Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Drop-in fuels“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Drop-in fuels" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Drop-in fuels"
Bogarra-Macias, Maria, Omid Doustdar, Mohammed Fayad, Miroslaw Wyszyński, Athanasios Tsolakis, P. Ding, Andrzej Pacek, Peter Martin, Ralph Overend und Shane O’Leary. „Performance of a drop-in biofuel emulsion on a single-cylinder research diesel engine“. Combustion Engines 166, Nr. 3 (01.08.2016): 9–16. http://dx.doi.org/10.19206/ce-2016-324.
Der volle Inhalt der QuelleShouse, D. T., C. Neuroth, R. C. Hendricks, A. Lynch, C. W. Frayne, J. S. Stutrud, E. Corporan und Capt T. Hankins. „Alternate-Fueled Combustor-Sector Performance—Part A: Combustor Performance and Part B: Combustor Emissions“. ISRN Mechanical Engineering 2012 (18.01.2012): 1–26. http://dx.doi.org/10.5402/2012/684981.
Der volle Inhalt der QuelleYakovlev, A. V., und E. A. Sharin. „Justification of Requirements for the Motorless Method of Evaluation of Deposit Forming Tendency of Diesel Fuel on Diesel Engine Injectors“. Oil and Gas Technologies 131, Nr. 6 (2020): 34–41. http://dx.doi.org/10.32935/1815-2600-2020-131-6-34-41.
Der volle Inhalt der QuelleHenein, N. A., B. Jawad und E. Gulari. „Effects of Physical Properties of Fuels on Diesel Injection“. Journal of Engineering for Gas Turbines and Power 112, Nr. 3 (01.07.1990): 308–16. http://dx.doi.org/10.1115/1.2906496.
Der volle Inhalt der QuelleKolosz, B. W., Y. Luo, B. Xu, M. M. Maroto-Valer und J. M. Andresen. „Life cycle environmental analysis of ‘drop in’ alternative aviation fuels: a review“. Sustainable Energy & Fuels 4, Nr. 7 (2020): 3229–63. http://dx.doi.org/10.1039/c9se00788a.
Der volle Inhalt der QuelleXu, Peng, Kangjian Qiao, Woo Suk Ahn und Gregory Stephanopoulos. „Engineering Yarrowia lipolytica as a platform for synthesis of drop-in transportation fuels and oleochemicals“. Proceedings of the National Academy of Sciences 113, Nr. 39 (12.09.2016): 10848–53. http://dx.doi.org/10.1073/pnas.1607295113.
Der volle Inhalt der QuellePregger, Thomas, Günter Schiller, Felix Cebulla, Ralph-Uwe Dietrich, Simon Maier, André Thess, Andreas Lischke et al. „Future Fuels—Analyses of the Future Prospects of Renewable Synthetic Fuels“. Energies 13, Nr. 1 (26.12.2019): 138. http://dx.doi.org/10.3390/en13010138.
Der volle Inhalt der QuelleŻółtowski, Bogdan, und Mariusz Żółtowski. „A Hydrogenic Electrolyzer for Fuels“. Polish Maritime Research 21, Nr. 4 (31.01.2015): 79–89. http://dx.doi.org/10.2478/pomr-2014-0044.
Der volle Inhalt der QuelleUrban, Carolin, Jiajie Xu, Heike Sträuber, Tatiane R. dos Santos Dantas, Jana Mühlenberg, Claus Härtig, Largus T. Angenent und Falk Harnisch. „Production of drop-in fuels from biomass at high selectivity by combined microbial and electrochemical conversion“. Energy & Environmental Science 10, Nr. 10 (2017): 2231–44. http://dx.doi.org/10.1039/c7ee01303e.
Der volle Inhalt der QuelleXu, Junming, Jianchun Jiang und Jiaping Zhao. „Thermochemical conversion of triglycerides for production of drop-in liquid fuels“. Renewable and Sustainable Energy Reviews 58 (Mai 2016): 331–40. http://dx.doi.org/10.1016/j.rser.2015.12.315.
