Zeitschriftenartikel zum Thema „Doppler radar Testing“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Doppler radar Testing" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.
Shvets, S., O. Kipriianov, F. Yermolenko und I. Haidak. „SUGGESTIONS FOR TYPICAL METHODS OF USING DOPPLER RADAR SYSTEMS OF TRAJECTORY MEASUREMENTS DURING TESTS OF ARTYLLERY ARMAMENT AND ITS AMMUNITION“. Наукові праці Державного науково-дослідного інституту випробувань і сертифікації озброєння та військової техніки, Nr. 7 (21.05.2021): 94–100. http://dx.doi.org/10.37701/dndivsovt.7.2021.11.
Der volle Inhalt der QuelleHeymsfield, Andrew J., Alain Protat, Dominique Bouniol, Richard T. Austin, Robin J. Hogan, Julien Delanoë, Hajime Okamoto et al. „Testing IWC Retrieval Methods Using Radar and Ancillary Measurements with In Situ Data“. Journal of Applied Meteorology and Climatology 47, Nr. 1 (01.01.2008): 135–63. http://dx.doi.org/10.1175/2007jamc1606.1.
Der volle Inhalt der QuelleAzizi, Mussyazwann Azizi Mustafa, Mohammad Nazrin Mohd Noh, Idnin Pasya, Ahmad Ihsan Mohd Yassin und Megat Syahirul Amin Megat Ali. „Pedestrian detection using Doppler radar and LSTM neural network“. IAES International Journal of Artificial Intelligence (IJ-AI) 9, Nr. 3 (01.09.2020): 394. http://dx.doi.org/10.11591/ijai.v9.i3.pp394-401.
Der volle Inhalt der QuelleLyashenko, V., V. Kuznecov, O. Kipriianov, F. Yermolenko und T. Pavliuk. „RECOMMENDATIONS ON INTEGRATED APPLICATION OF DOPPLER RADAR SYSTEMS OF EXTERNAL TRACTORY MEASUREMENTS IN THE MOBILE TESTING GROUND MEASURING AND COMPUTING COMPLEX“. Наукові праці Державного науково-дослідного інституту випробувань і сертифікації озброєння та військової техніки, Nr. 8 (29.06.2021): 72–79. http://dx.doi.org/10.37701/dndivsovt.8.2021.08.
Der volle Inhalt der QuelleZou, Tao, Xian Lin Zeng und Jian Hua Peng. „Research on the Airborne Pulse Doppler Radar Jamming System Tester“. Applied Mechanics and Materials 654 (Oktober 2014): 250–53. http://dx.doi.org/10.4028/www.scientific.net/amm.654.250.
Der volle Inhalt der QuelleDiewald, Andreas R., Manuel Steins und Simon Müller. „Radar target simulator with complex-valued delay line modeling based on standard radar components“. Advances in Radio Science 16 (18.12.2018): 203–13. http://dx.doi.org/10.5194/ars-16-203-2018.
Der volle Inhalt der QuelleDubosclard, G., R. Cordesses, P. Allard, C. Hervier, M. Coltelli und J. Kornprobst. „First testing of a volcano Doppler radar (Voldorad) at Mount Etna, Italy“. Geophysical Research Letters 26, Nr. 22 (15.11.1999): 3389–92. http://dx.doi.org/10.1029/1999gl008371.
Der volle Inhalt der QuelleMuscarella, Philip, Kelsey Brunner und David Walker. „Estimating Coastal Winds by Assimilating High-Frequency Radar Spectrum Data in SWAN“. Sensors 21, Nr. 23 (24.11.2021): 7811. http://dx.doi.org/10.3390/s21237811.
Der volle Inhalt der QuelleFoth, Andreas, Janek Zimmer, Felix Lauermann und Heike Kalesse-Los. „Evaluation of micro rain radar-based precipitation classification algorithms to discriminate between stratiform and convective precipitation“. Atmospheric Measurement Techniques 14, Nr. 6 (21.06.2021): 4565–74. http://dx.doi.org/10.5194/amt-14-4565-2021.
