-59745-210-6_4.
Der volle Inhalt der QuellePardridge, William M. „Strategies for Drug Delivery through the Blood-Brain Barrier“. In Directed Drug Delivery, 83–96. Totowa, NJ: Humana Press, 1985. http://dx.doi.org/10.1007/978-1-4612-5186-6_6.
Der volle Inhalt der QuelleDe La Fuente, Maria, Maria V. Lozano, Ijeoma F. Uchegbu und Andreas G. Schätzlein. „Chapter 7.3. Drug Delivery Strategies: Nanostructures for Improved Brain Delivery“. In Drug Discovery, 392–432. Cambridge: Royal Society of Chemistry, 2012. http://dx.doi.org/10.1039/9781849735292-00392.
Der volle Inhalt der QuelleHuile Gao und Xinguo Jiang. „Brain Delivery Using Nanotechnology“. In Blood-Brain Barrier in Drug Discovery, 521–34. Hoboken, NJ: John Wiley & Sons, Inc, 2015. http://dx.doi.org/10.1002/9781118788523.ch24.
Der volle Inhalt der QuelleKhosa, Archana, Kowthavarapu V. Krishna, Sunil Kumar Dubey und Ranendra Narayan Saha. „Lipid Nanocarriers for Enhanced Delivery of Temozolomide to the Brain“. In Drug Delivery Systems, 285–98. New York, NY: Springer New York, 2019. http://dx.doi.org/10.1007/978-1-4939-9798-5_15.
Der volle Inhalt der QuelleGreig, N. H. „Drug Delivery to Brain Tumors“. In New Directions in Cancer Treatment, 259–77. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-83405-9_13.
Der volle Inhalt der QuelleLalan, Manisha, Rohan Lalani, Vivek Patel und Ambikanandan Misra. „Brain Targeted Drug Delivery Systems“. In In-Vitro and In-Vivo Tools in Drug Delivery Research for Optimum Clinical Outcomes, 237–82. Boca Raton : Taylor & Francis, 2018.: CRC Press, 2018. http://dx.doi.org/10.1201/b22448-8.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Drug delivery to brain"
Quispe, Rodrigo, Jorge A. Trevino, Faizan Khan und Vera Novak. „Strategies for nose-to-brain drug delivery“. In the 8th International Workshop on Innovative Simulation for Healthcare. CAL-TEK srl, 2019. http://dx.doi.org/10.46354/i3m.2019.iwish.017.
Der volle Inhalt der QuelleErgin, Aysegul, Mei Wang, Shailendra Joshi und Irving J. Bigio. „Optical Monitoring of Tracers and Mitoxantrone in Rabbit Brain and the Variability in Blood-Brain Barrier Disruption“. In Optical Molecular Probes, Imaging and Drug Delivery. Washington, D.C.: OSA, 2011. http://dx.doi.org/10.1364/omp.2011.omc3.
Der volle Inhalt der QuelleSeekell, Kevin C., Spencer Lewis, Christy Wilson, Gerald Grant und Adam P. Wax. „Feasibility of Brain Tumor Delineation using Immunolabeled Gold Nanorods“. In Optical Molecular Probes, Imaging and Drug Delivery. Washington, D.C.: OSA, 2013. http://dx.doi.org/10.1364/omp.2013.mw1c.3.
Der volle Inhalt der QuelleDePaoli, Damon, Nicolas Lapointe, Younès Messaddeq, Martin Parent und Daniel C. Côté. „Primate brain tissue identification using a compact coherent Raman spectroscopy probe“. In Optical Molecular Probes, Imaging and Drug Delivery. Washington, D.C.: OSA, 2019. http://dx.doi.org/10.1364/omp.2019.ow4d.5.
Der volle Inhalt der QuelleChandra, D., und P. Karande. „Transferrin mediated drug delivery to brain“. In 2011 37th Annual Northeast Bioengineering Conference (NEBEC). IEEE, 2011. http://dx.doi.org/10.1109/nebc.2011.5778697.
Der volle Inhalt der QuelleGradinaru, Viviana. „Visualizing the Activity and Anatomy of Brain Circuits: Optogenetic Sensors and Tissue Clearing Approaches“. In Optical Molecular Probes, Imaging and Drug Delivery. Washington, D.C.: OSA, 2015. http://dx.doi.org/10.1364/omp.2015.jw2b.1.