Der volle Inhalt der QuelleDissertationen zum Thema "Drop-in fuels"
Abdel, Alim Richard. „Formation of Soft Particles in Drop-in Fuels“. Thesis, KTH, Skolan för kemi, bioteknologi och hälsa (CBH), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-231462.
Der volle Inhalt der QuelleShriharsha, Swarga. „Development of a method that quantifies the filtration efficiency of soft particles in drop-in fuels“. Thesis, KTH, Skolan för kemi, bioteknologi och hälsa (CBH), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-261143.
Der volle Inhalt der QuelleDet globala koldioxidavtrycket ökar med tidens gång. Världen rör sig mer mot ökad fossilfrihet och minskat beroende av fossila bränslen för dagliga behov. Transportsektorn är idag den största användaren av fossila bränslen och den största bidragaren till de CO2-utsläpp som leder till global uppvärmning. Biobränslen utgör ett lovande och hållbart alternativ till fossila bränslen. Om biobränslen används i sin rena form i fordonen krävs det att motorerna anpassas. Därför introduceras konceptet drop-in fuels. Drop-in fuels är fossila bränslen som blandats med biobränslen. Dessa bränsleblandningar har flera fördelar, som en minskad mängd oförbrända kolväteföreningar och en minskad toxicitet. Å andra sidan leder blandandet av fossila bränslen och biobränslen till bildandet av olösliga organiska föreningar även kallade mjuka partiklar. Dessa mjuka partiklar ackumuleras i bränslefiltret och leder till ett tryckfall som minskar bränsleflödet in i motorn. Ett minskat inflöde av bränsle till motorn leder till en försämrad motorprestanda. Denna studie ämnar utveckla en metod för att kvantifiera mängden mjuka partiklar i drop-in fuels med en filtreringsteknik. Den första fasen av studien innefattar en litteraturstudie om föroreningar i drop-in fuels, olika filtreringstekniker och några olika analysmetoder. Litteraturstudien följs av en serie experiment som ämnar kvantifiera mängden mjuka partiklar. Den första delen av denna experimentserie ämnade utveckla en metod för att framställa dessa mjuka partiklar. Efterföljande experimentserie innefattade att tillsätta dessa mjuka partiklar till en bränslevätska för att framställa en syntetisk testvätska. Slutligen, genom att filtrera denna testvätska och analysera vätskan före och efter filtret, kan effektiviteten av filtreringsprocessen bestämmas. Analysmetoder som Gaskromatografi och masspektroskopi (GC/MS) och Fourier Transform Infraröd Spektroskopi (FTIR) användes för analysen.
Couval, Romain. „Scale up of a test fluid for testing the fuel system robustness against soft particles in biodiesels“. Thesis, Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-85745.
Der volle Inhalt der QuelleMensah, Joel B. [Verfasser], Regina Akademischer Betreuer] Palkovits und Lars Mathias [Akademischer Betreuer] [Blank. „Chemo-catalytic and electrochemical deoxygenation of bio-derivable 3-hydroxydecanoic acid : production of drop-in fuels and fine chemicals / Joel Boakye Mensah ; Regina Palkovits, Lars M. Blank“. Aachen : Universitätsbibliothek der RWTH Aachen, 2020. http://d-nb.info/1226303811/34.
Der volle Inhalt der QuelleGunarathne, Duleeka. „Advanced Gasification of Biomass/Waste for Substitution of Fossil Fuels in Steel Industry Heat Treatment Furnaces“. Doctoral thesis, KTH, Materialvetenskap, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-190938.
Der volle Inhalt der QuelleQC 20160825
Auliano, Manuel. „Investigation and validation of void and pressure drop correlations in BWR fuel assemblies“. Thesis, KTH, Fysik, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-169548.
Der volle Inhalt der QuelleHill, Theresa Y. „Understanding Drop-on-Demand Inkjet Process Characteristics in the Application of Printing Micro Solid Oxide Fuel Cells“. Wright State University / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=wright156167105938597.
Der volle Inhalt der QuelleLaesecke, Jan. „Production and characterization of biomass fast pyrolysis oil blends for combustion testing as drop-in fuel alternatives in a single cylinder diesel engine“. Thesis, University of British Columbia, 2017. http://hdl.handle.net/2429/60409.