Der volle Inhalt der QuelleBeckwith, Dana M., und Katharine M. Hunter-Zaworski. „Passive Pedestrian Detection at Unsignalized Crossings“. Transportation Research Record: Journal of the Transportation Research Board 1636, Nr. 1 (Januar 1998): 96–103. http://dx.doi.org/10.3141/1636-16.
Der volle Inhalt der QuelleUnal, Christine. „Spectral Polarimetric Radar Clutter Suppression to Enhance Atmospheric Echoes“. Journal of Atmospheric and Oceanic Technology 26, Nr. 9 (01.09.2009): 1781–97. http://dx.doi.org/10.1175/2009jtecha1170.1.
Der volle Inhalt der QuelleScheiblhofer, Werner, Reinhard Feger, Andreas Haderer und Andreas Stelzer. „Concept and realization of a low-cost multi-target simulator for CW and FMCW radar system calibration and testing“. International Journal of Microwave and Wireless Technologies 10, Nr. 2 (13.02.2018): 207–15. http://dx.doi.org/10.1017/s1759078718000028.
Der volle Inhalt der QuelleTucker, Sara C., Carl S. Weimer, Sunil Baidar und R. Michael Hardesty. „The Optical Autocovariance Wind Lidar. Part I: OAWL Instrument Development and Demonstration“. Journal of Atmospheric and Oceanic Technology 35, Nr. 10 (Oktober 2018): 2079–97. http://dx.doi.org/10.1175/jtech-d-18-0024.1.
Der volle Inhalt der QuelleNarayanan, Ram M., Michael J. Harner, John R. Jendzurski und Nicholas G. Paulter. „Analysis of a Dynamic Calibration Target for Through-Wall and Through-Rubble Motion Sensing Doppler Radar“. Instruments 5, Nr. 4 (03.12.2021): 37. http://dx.doi.org/10.3390/instruments5040037.
Der volle Inhalt der QuelleChipengo, Ushemadzoro, Peter M. Krenz und Shawn Carpenter. „From Antenna Design to High Fidelity, Full Physics Automotive Radar Sensor Corner Case Simulation“. Modelling and Simulation in Engineering 2018 (27.12.2018): 1–19. http://dx.doi.org/10.1155/2018/4239725.
Der volle Inhalt der QuelleSong, Nuan, Yang Jiao, Ya Ji Song und Chun Hui Liu. „The Doppler Radar Bomb Chamber Volume Speed Measurement System Research Based on LabView“. Advanced Materials Research 571 (September 2012): 692–95. http://dx.doi.org/10.4028/www.scientific.net/amr.571.692.
Der volle Inhalt der QuelleIukhno, Artem, Sergei Buzmakov und Alisa Zorina. „DOPPLER NON-CONTACT RADAR SENSORS FOR WATER DISCHARGE ESTIMATION: ADVANTAGES AND LIMITATIONS“. ENVIRONMENT. TECHNOLOGIES. RESOURCES. Proceedings of the International Scientific and Practical Conference 3 (16.06.2021): 124–29. http://dx.doi.org/10.17770/etr2021vol3.6616.
Der volle Inhalt der QuelleMichaels, J. F. „An approach to radiated testing of installed airborne Doppler radar with weather/windshear detection capability“. IEEE Aerospace and Electronic Systems Magazine 10, Nr. 12 (Dezember 1995): 25. http://dx.doi.org/10.1109/62.480827.
Der volle Inhalt der QuelleDarnitskyi, Y., V. Lyashenko, S. Shvets und T. Pavliuk. „ANALYSIS OF PECULIARITIES FOR USE OF MUZZLE VELOCITY MEASUREMENT SYSTEM SL – 520PЕ AND DOPPLER RADAR TRAJECTORY MEASUREMENT SYSTEM MFTR–2100/40 DURING TESTS OF ROCKET AND ARTILLERY ARMAMENT“. Наукові праці Державного науково-дослідного інституту випробувань і сертифікації озброєння та військової техніки, Nr. 12 (05.07.2022): 29–40. http://dx.doi.org/10.37701/dndivsovt.12.2022.04.
