Auswahl der wissenschaftlichen Literatur zum Thema „Downdraft fixed bed“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Downdraft fixed bed" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Zeitschriftenartikel zum Thema "Downdraft fixed bed"

1

Sarker, S., und H. K. Nielsen. „Preliminary fixed-bed downdraft gasification of birch woodchips“. International Journal of Environmental Science and Technology 12, Nr. 7 (03.06.2014): 2119–26. http://dx.doi.org/10.1007/s13762-014-0618-8.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Ouadi, M., J. G. Brammer, M. Kay und A. Hornung. „Fixed bed downdraft gasification of paper industry wastes“. Applied Energy 103 (März 2013): 692–99. http://dx.doi.org/10.1016/j.apenergy.2012.10.038.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Hsi, Chih-Lun, Tzong-Yuan Wang, Chien-Hsiung Tsai, Ching-Yuan Chang, Chiu-Hao Liu, Yao-Chung Chang und Jing-T. Kuo. „Characteristics of an Air-Blown Fixed-Bed Downdraft Biomass Gasifier“. Energy & Fuels 22, Nr. 6 (19.11.2008): 4196–205. http://dx.doi.org/10.1021/ef800026x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Sarker, S., und H. K. Nielsen. „Erratum to: Preliminary fixed-bed downdraft gasification of birch woodchips“. International Journal of Environmental Science and Technology 12, Nr. 12 (04.07.2015): 4043. http://dx.doi.org/10.1007/s13762-015-0836-8.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Zhou, Junjie, Kui Han, Songzhen Tang, Wu Tao und Weidong Fu. „Modeling and Investigation of the Reduction Zone in A Downdraft Biomass Gasifier“. Journal of Physics: Conference Series 2219, Nr. 1 (01.04.2022): 012003. http://dx.doi.org/10.1088/1742-6596/2219/1/012003.

Der volle Inhalt der Quelle
Annotation:
Abstract The fixed bed gasifier has simple structure, convenient operation and maintenance, and is suitable for use in rural areas. In this paper, a downdraft fixed bed gasifier was designed for biomass gasification using corn cob as raw material. COMSOL Multiphysics software was used to simulate the reduction zone of biomass gasifier. The temperature field and concentration distribution of the reduction zone were studied. The influence of structural parameters of the reduction zone on the composition of syngas was analyzed. The rates of major chemical reactions in the reduction zone were also compared in detail.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Sonjaya, Abeth Novria, und Adi Surjosatyo. „An Investigation on Gasification Conversion of Municipal Solid Waste Using Fixed Bed Downdraft: Study Case of Final Processing Site TPA Putri Cempo Surakarta“. IOP Conference Series: Earth and Environmental Science 1034, Nr. 1 (01.06.2022): 012066. http://dx.doi.org/10.1088/1755-1315/1034/1/012066.

Der volle Inhalt der Quelle
Annotation:
Abstract The municipal solid waste (MSW) gasifier is one of the promising technologies to fulfill the energy demand of TPA Putri Cempo Surakarta. Municipal solid waste gasification is a chemical process that converts solid Municipal solid waste into useful, convenient gaseous fuel. According to the government program in presidential regulation number 35 of 2018, the acceleration of waste processing development into electric energy based on environmentally friendly technology needs to be developed. One of the technologies to convert waste into renewable energy is to use thermochemical processes of gasification. The aim of this paper is to investigate the conversion of municipal solid waste gasification (MSW) using a fixed bed downdraft gasifier by circulating the mass balance of municipal solid waste (MSW) to be converted into syngas with a variation of air-fuel ratio (AFR) of 0.1 to 1.0 and gasifier temperature at 500 – 1000°C. The result showed that the fixed bed downdraft gasifier produced syngas with the composition of CO (24.78%), CO2 (18.65%), H2 (15.6%), and CH4 (4.06%), with an AFR of 0.3 at a gasification temperature of 600°C.both.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Zeng, Xi, Yin Wang, Jian Yu, Shisheng Wu, Jiangze Han, Shaoping Xu und Guangwen Xu. „Gas Upgrading in a Downdraft Fixed-Bed Reactor Downstream of a Fluidized-Bed Coal Pyrolyzer“. Energy & Fuels 25, Nr. 11 (17.11.2011): 5242–49. http://dx.doi.org/10.1021/ef2012276.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Forero-Núñez, Carlos Andrés, und Fabio Emiro Sierra-Vargas. „Heat Losses Analysis Using Infrared Thermography on a Fixed Bed Downdraft Gasifier“. International Review of Mechanical Engineering (IREME) 10, Nr. 4 (31.07.2016): 239. http://dx.doi.org/10.15866/ireme.v10i4.8935.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Musinguzi, Wilson B., Mackay A. E. Okure, Adam Sebbit, Terese Løvås und Izael da Silva. „Thermodynamic Modeling of Allothermal Steam Gasification in a Downdraft Fixed-Bed Gasifier“. Advanced Materials Research 875-877 (Februar 2014): 1782–93. http://dx.doi.org/10.4028/www.scientific.net/amr.875-877.1782.

