Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Dose-Response modeling“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Dose-Response modeling" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Dose-Response modeling"
May, Susanne, und Carol Bigelow. „Modeling Nonlinear Dose-Response Relationships in Epidemiologic Studies: Statistical Approaches and Practical Challenges“. Dose-Response 3, Nr. 4 (01.10.2005): dose—response.0. http://dx.doi.org/10.2203/dose-response.003.04.004.
Der volle Inhalt der QuelleHunt, Daniel L., Shesh N. Rai und Chin-Shang Li. „Summary of Dose-Response Modeling for Developmental Toxicity Studies“. Dose-Response 6, Nr. 4 (01.10.2008): dose—response.0. http://dx.doi.org/10.2203/dose-response.08-007.hunt.
Der volle Inhalt der QuelleCOLEMAN, MARGARET, und HARRY MARKS. „Topics in Dose-Response Modeling“. Journal of Food Protection 61, Nr. 11 (01.11.1998): 1550–59. http://dx.doi.org/10.4315/0362-028x-61.11.1550.
Der volle Inhalt der QuelleZhao, Yuchao, und Paolo F. Ricci. „Modeling dose-Response at Low dose: A Systems Biology Approach for Ionization Radiation“. Dose-Response 8, Nr. 4 (19.03.2010): dose—response.0. http://dx.doi.org/10.2203/dose-response.09-054.zhao.
Der volle Inhalt der QuelleSlob, W. „Dose-Response Modeling of Continuous Endpoints“. Toxicological Sciences 66, Nr. 2 (01.04.2002): 298–312. http://dx.doi.org/10.1093/toxsci/66.2.298.
Der volle Inhalt der QuelleFeinendegen, Ludwig E., Myron Pollycove und Ronald D. Neumann. „Low-Dose Cancer Risk Modeling Must Recognize Up-Regulation of Protection“. Dose-Response 8, Nr. 2 (10.12.2009): dose—response.0. http://dx.doi.org/10.2203/dose-response.09-035.feinendegen.
Der volle Inhalt der QuelleCox, Louis Anthony (Tony). „A Model of Cytotoxic Dose-Response Nonlinearities Arising from Adaptive Cell Inventory Management in Tissues“. Dose-Response 3, Nr. 4 (01.10.2005): dose—response.0. http://dx.doi.org/10.2203/dose-response.003.04.005.
Der volle Inhalt der QuelleLi, Zhenhong, Bin Sun, Rebecca A. Clewell, Yeyejide Adeleye, Melvin E. Andersen und Qiang Zhang. „Dose-Response Modeling of Etoposide-Induced DNA Damage Response“. Toxicological Sciences 137, Nr. 2 (16.11.2013): 371–84. http://dx.doi.org/10.1093/toxsci/kft259.
Der volle Inhalt der QuelleCox, Louis Anthony (Tony). „Universality of J-Shaped and U-Shaped Dose-Response Relations as Emergent Properties of Stochastic Transition Systems“. Dose-Response 3, Nr. 3 (01.05.2005): dose—response.0. http://dx.doi.org/10.2203/dose-response.0003.03.006.
Der volle Inhalt der QuelleHerbert, Donald E., und Colin G. Orton. „Dose/time/response modeling in radiation therapy“. International Journal of Radiation Oncology*Biology*Physics 19 (Januar 1990): 114–15. http://dx.doi.org/10.1016/0360-3016(90)90636-x.
Der volle Inhalt der QuelleDissertationen zum Thema "Dose-Response modeling"
Leininger, Thomas J. „An Adaptive Bayesian Approach to Dose-Response Modeling“. Diss., CLICK HERE for online access, 2009. http://contentdm.lib.byu.edu/ETD/image/etd3325.pdf.
Der volle Inhalt der QuelleÅs, Joel. „Active dose selection and dose-response modeling for quantitative high-throughput screening (qHTS)“. Thesis, Uppsala universitet, Cancerfarmakologi och beräkningsmedicin, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-300682.
Der volle Inhalt der QuelleAdamus-Górka, Magdalena. „Improved dose response modeling for normal tissue damage and therapy optimization“. Doctoral thesis, Stockholm University, Medical Radiation Physics (together with KI), 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-7433.