Der volle Inhalt der QuelleGao, Jidong, Travis M. Smith, David J. Stensrud, Chenghao Fu, Kristin Calhoun, Kevin L. Manross, Jeffrey Brogden et al. „A Real-Time Weather-Adaptive 3DVAR Analysis System for Severe Weather Detections and Warnings“. Weather and Forecasting 28, Nr. 3 (01.06.2013): 727–45. http://dx.doi.org/10.1175/waf-d-12-00093.1.
Der volle Inhalt der QuelleRahnemoonfar, Maryam, Jimmy Johnson und John Paden. „AI Radar Sensor: Creating Radar Depth Sounder Images Based on Generative Adversarial Network“. Sensors 19, Nr. 24 (12.12.2019): 5479. http://dx.doi.org/10.3390/s19245479.
Der volle Inhalt der QuelleVictoria, Dr A. Helen, S. V. Manikanthan, Dr Varadaraju H R, Muhammad Alkirom Wildan und Kakarla Hari Kishore. „Radar Based Activity Recognition using CNN-LSTM Network Architecture“. International Journal of Communication Networks and Information Security (IJCNIS) 14, Nr. 3 (11.01.2023): 303–12. http://dx.doi.org/10.17762/ijcnis.v14i3.5630.
Der volle Inhalt der QuelleMarks, David A., David B. Wolff, Lawrence D. Carey und Ali Tokay. „Quality Control and Calibration of the Dual-Polarization Radar at Kwajalein, RMI“. Journal of Atmospheric and Oceanic Technology 28, Nr. 2 (01.02.2011): 181–96. http://dx.doi.org/10.1175/2010jtecha1462.1.
Der volle Inhalt der QuellePäschke, E., R. Leinweber und V. Lehmann. „An assessment of the performance of a 1.5 μm Doppler lidar for operational vertical wind profiling based on a 1-year trial“. Atmospheric Measurement Techniques 8, Nr. 6 (03.06.2015): 2251–66. http://dx.doi.org/10.5194/amt-8-2251-2015.
Der volle Inhalt der QuelleMahale, Vivek N., Guifu Zhang und Ming Xue. „Fuzzy Logic Classification of S-Band Polarimetric Radar Echoes to Identify Three-Body Scattering and Improve Data Quality“. Journal of Applied Meteorology and Climatology 53, Nr. 8 (August 2014): 2017–33. http://dx.doi.org/10.1175/jamc-d-13-0358.1.
Der volle Inhalt der QuelleLolli, S., A. Delaval, C. Loth, A. Garnier und P. H. Flamant. „0.355 μm direct detection wind lidar under testing during a field campaign in consideration of ESA's ADM-Aeolus Mission“. Atmospheric Measurement Techniques Discussions 6, Nr. 3 (23.05.2013): 4551–75. http://dx.doi.org/10.5194/amtd-6-4551-2013.
Der volle Inhalt der QuelleMorris, M. P., P. B. Chilson, T. J. Schuur und A. Ryzhkov. „Microphysical retrievals from simultaneous polarimetric and profiling radar observations“. Annales Geophysicae 27, Nr. 12 (07.12.2009): 4435–48. http://dx.doi.org/10.5194/angeo-27-4435-2009.
Der volle Inhalt der QuelleHasebe, F., T. Tsuda, T. Nakamura und M. D. Burrage. „Validation of HRDI MLT winds with meteor radars“. Annales Geophysicae 15, Nr. 9 (30.09.1997): 1142–57. http://dx.doi.org/10.1007/s00585-997-1142-7.
Der volle Inhalt der QuelleElmore, Kimberly L., Pamela L. Heinselman und David J. Stensrud. „Using WSR-88D Data and Insolation Estimates to Determine Convective Boundary Layer Depth“. Journal of Atmospheric and Oceanic Technology 29, Nr. 4 (01.04.2012): 581–88. http://dx.doi.org/10.1175/jtech-d-11-00043.1.