Der volle Inhalt der Quelle
Annotation:
A process of converting a solid carbonaceous fuel into a gaseous energy carrier in presence of a gasifying medium at high temperature is called gasification. The resulting gaseous energy carrier, known as producer gas, is more versatile in its use than the original solid fuel. Gasification is widely considered as a more efficient and less polluting initial thermochemical upstream process of converting biomass to electricity. The objective of this study was to investigate the process of allothermal steam gasification in a fixed-bed downdraft gasifier for improved quality (HHV, high hydrogen content) of the producer gas generated. The study involved thermodynamic equilibrium modeling based on equilibrium approach in which the concentrations of the gaseous components in the producer gas at equilibrium temperature are determined based on balancing the moles in the overall gasification equation. The results obtained suggest that the maximum equilibrium yield of producer gas with high energy density is attained at a gasification temperature of around 820°C and a steam/biomass ratio of 0.825 mol/mol. The equilibrium yield was richer in hydrogen at 52.23%vol, and with a higher heating value of 11.6 MJ/Nm3. Preliminary validation of the model results using experimental data from literature shows a close relationship. The study has further shown the advantage of using steam as a gasifying medium towards the improved quality of the producer gas generated.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Chen, Guanyi, Xiang Guo, Zhanjun Cheng, Beibei Yan, Zeng Dan und Wenchao Ma. „Air gasification of biogas-derived digestate in a downdraft fixed bed gasifier“. Waste Management 69 (November 2017): 162–69. http://dx.doi.org/10.1016/j.wasman.2017.08.001.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Dissertationen zum Thema "Downdraft fixed bed"

1

Mathieu, Manon. „Gazéification autotherme de biomasse en lit fixe co-courant pour la production de syngaz sans azote“. Electronic Thesis or Diss., Ecole nationale des Mines d'Albi-Carmaux, 2024. http://www.theses.fr/2024EMAC0012.

Der volle Inhalt der Quelle
Annotation:
Pour répondre aux enjeux de la transition énergétique, il est communément admis qu'il est nécessaire de changer notre façon de produire de l'énergie. Parmi les sources renouvelables, la biomasse est la plus prometteuse de part sa grande disponibilité partout dans le monde, ainsi que ses usages multiples (production de chaleur, de biogaz et de bioproduits). La gazéification de biomasse est une voie de valorisation thermochimique qui permet de convertir les biomasses non fermentescibles en un gaz de synthèse appelé syngaz. Ce syngaz est majoritairement composé d'hydrogène, de monoxyde de carbone, de méthane, de dioxyde de carbone et d'eau. De nombreux gisements de biomasse sont de taille restreinte. Pour les valoriser, il est important de développer des technologies de petite échelle (production <1MW) qui restent énergétiquement intéressantes. Le procédé de gazéification à lit fixe autotherme est la technologie la plus pertinente pour répondre à ce besoin. En effet, l'autothermicité garantit le déroulement des réactions chimiques sans apport d'énergie extérieur. Pour assurer cette autothermicité, il est nécessaire d'apporter de l'oxygène dans le réacteur via l'agent gazéifiant. L'air est l'agent de gazéification principalement utilisé à ce jour. L'azote de l'air utilisé, inerte dans le procédé, devient alors l'espèce majoritaire du syngaz produit. Ceci rend la valorisation du syngaz en biocarburant particulièrement difficile. Pour pallier ce problème tout en conservant l'autothermicité, l'utilisation de nouveaux agents de gazéification peut être envisagée : mélange vapeur d'eau - oxygène, dioxyde de carbone - oxygène, air enrichi (> 21 %vol d'oxygène). Le but de cette thèse est d'anticiper les changements induits par l'utilisation de nouvelles atmosphères sur le procédé de gazéification de biomasse en lit-fixe co-courant. Pour cela, une étude numérique a été menée à l'aide de modèles thermodynamique et cinétique. Nous avons voulu comprendre plus en détail certains phénomènes du processus de gazéification à lit fixe co-courant. L'impact de l'atmosphère sur la vitesse de pyrolyse oxydante, avec ces nouvelles atmosphères, a été étudié expérimentalement par des études thermogravimétriques à l'échelle de la particule. Une seconde étude expérimentale s'est focalisée sur l'évolution de la taille de particules lors de leur gazéification en lit fixe co-courant et leur influence sur la perte de charge du lit dans le réacteur. Celle-ci permet en effet de piloter correctement le procédé et rend compte de son efficacité
It is well known that changing the way to produce energy is mandatory to meet the energetic transition needs. Among the renewable resources, biomass is the more promising thanks to its availability all around the world and its various uses (heat, biogas or bioproducts production). Biomass gasification is a thermochemical way to transform drought biomass into synthesis gas called syngas. Syngas is mainly composed of hydrogen, carbon monoxide, methane, carbon dioxide and water. Most of biomass deposits are small-size. To valorise them, small-scale technologies (< 1MW) must be developed. Autothermal downdraft fixed-bed gasification fits the best to meet this need. Indeed, autothermal behaviour enables kinetic reactions to take place without external sources of energy. Autothermal behaviour is ensured by feeding oxygen into the reactor via the gasifying agent. Nowadays, the most commonly used gasifying agent is air. Inert nitrogen from air then becomes the more abundant compound of the syngas. This makes syngas valorisation into biofuels particularly challenging. To fix this issue while keeping the autothermal behaviour, the use of new gasifying agents is considered: mixture of O2-H2O, mixture of O2-CO2 or enriched air (> 21 %vol O2). The aim of this thesis is to investigate and anticipate the changes induced by using these new atmospheres on the biomass downdraft gasification process. To reach this goal, a numerical study based on equilibrium and kinetic models has been led. More specific phenomena of the downdraft gasification process have also been investigated. Impact of these new atmospheres on the oxidative pyrolysis kinetic of a particle has been studied. It has been carried out thanks to a macro-thermogravimetric device. Another experimental study focused on the particles size evolution during downdraft gasification process and how they influence pressure drops though the bed in the reactor. Pressure drops enables to drive the process and is a relevant indicator of the process efficiency
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Buchteile zum Thema "Downdraft fixed bed"