Der volle Inhalt der QuelleThe present thesis is focused on the development and application of dose response models for radiation therapy. Radiobiological models of tissue response to radiation are an integral part of the radiotherapeutic process and a powerful tool to optimize tumor control and minimize damage to healthy tissues for use in clinical trials. Ideally, the models could work as a historical control arm of a clinical trial eliminating the need to randomize patents to suboptimal therapies. In the thesis overview part, some of the basic properties of the dose response relation are reviewed and the most common radiobiological dose-response models are compared with regard to their ability to describe experimental dose response data for rat spinal cord using the maximum likelihood method. For vascular damage the relative seriality model was clearly superior to the other models, whereas for white matter necrosis all models were quite good except possibly the inverse tumor and critical element models. The radiation sensitivity, seriality and steepness of the dose-response relation of the spinal cord is found to vary considerably along its length. The cervical region is more radiation sensitive, more parallel, expressing much steeper dose-response relation and more volume dependent probability of inducing radiation myelitis than the thoracic part. The higher number of functional subunits (FSUs) consistent with a higher amount of white matter close to the brain may be responsible for these phenomena. With strongly heterogeneous dose delivery and due to the random location of FSUs, the effective size of the FSU and the mean dose deposited in it are of key importance and the radiation sensitivity distribution of the FSU may be an even better descriptor for the response of the organ. An individual optimization of a radiation treatment has the potential to increase the therapeutic window and improve cure for a subgroup of patients.
Adamus-Górka, Magdalena. „Improved dose response modeling for normal tissue damage and therapy optimization /“. Stockholm ; Solna : Medical Radiation Physics, Stockholm University and Karolinska institutet, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-7433.
Der volle Inhalt der QuelleEklund, Karin. „Modeling Silicon Diode Dose Response in Radiotherapy Fields using Fluence Pencil Kernels“. Doctoral thesis, Uppsala universitet, Avdelningen för sjukhusfysik, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-120581.
Der volle Inhalt der QuelleSand, Salomon. „Dose-response modeling : evaluation, application, and development of procedures for benchmark dose analysis in health risk assessment of chemical substances /“. Stockholm, 2005. http://diss.kib.ki.se/2005/91-7140-420-1/.
Der volle Inhalt der QuelleWessel, Michael Raymond. „Dose time response modeling of neurobehavioral screening data application of physiologically relevant parameters to describe dose dependent time of peak effects /“. [Tampa, Fla.] : University of South Florida, 2005. http://purl.fcla.edu/fcla/etd/SFE0001273.
Der volle Inhalt der QuelleToyinbo, Peter A. „On Effective and Efficient Experimental Designs for Neurobehavioral Screening Tests: The Choice of a Testing Time for Estimating the Time of Peak Effects“. [Tampa, Fla.] : University of South Florida, 2004. http://purl.fcla.edu/fcla/etd/SFE0000393.
Der volle Inhalt der QuelleWessel, Michael Raymond. „Dose Time Response Modeling of Neurobehavioral Screening Data: Application of Physiologically Relevant Parameters to Allow for Dose Dependent Time of Peak Effects“. Scholar Commons, 2005. https://scholarcommons.usf.edu/etd/911.
Der volle Inhalt der QuelleDavidson, Sarah E. „Alternative Approach to Dose-Response Modeling of Toxicogenomic Data with an Application in Risk Assessment of Engineered Nanomaterials“. University of Cincinnati / OhioLINK, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1627666554729205.
Der volle Inhalt der QuelleBücher zum Thema "Dose-Response modeling"
Cooke, Roger M., Hrsg. Uncertainty Modeling in Dose Response. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2009. http://dx.doi.org/10.1002/9780470481400.
Der volle Inhalt der QuelleCooke, Roger M. Uncertainty modeling in dose response: Bench testing environmental toxicity. Hoboken: Wiley, 2009.
Den vollen Inhalt der Quelle findenL, Sielken Robert, Hrsg. Quantitative cancer modeling and risk assessment. Englewood Cliffs, N.J: Prentice Hall, 1993.
Den vollen Inhalt der Quelle findenLin, Dan, Ziv Shkedy, Daniel Yekutieli, Dhammika Amaratunga und Luc Bijnens, Hrsg. Modeling Dose-Response Microarray Data in Early Drug Development Experiments Using R. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-24007-2.
Der volle Inhalt der QuelleHanford Life Sciences Symposium (26th 1987 Richland, Wash.). Modeling for scaling to man: Biology, dosimetry, and response, [proceedings of the] 26th Hanford Life Sciences Symposium. Herausgegeben von Mahaffey Judith A. New York: Pergamon Press, 1989.