Der volle Inhalt der QuellePäschke, E., R. Leinweber und V. Lehmann. „A one year comparison of 482 MHz radar wind profiler, RS92-SGP Radiosonde and 1.5 μm Doppler Lidar wind measurements“. Atmospheric Measurement Techniques Discussions 7, Nr. 11 (19.11.2014): 11439–79. http://dx.doi.org/10.5194/amtd-7-11439-2014.
Der volle Inhalt der QuelleDavies-Jones, Robert, Vincent T. Wood und Mark A. Askelson. „Ray Curvature on a Flat Earth for Computing Virtual WSR-88D Signatures of Simulated Supercell Storms“. Monthly Weather Review 147, Nr. 3 (01.03.2019): 1065–75. http://dx.doi.org/10.1175/mwr-d-18-0356.1.
Der volle Inhalt der QuelleHeinselman, Pamela L., und Alexander V. Ryzhkov. „Validation of Polarimetric Hail Detection“. Weather and Forecasting 21, Nr. 5 (01.10.2006): 839–50. http://dx.doi.org/10.1175/waf956.1.
Der volle Inhalt der QuelleLothon, Marie, Bernard Campistron, Michel Chong, Fleur Couvreux, Françoise Guichard, Catherine Rio und Earle Williams. „Life Cycle of a Mesoscale Circular Gust Front Observed by a C-Band Doppler Radar in West Africa“. Monthly Weather Review 139, Nr. 5 (Mai 2011): 1370–88. http://dx.doi.org/10.1175/2010mwr3480.1.
Der volle Inhalt der QuelleMedlin, Jeffrey M., Sytske K. Kimball und Keith G. Blackwell. „Radar and Rain Gauge Analysis of the Extreme Rainfall during Hurricane Danny’s (1997) Landfall“. Monthly Weather Review 135, Nr. 5 (01.05.2007): 1869–88. http://dx.doi.org/10.1175/mwr3368.1.
Der volle Inhalt der QuelleChandra, Arunchandra S., Pavlos Kollias, Scott E. Giangrande und Stephen A. Klein. „Long-Term Observations of the Convective Boundary Layer Using Insect Radar Returns at the SGP ARM Climate Research Facility“. Journal of Climate 23, Nr. 21 (01.11.2010): 5699–714. http://dx.doi.org/10.1175/2010jcli3395.1.
Der volle Inhalt der QuelleFedorov, Roman, und Oleg Berngardt. „Monitoring observations of meteor echo at the EKB ISTP SB RAS radar: algorithms, validation, statistics“. Solar-Terrestrial Physics 7, Nr. 1 (29.03.2021): 47–58. http://dx.doi.org/10.12737/stp-71202107.
Der volle Inhalt der QuelleBu, Jinwei, Kegen Yu, Yongchao Zhu, Nijia Qian und Jun Chang. „Developing and Testing Models for Sea Surface Wind Speed Estimation with GNSS-R Delay Doppler Maps and Delay Waveforms“. Remote Sensing 12, Nr. 22 (16.11.2020): 3760. http://dx.doi.org/10.3390/rs12223760.
Der volle Inhalt der QuelleKollias, Pavlos, und Bruce Albrecht. „Vertical Velocity Statistics in Fair-Weather Cumuli at the ARM TWP Nauru Climate Research Facility“. Journal of Climate 23, Nr. 24 (15.12.2010): 6590–604. http://dx.doi.org/10.1175/2010jcli3449.1.
Der volle Inhalt der QuelleYi, Qiang, Stanley Chien, Lingxi Li, Wensen Niu, Yaobin Chen, David Good, Chi-Chih Chen und Rini Sherony. „Development of test scenarios and bicyclist surrogate for the evaluation of bicyclist automatic emergency braking systems“. Journal of Intelligent and Connected Vehicles 1, Nr. 1 (05.02.2018): 15–27. http://dx.doi.org/10.1108/jicv-02-2018-0005.
Der volle Inhalt der QuelleFedorov, Roman, und Oleg Berngardt. „Monitoring observations of meteor echo at the EKB ISTP SB RAS radar: algorithms, validation, statistics“. Solnechno-Zemnaya Fizika 7, Nr. 1 (29.03.2021): 59–73. http://dx.doi.org/10.12737/szf-71202107.