Der volle Inhalt der QuelleApplied Science, Faculty of
Graduate
Pacheco, Gonçalo de Sousa Pina Pernicha. „Single droplet ignition and combustion of jet-A1, hydroprocessed vegetable oil and their blends in a drop tube furnace“. Master's thesis, 2019. http://hdl.handle.net/10400.6/10388.
Der volle Inhalt der QuelleO impacto ambiental e a dependência de combustíveis fósseis no setor aeronáutico promoveram a procura por combustíveis alternativos e ecológicos. Este é um dos principais desafios para este setor no futuro. Uma possível solução num futuro próximo pode ser a mistura de biocombustíveis com combustível de aviação, o que permitiria o uso de combustível mais ecológico e a redução de gases de efeito estufa e emissões sem alterações significativas nas frotas existentes das empresas, isto é, o desenvolvimento de um combustível “drop-in”. Neste contexto, este trabalho examina as características de ignição e combustão de gotas isoladas de jet-A1 (JF), óleo vegetal hidroprocessado (NExBTL) e suas misturas num forno de queda livre (DTF). O objetivo deste trabalho é avaliar a influência da composição da mistura nas características do combustível. Gotas com diâmetros de 155 ± 5 µm, produzidas por um gerador comercial de gotas, foram injetadas no DTF, cuja temperatura da parede e concentração de oxigênio eram controladas. Os testes foram conduzidos para três temperaturas (900, 1000 e 1100 ºC). A ignição e a combustão das gotículas foram avaliadas através das imagens obtidas com uma câmara de alta velocidade acoplada a uma lente de alta ampliação e um algoritmo de deteção de limites. As imagens permitiram a observação dos fenómenos de queima e avaliar a evolução temporal do tamanho das gotas e das taxas de queima. Os resultados revelaram que as misturas de combustível seguem a lei D2 , exceto a mistura com 75% de JF para uma temperatura de 1100 ºC na parede do DTF. Isso ocorreu devido à ocorrência de puffing e microexplosões, o que aumentou as taxas de queima. Observou-se ainda que as misturas com maior teor de JF apresentam chamas com maior intensidade luminosa e maiores taxas de queima.
Bücher zum Thema "Drop-in fuels"
Multidimensional simulations of fuel-rod appendage effects on pressure drop and heat transfer in an annulus flow. Chalk River, Ont: Chalk River Laboratories, 1992.
Den vollen Inhalt der Quelle findenComparison of techniques for non-intrusive fuel drop size measurements in a subscale gas turbine combustor. [Cleveland, Ohio]: National Aeronautics and Space Administration, Lewis Research Center, 1999.
Den vollen Inhalt der Quelle findenHoelscher, Jason A. Art as Information Ecology. Duke University Press, 2021. http://dx.doi.org/10.1215/9781478021681.
Der volle Inhalt der QuelleBuchteile zum Thema "Drop-in fuels"
Friedemann, Alice J. „Distributing Drop-in Fuels: The Fastest Road to Something Else“. In When Trucks Stop Running, 37–40. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-26375-5_7.
Der volle Inhalt der QuelleRavanchi, Maryam Takht, und Saeed Sahebdelfar. „Catalytic Upgrading of Bio-oil for Production of Drop-In Fuels“. In Handbook of Ecomaterials, 1965–83. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-319-68255-6_8.
Der volle Inhalt der QuelleTakht Ravanchi, Maryam, und Saeed Sahebdelfar. „Catalytic Upgrading of Bio-oil for Production of Drop-In Fuels“. In Handbook of Ecomaterials, 1–19. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-48281-1_8-1.
Der volle Inhalt der QuelleYadav, Jaykumar, Vikram Betgeri, Barbara Graziano, Avnish Dhongde, Benedikt Heuser, Markus Schönen und Nina Sittinger. „Renewable drop-in fuels as an immediate measure to reduce CO2 emissions of heavy-duty applications“. In Proceedings, 353–72. Wiesbaden: Springer Fachmedien Wiesbaden, 2020. http://dx.doi.org/10.1007/978-3-658-30500-0_24.