Den vollen Inhalt der Quelle findenCooke, Roger M. Uncertainty Modeling in Dose Response. Wiley & Sons, Incorporated, John, 2009.
Den vollen Inhalt der Quelle findenCooke, Roger M. Uncertainty Modeling in Dose Response: Bench Testing Environmental Toxicity. Wiley & Sons, Incorporated, John, 2009.
Den vollen Inhalt der Quelle findenCooke, Roger M. Uncertainty Modeling in Dose Response: Bench Testing Environmental Toxicity. Wiley & Sons, Incorporated, John, 2008.
Den vollen Inhalt der Quelle findenHolland, Charles D. Quantitive cancer modeling and risk assessment. PTR Prentice Hall, 1993.
Den vollen Inhalt der Quelle findenExposure-response modeling: Methods and practical implementation. Boca Raton: CRC Press, Taylor & Francis, 2016.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Dose-Response modeling"
Dinse, Gregg E., und David M. Umbach. „Dose-Response Modeling“. In Chemical Mixtures and Combined Chemical and Nonchemical Stressors, 205–34. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-56234-6_8.
Der volle Inhalt der QuelleEdler, Lutz, Annette Kopp-schneider und Harald Heinzl. „Dose-Response Modeling“. In Recent Advances in Quantitative Methods in Cancer and Human Health Risk Assessment, 211–37. Chichester, UK: John Wiley & Sons, Ltd, 2006. http://dx.doi.org/10.1002/0470857706.ch13.
Der volle Inhalt der QuelleCrawford-Brown, Douglas J. „Modeling Dose-Response Relationships“. In Theoretical and Mathematical Foundations of Human Health Risk Analysis, 151–75. Boston, MA: Springer US, 1997. http://dx.doi.org/10.1007/978-1-4615-6143-9_6.
Der volle Inhalt der QuelleStraetemans, Roel. „Nonlinear Modeling of Dose-Response Data“. In Modeling Dose-Response Microarray Data in Early Drug Development Experiments Using R, 43–66. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-24007-2_4.
Der volle Inhalt der QuelleHaas, Chuck. „Dose-Response Modeling for Microbial Risk“. In Food Safety Handbook, 47–57. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2005. http://dx.doi.org/10.1002/047172159x.ch4.
Der volle Inhalt der QuelleBijnens, Luc, Hinrich W. H. Göhlmann, Dan Lin, Willem Talloen, Tim Perrera, Ilse Van Den Wyngaert, Filip De Ridder, An De Bondt und Pieter Peeters. „Functional Genomic Dose-Response Experiments“. In Modeling Dose-Response Microarray Data in Early Drug Development Experiments Using R, 69–80. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-24007-2_5.
Der volle Inhalt der QuelleCharnley, Gail. „Cancer Dose-Response Modeling and Methylene Chloride“. In Oncogene and Transgenics Correlates of Cancer Risk Assessments, 231–40. Boston, MA: Springer US, 1992. http://dx.doi.org/10.1007/978-1-4615-3056-5_17.
Der volle Inhalt der QuelleDeVito, Michael J., Amy Kim, Nigel J. Walker, Fred Parham und Christopher Portier. „Dose-Response Modeling for 2,3,7,8-Tetrachlorodibenzo-p-Dioxin“. In Dioxins and Health, 247–98. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2005. http://dx.doi.org/10.1002/0471722014.ch7.
Der volle Inhalt der QuelleThakur, Ajit K. „Modeling and Risk Assessment of Carcinogenic Dose-Response“. In Pharmacokinetics, 227–44. Boston, MA: Springer US, 1988. http://dx.doi.org/10.1007/978-1-4684-5463-5_11.
Der volle Inhalt der QuelleSielken, R. L. „Quantitative Cancer Dose-Response Modeling for All Ages“. In Risk Analysis, 315–35. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4899-0730-1_32.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Dose-Response modeling"
Ewing, Lucas, Sebastian Ahn, Oliver Jonas und Nobuhiko Hata. „Pixelwise tissue segmentation for precise local in-vivo dose response assessment in patient-derived xenografts“. In Image-Guided Procedures, Robotic Interventions, and Modeling, herausgegeben von Baowei Fei und Cristian A. Linte. SPIE, 2019. http://dx.doi.org/10.1117/12.2513080.