Der volle Inhalt der QuelleFoster, James, Ning Li und Kwok Fai Cheung. „Sea State Determination from Ship-Based Geodetic GPS“. Journal of Atmospheric and Oceanic Technology 31, Nr. 11 (November 2014): 2556–64. http://dx.doi.org/10.1175/jtech-d-13-00211.1.
Der volle Inhalt der QuelleLolli, S., A. Delaval, C. Loth, A. Garnier und P. H. Flamant. „0.355-micrometer direct detection wind lidar under testing during a field campaign in consideration of ESA's ADM-Aeolus mission“. Atmospheric Measurement Techniques 6, Nr. 12 (09.12.2013): 3349–58. http://dx.doi.org/10.5194/amt-6-3349-2013.
Der volle Inhalt der QuelleParate, Bhupesh Ambadas. „Propellant Actuated Device for Parachute Deployment during Seat Ejection for an Aircraft Application“. HighTech and Innovation Journal 1, Nr. 3 (01.09.2020): 112–20. http://dx.doi.org/10.28991/hij-2020-01-03-03.
Der volle Inhalt der QuelleJohnson, Victoria, Richard Jeffries, Greg Byrd, Wendy Schreiber-Abshire, Elizabeth Page, Bruce Muller und Tim Alberta. „Celebrating COMET’s 25 Years of Providing Innovative Education and Training“. Bulletin of the American Meteorological Society 96, Nr. 12 (01.12.2015): 2183–94. http://dx.doi.org/10.1175/bams-d-14-00276.1.
Der volle Inhalt der QuelleRoueche, David B., und David O. Prevatt. „Residential Damage Patterns Following the 2011 Tuscaloosa, AL and Joplin, MO Tornadoes“. Journal of Disaster Research 8, Nr. 6 (01.12.2013): 1061–67. http://dx.doi.org/10.20965/jdr.2013.p1061.
Der volle Inhalt der QuelleEllender, Claire M., Syeda Farah Zahir, Hailey Meaklim, Rosemarie Joyce, David Cunnington und John Swieca. „Prospective cohort study to evaluate the accuracy of sleep measurement by consumer-grade smart devices compared with polysomnography in a sleep disorders population“. BMJ Open 11, Nr. 11 (November 2021): e044015. http://dx.doi.org/10.1136/bmjopen-2020-044015.
Der volle Inhalt der QuelleGiangrande, Scott E., Edward P. Luke und Pavlos Kollias. „Automated Retrievals of Precipitation Parameters Using Non-Rayleigh Scattering at 95 GHz“. Journal of Atmospheric and Oceanic Technology 27, Nr. 9 (01.09.2010): 1490–503. http://dx.doi.org/10.1175/2010jtecha1343.1.
Der volle Inhalt der QuelleKoskinen, Jarkko T., Jani Poutiainen, David M. Schultz, Sylvain Joffre, Jarmo Koistinen, Elena Saltikoff, Erik Gregow et al. „The Helsinki Testbed: A Mesoscale Measurement, Research, and Service Platform“. Bulletin of the American Meteorological Society 92, Nr. 3 (01.03.2011): 325–42. http://dx.doi.org/10.1175/2010bams2878.1.
Der volle Inhalt der QuelleRan, Yuanbo, Haijiang Wang, Li Tian, Jiang Wu und Xiaohong Li. „Precipitation cloud identification based on faster-RCNN for Doppler weather radar“. EURASIP Journal on Wireless Communications and Networking 2021, Nr. 1 (01.02.2021). http://dx.doi.org/10.1186/s13638-021-01896-5.
Der volle Inhalt der QuellePotylitsyn, Vadim S., Danil S. Kudinov und Ekaterina A. Kokhonkova. „Investigation of the Influence of a Cavity Type Defect on the Frequencies of the Natural Rail Oscillations by the Radar Method“. Journal of Siberian Federal University. Engineering & Technologies, Dezember 2019, 1006–12. http://dx.doi.org/10.17516/1999-494x-0201.
Der volle Inhalt der Quelle