Der volle Inhalt der QuelleTsaoulidis, Dimitrios A. „Liquid-Liquid Flows in Micro and Small Channels: Hydrodynamics and Pressure Drop“. In Studies of Intensified Small-scale Processes for Liquid-Liquid Separations in Spent Nuclear Fuel Reprocessing, 65–91. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-22587-6_4.
Der volle Inhalt der QuelleNdaba, B., R. Adeleke, R. Makofane, M. O. Daramola und M. Moshokoa. „Butanol as a Drop-In Fuel: A Perspective on Production Methods and Current Status“. In Valorization of Biomass to Value-Added Commodities, 371–98. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-38032-8_18.
Der volle Inhalt der Quelle„Physical Modeling of Forest Fuel Ignition by the Molten Metal Particles“. In Advances in Environmental Engineering and Green Technologies, 136–48. IGI Global, 2021. http://dx.doi.org/10.4018/978-1-7998-7250-4.ch010.
Der volle Inhalt der QuelleJensen, C. U., J. K. R. Guerrero, S. Karatzos, G. Olofsson und S. B. Iversen. „Hydrofaction™ of forestry residues to drop-in renewable transportation fuels“. In Direct Thermochemical Liquefaction for Energy Applications, 319–45. Elsevier, 2018. http://dx.doi.org/10.1016/b978-0-08-101029-7.00009-6.
Der volle Inhalt der Quelle„Aerothermodynamic Effects on Liquid Jet Breakup in Two-Fluid Fuel Nozzles“. In Recent Advances in Spray Combustion: Spray Atomization and Drop Burning Phenomena, 161–72. Washington DC: American Institute of Aeronautics and Astronautics, 1996. http://dx.doi.org/10.2514/5.9781600866418.0161.0172.
Der volle Inhalt der QuelleMcElroy, Michael B. „Coal: Abundant But Problematic“. In Energy and Climate. Oxford University Press, 2016. http://dx.doi.org/10.1093/oso/9780190490331.003.0010.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Drop-in fuels"
Hileman, James, Russell Stratton und Hsin Wong. „The Potential of Low Carbon Drop-In Alternative Fuels“. In 41st AIAA Fluid Dynamics Conference and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2011. http://dx.doi.org/10.2514/6.2011-4048.
Der volle Inhalt der QuelleHeibel, Achim, und Rajesh Bhargava. „Advanced Diesel Particulate Filter Design for Lifetime Pressure Drop Solution in Light Duty Applications“. In 2007 Fuels and Emissions Conference. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2007. http://dx.doi.org/10.4271/2007-01-0042.
Der volle Inhalt der QuelleRichards, G., P. E. Sojka und A. H. Lefebvre. „Drop-Size Studies in a Radially-Uniform Fuel Spray“. In 1985 SAE International Fall Fuels and Lubricants Meeting and Exhibition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1985. http://dx.doi.org/10.4271/852083.
Der volle Inhalt der QuelleKelly-Zion, P. L., C. A. DeYoung, J. E. Peters und R. A. White. „In-Cylinder Fuel Drop Size and Wall Impingement Measurements“. In 1995 SAE International Fall Fuels and Lubricants Meeting and Exhibition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1995. http://dx.doi.org/10.4271/952480.
Der volle Inhalt der QuelleWendland, Daniel W. „Sources of Pressure Drop in Bead-Bed Catalytic Converters“. In 1987 SAE International Fall Fuels and Lubricants Meeting and Exhibition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1987. http://dx.doi.org/10.4271/872083.
Der volle Inhalt der QuelleKobashi, Yoshimitsu, Shun Oooka, Lin Jiang, Jun Goto, Hideyuki Ogawa und Gen Shibata. „An Investigation of the Transient DPF Pressure Drop under Cold Start Conditions in Diesel Engines“. In International Powertrains, Fuels & Lubricants Meeting. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2017. http://dx.doi.org/10.4271/2017-01-2372.
Der volle Inhalt der QuelleSheppard, Jessica, Pengze Yang und Andrea Strzelec. „Modeling and Experimentation of GDI-Sized Particulate Filtration and Pressure-Drop Behavior in Uncoated Commercial DPF Substrates“. In International Powertrains, Fuels & Lubricants Meeting. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2019. http://dx.doi.org/10.4271/2019-01-0052.