1

Kumar, Praveen. „Biomass Thermochemical Processing in Fixed Bed Downdraft Gasifier: A Review“. In Lecture Notes in Mechanical Engineering, 721–30. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-0159-0_63.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Araujo, A. L., F. T. Silva, A. Ribeiro, J. B. L. M. Campos und R. M. Pilão. „Gasification of Animal Fat Using Dolomite as Particle Bed in a Downdraft Fixed Bed Reactor“. In Sustainable Development with Renewable Energy, 55–63. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-54394-4_5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Hsi, Chih-Lun, Tzong-Yuan Wang, Chiu-Hao Liu und Jing-T. Kuo. „Characteristics of Air-blown Gasification for Woods in a Fixed-bed Downdraft Gasifier“. In Challenges of Power Engineering and Environment, 163–68. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-76694-0_30.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Emdadul Hoque, Md, und Fazlur Rashid. „Gasification Process Using Downdraft Fixed-Bed Gasifier for Different Feedstock“. In Gasification [Working Title]. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.96227.

Der volle Inhalt der Quelle
Annotation:
The use of conventional fuels is decreasing globally due to its limited reserves and negative impact on the environment. The associated cost of conventional fuels is increasing owing to the higher demand for conventional fuels. Hence, utilization methods of biomass to generate energy are of growing interest. Among different biomass feedstocks, rice husks, waste plastics, and sawdust are significantly available in the global environment. The annual generation amount of rice husk is approximately 120 million tons worldwide, with an annual energy generation potential of 109 GJ with a heating value of 15 MJ/kg. The gasification process is assumed to be the most effective biomass conversion method that can generate synthetic gas to operate IC engines, fuel cells, and boilers. Synthetic gas production from biomass using a gasification process is a significant source of future energy. Downdraft fixed-bed gasifiers are considered as a feasible option of biomass conversion in the gasification process. By optimizing the operating conditions of downdraft fixed-bed gasifier, such as reaction zone temperature, combustion zone temperature, intake air temperature, airflow rate, the humidity of intake air, a significant amount of synthetic gas can be produced from rice husks, waste plastic material, and sawdust.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Aydin, Ebubekir S., Ozgun Yucel und Hasan Sadikoglu. „Numerical Investigation of Fixed-Bed Downdraft Woody Biomass Gasification“. In Exergetic, Energetic and Environmental Dimensions, 323–39. Elsevier, 2018. http://dx.doi.org/10.1016/b978-0-12-813734-5.00018-4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Konferenzberichte zum Thema "Downdraft fixed bed"

1

Ragland, Kenneth W., und Danny J. Aerts. „Gravel Bed Combustor for Solid Fuel Fired Gas Turbine“. In 1985 Joint Power Generation Conference: GT Papers. American Society of Mechanical Engineers, 1985. http://dx.doi.org/10.1115/85-jpgc-gt-1.