Der volle Inhalt der QuelleWitulski, A. F., M. B. Smith, N. Mahadevan, A. L. Sternberg, C. Barnes, D. Sheldon, R. D. Schrimpf, G. Karsai und M. W. McCurdy. „Bayesian Modeling of COTS Power MOSFET Ionizing Dose Impact on Circuit Response“. In 2017 17th European Conference on Radiation and Its Effects on Components and Systems (RADECS). IEEE, 2017. http://dx.doi.org/10.1109/radecs.2017.8696104.
Der volle Inhalt der QuelleBighamian, Ramin, Sadaf Soleymani, Andrew T. Reisner, Istvan Seri und Jin-Oh Hahn. „Modeling and System Identification of Hemodynamic Responses to Vasopressor-Inotropes“. In ASME 2013 Dynamic Systems and Control Conference. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/dscc2013-3726.
Der volle Inhalt der QuellePoorbahrami, K., K. J. Carey, A. Hahn, M. Schiebler, S. B. Fain, L. C. Denlinger und J. M. Oakes. „Modeling Bronchodilator Dose Response in the Central Airways of Asthmatic Lungs Using Computational Fluid Dynamics“. In American Thoracic Society 2020 International Conference, May 15-20, 2020 - Philadelphia, PA. American Thoracic Society, 2020. http://dx.doi.org/10.1164/ajrccm-conference.2020.201.1_meetingabstracts.a5692.
Der volle Inhalt der QuelleAffan, Affan, Jacek M. Zurada, Michael E. Brier und Tamer Inanc. „Adaptive Individualized Drug-Dose Response Modeling from a Limited Clinical Data: Case of Warfarin Management“. In 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC). IEEE, 2021. http://dx.doi.org/10.1109/embc46164.2021.9630158.
Der volle Inhalt der QuelleSchulmeister, Karl, Gerald Sonneck, Herbert Hoedlmoser, Frank Rattay, John Mellerio und David H. Sliney. „Modeling of uncertainty associated with dose-response curves as applied for probabilistic risk assessment in laser safety“. In BiOS 2001 The International Symposium on Biomedical Optics, herausgegeben von Bruce E. Stuck und Michael Belkin. SPIE, 2001. http://dx.doi.org/10.1117/12.426713.
Der volle Inhalt der QuelleWilliams, Katherine S., Ardith W. El-Kareh und Timothy W. Secomb. „Abstract 439: Mathematical modeling of cellular dose-response for radiation and radiation-drug combinations including cell cycle effects.“ In Proceedings: AACR 104th Annual Meeting 2013; Apr 6-10, 2013; Washington, DC. American Association for Cancer Research, 2013. http://dx.doi.org/10.1158/1538-7445.am2013-439.
Der volle Inhalt der QuelleZhuang, Shuhan, Sheng Fang und Xinwen Dong. „Local-Scale Atmospheric Dispersion Modelling of Radionuclides Following the Fukushima Daiichi Nuclear Accident Using SWIFT-RIMPUFF“. In 2022 29th International Conference on Nuclear Engineering. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/icone29-90748.
Der volle Inhalt der QuelleDong, Xinwen, Sheng Fang und Shuhan Zhuang. „Interpolation Influence on the Fast Fourier Transform Based Calculation of Three-Dimensional Dose Rate Field“. In 2022 29th International Conference on Nuclear Engineering. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/icone29-89244.
Der volle Inhalt der QuellePatel, Krishna, Michael Stevens, Suyash Adhikari, Greg Book, Muhammad Mubeen und Godfrey Pearlson. „Acute cannabis-related alterations in an fMRI time estimation task“. In 2022 Annual Scientific Meeting of the Research Society on Marijuana. Research Society on Marijuana, 2022. http://dx.doi.org/10.26828/cannabis.2022.02.000.26.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Dose-Response modeling"
Nottingham, Quinton J., Jeffrey B. Birch und Barry A. Bodt. Modeling Nonmonotonic Dose-Response Curves. Fort Belvoir, VA: Defense Technical Information Center, Januar 2001. http://dx.doi.org/10.21236/ada391664.
Der volle Inhalt der QuelleNTP Research Report on National Toxicology Program Approach to Genomic Dose-Response Modeling. NIEHS, April 2018. http://dx.doi.org/10.22427/ntp-rr-5.
Der volle Inhalt der Quelle