Der volle Inhalt der QuelleGerega, Anna, Wojciech Weigl, Daniel Milej, Piotr Sawosz, Ewa Mayzner-Zawadzka, Roman Maniewski und Adam Liebert. „Multiwavelength time-resolved measurement of diffuse reflectance for brain oxygenation assessment during hypoxic challenge test“. In Optical Molecular Probes, Imaging and Drug Delivery. Washington, D.C.: OSA, 2011. http://dx.doi.org/10.1364/omp.2011.omc4.
Der volle Inhalt der QuellePishko, Gregory L., Morad Nasseri, Seymur Gahramanov, Leslie L. Muldoon und Edward A. Neuwelt. „Blood-Tumor Barrier Normalization Effects on Cytotoxic Drug Delivery to Brain Tumors“. In ASME 2013 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/sbc2013-14648.
Der volle Inhalt der QuelleWu, Shih-Ying, Samantha M. Fix, Christopher Arena, Cherry C. Chen, Wenlan Zheng, Oluyemi O. Olumolade, Virginie Papadopoulou, Anthony Novell, Paul A. Dayton und Elisa E. Konofagou. „Focused ultrasound-facilitated brain drug delivery using optimized nanodroplets“. In 2017 IEEE International Ultrasonics Symposium (IUS). IEEE, 2017. http://dx.doi.org/10.1109/ultsym.2017.8091719.
Der volle Inhalt der QuelleMcDannold, Nathan, Lisa Treat, Natalia Vykhodtseva und Kullervo Hynynen. „Targeted drug delivery in the brain via ultrasound-induced blood-brain barrier disruption“. In 2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro (ISBI). IEEE, 2009. http://dx.doi.org/10.1109/isbi.2009.5193156.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Drug delivery to brain"
Thayumanavan, Sankaran. Feedback Drug Delivery Vehicles. Fort Belvoir, VA: Defense Technical Information Center, Juni 2012. http://dx.doi.org/10.21236/ada577627.
Der volle Inhalt der QuelleAnderson, Burt, Richard Heller, Ed Turos und Mark Mclaughlin. Drug Discovery, Design and Delivery. Fort Belvoir, VA: Defense Technical Information Center, Juni 2012. http://dx.doi.org/10.21236/ada563482.
Der volle Inhalt der QuelleAgarwal, Jayant P., und Himanshu J. Sant. Drug Delivery for Peripheral Nerve Regeneration. Fort Belvoir, VA: Defense Technical Information Center, September 2014. http://dx.doi.org/10.21236/ada613477.
Der volle Inhalt der QuelleOrwin, Elizabeth, Isabella Wulur, Nicole Esclamado und Madineh Sarvestani. Cell Delivery System for Traumatic Brain Injury. Fort Belvoir, VA: Defense Technical Information Center, März 2008. http://dx.doi.org/10.21236/ada482999.
Der volle Inhalt der QuelleDotto, Gian P. Peptide-Targeted Drug Delivery to Breast Tumors. Fort Belvoir, VA: Defense Technical Information Center, Juli 1999. http://dx.doi.org/10.21236/ada373913.
Der volle Inhalt der QuelleDotto, Gian P. Peptide-Targeted Drug Delivery to Breast Tumors. Fort Belvoir, VA: Defense Technical Information Center, Juli 2000. http://dx.doi.org/10.21236/ada392787.
Der volle Inhalt der QuelleAtif Syed, Atif Syed. Targeted Drug Delivery by using Magnetic Nanoparticles. Experiment, Juni 2013. http://dx.doi.org/10.18258/0788.
Der volle Inhalt der QuelleEsenaliev, Rinat O. Novel Drug Delivery Technique for Breast Cancer Therapy. Fort Belvoir, VA: Defense Technical Information Center, Juli 2003. http://dx.doi.org/10.21236/ada418735.
Der volle Inhalt der QuelleEsenaliev, Rinat O. Novel Drug Delivery Technique for Breast Cancer Therapy. Fort Belvoir, VA: Defense Technical Information Center, Juli 2002. http://dx.doi.org/10.21236/ada410175.
Der volle Inhalt der QuelleEsenaliev, Rinat O. Novel Drug Delivery Technique for Breast Cancer Therapy. Fort Belvoir, VA: Defense Technical Information Center, Juli 2004. http://dx.doi.org/10.21236/ada435264.
Der volle Inhalt der Quelle