Der volle Inhalt der Quelle
Annotation:
A fixed bed, downdraft combustor for solid fuels applicable to gas turbine cogeneration or combined cycles is described. The combustor has a refractory gravel bed, with fuel placed on top of the gravel and burning at the fuel-gravel interface. The gravel retains fuel particles in the combustion zone, preventing carryover of unburned char. Combustion temperature is held below the ash fusion temperature by using high excess air through the bed, thereby minimizing particulate ash agglomeration. Previous work on fixed bed, downdraft combustors and coal fired gas turbines is reviewed. Recent results from test firing a 480 cm2 (0.5 ft2) gravel bed combustor at atmospheric pressure with 2 cm (0.75 in.) wood chips are presented. Heat release rates of 3500 MJ/hr m2 (300,000 Btu/hr ft2) and higher were obtained. Carbon carryover in the exhaust was negligible. Approximately 85 percent of the particulate ash emissions was less than 10 microns.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Saputra, Resky Ervaldi, Hafif Dafiqurrohman, Yuswan Muharam und Adi Surjosatyo. „Process simulation of fixed bed downdraft gasifier for rice husks and sawdust“. In ADVANCES IN MECHANICAL ENGINEERING, INDUSTRIAL INFORMATICS AND MANAGEMENT (AMEIIM2022). AIP Publishing, 2023. http://dx.doi.org/10.1063/5.0165140.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Hoque, M. E., F. Rashid, S. S. Aziz, M. N. Rahman und Pronob Das. „Process analysis and gasification of rice husk by using downdraft fixed bed gasifier“. In 8TH BSME INTERNATIONAL CONFERENCE ON THERMAL ENGINEERING. AIP Publishing, 2019. http://dx.doi.org/10.1063/1.5115951.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Ahumada, Luz M., Arnaldo Verdeza und Antonio J. Bula. „Optimization of a Biomass Micro-Gasification Process for the Production of Synthesis Gas From Palm Shell“. In ASME 2015 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/imece2015-52119.

Der volle Inhalt der Quelle
Annotation:
This paper studied, through an experiment design, the significance of particle size, air speed and reactor arrangement for palm shell micro-gasification process in order to optimize the heating value of the syngas obtained. The range of variables was 8 to 13 mm for particle size, 0.8–1.4m/s for air velocity, and updraft or downdraft for the reactor type. It was found that the particle size and air velocity factors were the most significant in the optimization of the output variable, syngas heating value. A heating value of 2.69MJ / Nm3 was obtained using a fixed bed downdraft reactor, with a particle size of 13 mm and 1.4 m/s for air speed; verification of the optimum point of operation under these conditions verified that these operating conditions favor the production of a gas with a high energy value.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Surjosatyo, Adi, Imaduddin Haq, Hafif Dafiqurrohman und Felly Rihlat Gibran. „Effect of rice husk ash mass on sustainability pyrolysis zone of fixed bed downdraft gasifier with capacity of 10 kg/hour“. In RENEWABLE ENERGY TECHNOLOGY AND INNOVATION FOR SUSTAINABLE DEVELOPMENT: Proceedings of the International Tropical Renewable Energy Conference (i-TREC) 2016. Author(s), 2017. http://dx.doi.org/10.1063/1.4979225.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Muilenburg, Marta, Yunye Shi und Albert Ratner. „Computational Modeling of the Combustion and Gasification Zones in a Downdraft Gasifier“. In ASME 2011 International Mechanical Engineering Congress and Exposition. ASMEDC, 2011. http://dx.doi.org/10.1115/imece2011-64009.

Der volle Inhalt der Quelle
Annotation:
Computational modeling was completed on a simplified downdraft gasifier being installed at the University of Iowa Oakdale Power Plant. The model was created in Gambit and simulated in ANSYS Fluent. The process modeled was non-premixed combustion on biomass fuel with a fixed-bed. The Fluent coal model was modified based on (off-site) proximate and ultimate analyses of the biomass. Varying packing densities, oxidizer inlet velocities and fuel types were simulated and the impact on the combustion zone was assessed. It was found that packing densities around 0.5 with oxidizer inlet velocities less than 5m/s were ideal for modeling wood gasification and produced a temperature distribution that was the most analogous to previous experimental measurements. The resulting reaction field was mainly a large rich fuel combustion (RFC) zone where gasification and pyrolysis could occur. The different fuels were found to have similar temperature and mean mixture fraction patterns, although the maximum temperatures attained were very different (1080K for seed corn versus 678K for wood), with the wood showing a greater area of RFC for gasification and pyrolysis. The temperature contour corresponded to the mixture fraction figure perfectly and well explained the stable asymmetric combustion in a downdraft gasifier.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Kalina, Jacek. „Integrated Biomass Gasification Small-Scale Combined Cycle Distributed Generation Plant With Microturbine and ORC“. In ASME 2010 4th International Conference on Energy Sustainability. ASMEDC, 2010. http://dx.doi.org/10.1115/es2010-90211.