Der volle Inhalt der QuelleRubie, J. S., Y. G. Li und A. J. B. Jackson. „Performance Simulation and Analysis of a Gas Turbine Engine Using Drop-In Bio-Fuels“. In ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/gt2018-75751.
Der volle Inhalt der QuelleFeser, Joseph S., und Ashwani K. Gupta. „Performance and Emissions of Drop-in Aviation Biofuels in a Lab Scale Gas Turbine Combustor“. In ASME 2020 Power Conference collocated with the 2020 International Conference on Nuclear Engineering. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/power2020-16958.
Der volle Inhalt der QuelleMunch, Karin, und Tankai Zhang. „A Comparison of Drop-In Diesel Fuel Blends Containing Heavy Alcohols Considering Both Engine Properties and Global Warming Potentials“. In SAE 2016 International Powertrains, Fuels & Lubricants Meeting. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2016. http://dx.doi.org/10.4271/2016-01-2254.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Drop-in fuels"
Kevin L Kenney. Biofuels Fuels Technology Pathway Options for Advanced Drop-in Biofuels Production. Office of Scientific and Technical Information (OSTI), September 2011. http://dx.doi.org/10.2172/1034799.
Der volle Inhalt der QuelleChang, G. S., J. M. Ryskamp, W. K. Terry, R. G. Ambrosek, A. J. Palmer und R. A. Roesener. Drop-in capsule testing of plutonium-based fuels in the Advanced Test Reactor. Office of Scientific and Technical Information (OSTI), September 1996. http://dx.doi.org/10.2172/427625.
Der volle Inhalt der QuelleLux, Kenneth, Tahmina Imam, Nehru Chevanan, Mehdi Namazian, Xiaoxing Wang und Chunshan Song. Laboratory Scale Coal And Biomass To Drop-In Fuels (CBDF) Production And Assessment. Office of Scientific and Technical Information (OSTI), Juni 2016. http://dx.doi.org/10.2172/1259873.
Der volle Inhalt der QuelleWestbrook, Steven R. Guidance Document for Alternative Diesel Fuels Proposed as Drop-In Fuels to Displace Diesel Fuels as Specified By ASTM Specification D975. Fort Belvoir, VA: Defense Technical Information Center, Juni 2014. http://dx.doi.org/10.21236/ada626569.
Der volle Inhalt der QuelleRoberts, Michael, Terry Marker, Martin Linck, Steve Schmidt, James Winfield, David Shonnard und Jinquig Fan. Catalytic Conversion of Cellulosic Biomass or Algal Biomass plus Methane to Drop in Hydrocarbon Fuels and Chemicals. Office of Scientific and Technical Information (OSTI), April 2018. http://dx.doi.org/10.2172/1433512.
Der volle Inhalt der QuelleTschaplinski, Timothy J., Payal Charania, Nancy L. Engle, Richard J. Giannone, Robert {Bob} L. Hettich, Dawn Marie Klingeman, Suresh Poudel et al. DEVELOPMENT OF A SUSTAINABLE GREEN CHEMISTRY PLATFORM FOR PRODUCTION OF ACETONE AND DOWNSTREAM DROP-IN FUEL AND COMMODITY PRODUCTS DIRECTLY FROM BIOMASS SYNGAS VIA A NOVEL ENERGY CONSERVING ROUTE IN ENGINEERED ACETOGENIC BACTERIA. Office of Scientific and Technical Information (OSTI), Juli 2019. http://dx.doi.org/10.2172/1543199.
Der volle Inhalt der QuelleSimpson, Sean D., Tanus Abdalla, Steve D. Brown, Christina Canter, Robert Conrado, James Daniell, Asela Dassanayake et al. Development of a Sustainable Green Chemistry Platform for Production of Acetone and Downstream Drop-in Fuel and Commodity Products directly from Biomass Syngas via a Novel Energy Conserving Route in Engineered Acetogenic Bacteria. Office of Scientific and Technical Information (OSTI), März 2019. http://dx.doi.org/10.2172/1599328.
Der volle Inhalt der Quelle