Der volle Inhalt der Quelle
Annotation:
The objective of this work is to evaluate thermodynamic and economic performance of a small-scale combined cycle plant with microturbine and ORC. The primary source of fuel for the plant is wood. The biomass is converted into a gaseous fuel by means of gasification in a downdraft fixed bed reactor. Size of the plant is limited to 350 kg/h of wet biomass input into the gasifier. Two alternative configurations of the bottoming ORC cycle are taken into account: single stage cycle and cascade cycle. In the first case R123 and n-pentane are analyzed as potential working fluids. In the cascade cycle toluene and n-pentane are selected for top and bottom cycle respectively. Electricity generation efficiency of the proposed small-scale plant is at the level of 23%, that is comparable with direct combustion based systems of much higher electric output. An initial economic evaluation of a sample project gives an outlook on economic effectiveness, that nowadays is strongly dependent on stimulation measures for “green” electricity generation.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

„Preliminary study for catalytic gasification of water hyacinth for syngas production“. In Sustainable Processes and Clean Energy Transition. Materials Research Forum LLC, 2023. http://dx.doi.org/10.21741/9781644902516-50.

Der volle Inhalt der Quelle
Annotation:
Abstract. Water hyacinth being one of the top invasive aquatic plants has brought upon various challenges towards the humanity and the environment. The magnitude of the menace of uncontrollable growth and spread of water hyacinth has sparked the interest of researchers in identifying its potential as a biomass feedstock for biofuel production. Biomass gasification is deemed as a promising green technology which is capable of converting biomass into value-added commodity. Conversion of such large quantity of biomass into biofuel via gasification does not only help to promote sustainable resource utilization but also facilitates the reduction of global carbon impacts and engender socioeconomic development. The addition of catalysts to the gasification process could enhance the formation of gaseous products where the gas composition may be altered. This study aims to present the preliminary study on the gasification performance of water hyacinth biomass in a lab scale fixed-bed downdraft gasifier (67 mm diameter and 750 mm height), with the use of air as the gasifying agent in a batch feeding of 50 grams for each run. The results showed that temperature has a substantial effect on the gasification of water hyacinth whereby hydrogen produced was raised from 2.92 vol.% to 11.19 vol.%. Further gasification tests are expected for the optimization of the main process parameters such as biomass particle size and catalyst loading.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Lin, Kuen-Song, Chi-Nan Ku, Chien-Te Hsieh, Shih-Hung Chan und Ay Su. „Hydrogen Generation by Gasification of Rice Husk in an Integrated Fuel Cell Processor“. In ASME 2006 4th International Conference on Fuel Cell Science, Engineering and Technology. ASMEDC, 2006. http://dx.doi.org/10.1115/fuelcell2006-97171.

Der volle Inhalt der Quelle
Annotation:
Fuel processing is defined as conversion of any biomass, hydrocarbons or organics to a fuel gas reformate suitable for fuel cell (FC) anode reaction system. Rice husk is one of the potential organic sources of hydrogen and heat energy that can be generated from rice husk gasification processes. The high-purity hydrogen fed to the FC stack for power generation makes waste rice husk utilization system economically and environmentally attractive. Thus, the main objectives of this work were to develop a rice husk gasification process and the potential applications of high-purity hydrogen from syngas (CO and H2) on stationary power generator of FC system. In the lab-scale fixed-bed and bench-scale downdraft experimental approaches, gasification of rice husk was accompanied by a substantial production of syngas at 760–900 K. It was found that in addition to over 90% of syngas generation, approximately 7.17 × 105 kcal/hr of thermal energy was recovered and the cold gas efficiency was 78–86% when the gasifier was operated at O/C atomic ratios between 1.1 and 1.3. The product syngas can be further separated by pressure swing adsorption and Pd membrane purification units, which effectively purified and generated 99.999% pure hydrogen in an integrated FC Processor. Finally, cost or benefit analysis of a rice husk gasifier of 10-TPD (tons per day) was also performed to confirm the economic potential for such a recycling practice and determine if further development of stationary FC system would be warranted.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie