Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: DNA-Encoded Chemical Library.

Zeitschriftenartikel zum Thema „DNA-Encoded Chemical Library“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "DNA-Encoded Chemical Library" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

Dawadi, Surendra, Nicholas Simmons, Gabriella Miklossy, Kurt M. Bohren, John C. Faver, Melek Nihan Ucisik, Pranavanand Nyshadham, Zhifeng Yu und Martin M. Matzuk. „Discovery of potent thrombin inhibitors from a protease-focused DNA-encoded chemical library“. Proceedings of the National Academy of Sciences 117, Nr. 29 (08.07.2020): 16782–89. http://dx.doi.org/10.1073/pnas.2005447117.

Der volle Inhalt der Quelle
Annotation:
DNA-encoded chemical libraries are collections of compounds individually coupled to unique DNA tags serving as amplifiable identification barcodes. By bridging split-and-pool combinatorial synthesis with the ligation of unique encoding DNA oligomers, million- to billion-member libraries can be synthesized for use in hundreds of healthcare target screens. Although structural diversity and desirable molecular property ranges generally guide DNA-encoded chemical library design, recent reports have highlighted the utility of focused DNA-encoded chemical libraries that are structurally biased for a class of protein targets. Herein, a protease-focused DNA-encoded chemical library was designed that utilizes chemotypes known to engage conserved catalytic protease residues. The three-cycle library features functional moieties such as guanidine, which interacts strongly with aspartate of the protease catalytic triad, as well as mild electrophiles such as sulfonamide, urea, and carbamate. We developed a DNA-compatible method for guanidinylation of amines and reduction of nitriles. Employing these optimized reactions, we constructed a 9.8-million-membered DNA-encoded chemical library. Affinity selection of the library with thrombin, a common protease, revealed a number of enriched features which ultimately led to the discovery of a 1 nM inhibitor of thrombin. Thus, structurally focused DNA-encoded chemical libraries have tremendous potential to find clinically useful high-affinity hits for the rapid discovery of drugs for targets (e.g., proteases) with essential functions in infectious diseases (e.g., severe acute respiratory syndrome coronavirus 2) and relevant healthcare conditions (e.g., male contraception).
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Reddavide, Francesco V., Meiying Cui, Weilin Lin, Naiqiang Fu, Stephan Heiden, Helena Andrade, Michael Thompson und Yixin Zhang. „Second generation DNA-encoded dynamic combinatorial chemical libraries“. Chemical Communications 55, Nr. 26 (2019): 3753–56. http://dx.doi.org/10.1039/c9cc01429b.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Onda, Yuichi, Gabriele Bassi, Abdullah Elsayed, Franziska Ulrich, Sebastian Oehler, Louise Plais, Jörg Scheuermann und Dario Neri. „A DNA‐Encoded Chemical Library Based on Peptide Macrocycles“. Chemistry – A European Journal 27, Nr. 24 (18.03.2021): 7160–67. http://dx.doi.org/10.1002/chem.202005423.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Dumelin, Christoph E., Jörg Scheuermann, Samu Melkko und Dario Neri. „Selection of Streptavidin Binders from a DNA-Encoded Chemical Library“. Bioconjugate Chemistry 17, Nr. 2 (März 2006): 366–70. http://dx.doi.org/10.1021/bc050282y.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Faver, John C., Kevin Riehle, David R. Lancia, Jared B. J. Milbank, Christopher S. Kollmann, Nicholas Simmons, Zhifeng Yu und Martin M. Matzuk. „Quantitative Comparison of Enrichment from DNA-Encoded Chemical Library Selections“. ACS Combinatorial Science 21, Nr. 2 (23.01.2019): 75–82. http://dx.doi.org/10.1021/acscombsci.8b00116.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Dumelin, Christoph E, Sabrina Trüssel, Fabian Buller, Eveline Trachsel, Frank Bootz, Yixin Zhang, Luca Mannocci et al. „A Portable Albumin Binder from a DNA-Encoded Chemical Library“. Angewandte Chemie 120, Nr. 17 (14.04.2008): 3240–45. http://dx.doi.org/10.1002/ange.200704936.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Stress, Cedric J., Basilius Sauter, Lukas A. Schneider, Timothy Sharpe und Dennis Gillingham. „A DNA‐Encoded Chemical Library Incorporating Elements of Natural Macrocycles“. Angewandte Chemie International Edition 58, Nr. 28 (08.07.2019): 9570–74. http://dx.doi.org/10.1002/anie.201902513.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Edwards, Paul. „Design and synthesis of a novel DNA-encoded chemical library“. Drug Discovery Today 15, Nr. 15-16 (August 2010): 690–91. http://dx.doi.org/10.1016/j.drudis.2010.06.013.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Dumelin, Christoph E, Sabrina Trüssel, Fabian Buller, Eveline Trachsel, Frank Bootz, Yixin Zhang, Luca Mannocci et al. „A Portable Albumin Binder from a DNA-Encoded Chemical Library“. Angewandte Chemie International Edition 47, Nr. 17 (14.04.2008): 3196–201. http://dx.doi.org/10.1002/anie.200704936.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Shi, Ying, Yan-ran Wu, Jian-qiang Yu, Wan-nian Zhang und Chun-lin Zhuang. „DNA-encoded libraries (DELs): a review of on-DNA chemistries and their output“. RSC Advances 11, Nr. 4 (2021): 2359–76. http://dx.doi.org/10.1039/d0ra09889b.

Der volle Inhalt der Quelle
Annotation:
We summarize a series of novel DNA-compatible chemistry reactions for DNA-encoded chemical library (DEL) building blocks and analyse the druggability of screened hit molecules via DELs in the past five years.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

Guasch, Laura, Michael Reutlinger, Daniel Stoffler und Moreno Wichert. „Augmenting Chemical Space with DNA-encoded Library Technology and Machine Learning“. CHIMIA International Journal for Chemistry 75, Nr. 1 (28.02.2021): 105–7. http://dx.doi.org/10.2533/chimia.2021.105.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

Zhou, Yu, Chen Li, Jianzhao Peng, Liangxu Xie, Ling Meng, Qingrong Li, Jianfu Zhang et al. „DNA-Encoded Dynamic Chemical Library and Its Applications in Ligand Discovery“. Journal of the American Chemical Society 140, Nr. 46 (November 2018): 15859–67. http://dx.doi.org/10.1021/jacs.8b09277.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Ji, Yue, Dongliang Dai, Huadong Luo, Simin Shen, Jing Fan, Zhao Wang, Min Chen et al. „C–S Coupling of DNA-Conjugated Aryl Iodides for DNA-Encoded Chemical Library Synthesis“. Bioconjugate Chemistry 32, Nr. 4 (15.03.2021): 685–89. http://dx.doi.org/10.1021/acs.bioconjchem.1c00076.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

Kunig, Verena, Marco Potowski, Anne Gohla und Andreas Brunschweiger. „DNA-encoded libraries – an efficient small molecule discovery technology for the biomedical sciences“. Biological Chemistry 399, Nr. 7 (27.06.2018): 691–710. http://dx.doi.org/10.1515/hsz-2018-0119.

Der volle Inhalt der Quelle
Annotation:
Abstract DNA-encoded compound libraries are a highly attractive technology for the discovery of small molecule protein ligands. These compound collections consist of small molecules covalently connected to individual DNA sequences carrying readable information about the compound structure. DNA-tagging allows for efficient synthesis, handling and interrogation of vast numbers of chemically synthesized, drug-like compounds. They are screened on proteins by an efficient, generic assay based on Darwinian principles of selection. To date, selection of DNA-encoded libraries allowed for the identification of numerous bioactive compounds. Some of these compounds uncovered hitherto unknown allosteric binding sites on target proteins; several compounds proved their value as chemical biology probes unraveling complex biology; and the first examples of clinical candidates that trace their ancestry to a DNA-encoded library were reported. Thus, DNA-encoded libraries proved their value for the biomedical sciences as a generic technology for the identification of bioactive drug-like molecules numerous times. However, large scale experiments showed that even the selection of billions of compounds failed to deliver bioactive compounds for the majority of proteins in an unbiased panel of target proteins. This raises the question of compound library design.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

Melkko, Samu, Yixin Zhang, Christoph E Dumelin, Jörg Scheuermann und Dario Neri. „Isolation of High-Affinity Trypsin Inhibitors from a DNA-Encoded Chemical Library“. Angewandte Chemie 119, Nr. 25 (18.06.2007): 4755–58. http://dx.doi.org/10.1002/ange.200700654.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

Melkko, Samu, Yixin Zhang, Christoph E Dumelin, Jörg Scheuermann und Dario Neri. „Isolation of High-Affinity Trypsin Inhibitors from a DNA-Encoded Chemical Library“. Angewandte Chemie International Edition 46, Nr. 25 (18.06.2007): 4671–74. http://dx.doi.org/10.1002/anie.200700654.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

Gironda-Martínez, Adrián, Dario Neri, Florent Samain und Etienne J. Donckele. „DNA-Compatible Diazo-Transfer Reaction in Aqueous Media Suitable for DNA-Encoded Chemical Library Synthesis“. Organic Letters 21, Nr. 23 (20.11.2019): 9555–58. http://dx.doi.org/10.1021/acs.orglett.9b03726.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

Zhou, Yu, Jianzhao Peng, Wenyin Shen und Xiaoyu Li. „Psoralen as an interstrand DNA crosslinker in the selection of DNA-Encoded dynamic chemical library“. Biochemical and Biophysical Research Communications 533, Nr. 2 (Dezember 2020): 215–22. http://dx.doi.org/10.1016/j.bbrc.2020.04.033.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

Mannocci, Luca, Yixin Zhang, Jörg Scheuermann, Markus Leimbacher, Gianluca De Bellis, Ermanno Rizzi, Christoph Dumelin, Samu Melkko und Dario Neri. „High-throughput sequencing allows the identification of binding molecules isolated from DNA-encoded chemical libraries“. Proceedings of the National Academy of Sciences 105, Nr. 46 (10.11.2008): 17670–75. http://dx.doi.org/10.1073/pnas.0805130105.

Der volle Inhalt der Quelle
Annotation:
DNA encoding facilitates the construction and screening of large chemical libraries. Here, we describe general strategies for the stepwise coupling of coding DNA fragments to nascent organic molecules throughout individual reaction steps as well as the first implementation of high-throughput sequencing for the identification and relative quantification of the library members. The methodology was exemplified in the construction of a DNA-encoded chemical library containing 4,000 compounds and in the discovery of binders to streptavidin, matrix metalloproteinase 3, and polyclonal human IgG.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

Franzini, Raphael M., Angela Nauer, Jörg Scheuermann und Dario Neri. „Interrogating target-specificity by parallel screening of a DNA-encoded chemical library against closely related proteins“. Chemical Communications 51, Nr. 38 (2015): 8014–16. http://dx.doi.org/10.1039/c5cc01230a.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

Ottl, Johannes, Lukas Leder, Jonas V. Schaefer und Christoph E. Dumelin. „Encoded Library Technologies as Integrated Lead Finding Platforms for Drug Discovery“. Molecules 24, Nr. 8 (25.04.2019): 1629. http://dx.doi.org/10.3390/molecules24081629.

Der volle Inhalt der Quelle
Annotation:
The scope of targets investigated in pharmaceutical research is continuously moving into uncharted territory. Consequently, finding suitable chemical matter with current compound collections is proving increasingly difficult. Encoded library technologies enable the rapid exploration of large chemical space for the identification of ligands for such targets. These binders facilitate drug discovery projects both as tools for target validation, structural elucidation and assay development as well as starting points for medicinal chemistry. Novartis internalized two complementing encoded library platforms to accelerate the initiation of its drug discovery programs. For the identification of low-molecular weight ligands, we apply DNA-encoded libraries. In addition, encoded peptide libraries are employed to identify cyclic peptides. This review discusses how we apply these two platforms in our research and why we consider it beneficial to run both pipelines in-house.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

Ratnayake, Anokha S., Mark E. Flanagan, Timothy L. Foley, Justin D. Smith, Jillian G. Johnson, Justin Bellenger, Justin I. Montgomery und Brian M. Paegel. „A Solution Phase Platform to Characterize Chemical Reaction Compatibility with DNA-Encoded Chemical Library Synthesis“. ACS Combinatorial Science 21, Nr. 10 (19.08.2019): 650–55. http://dx.doi.org/10.1021/acscombsci.9b00113.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

Yang, Guanyu, Dou He, Yijun Zhu, Weiwei Zhu, Yang Tan, Xingwen Long, Jinqiao Wan et al. „Cholesterol-Modified Oligonucleotides as Internal Reaction Controls during DNA-Encoded Chemical Library Synthesis“. Bioconjugate Chemistry 32, Nr. 4 (09.03.2021): 667–71. http://dx.doi.org/10.1021/acs.bioconjchem.1c00045.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

Li, Jian-Yuan, Gabriella Miklossy, Ram K. Modukuri, Kurt M. Bohren, Zhifeng Yu, Murugesan Palaniappan, John C. Faver, Kevin Riehle, Martin M. Matzuk und Nicholas Simmons. „Palladium-Catalyzed Hydroxycarbonylation of (Hetero)aryl Halides for DNA-Encoded Chemical Library Synthesis“. Bioconjugate Chemistry 30, Nr. 8 (22.07.2019): 2209–15. http://dx.doi.org/10.1021/acs.bioconjchem.9b00447.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

Mannocci, Luca, Samu Melkko, Fabian Buller, Ilona Molnàr, Jean-Paul Gapian Bianké, Christoph E. Dumelin, Jörg Scheuermann und Dario Neri. „Isolation of Potent and Specific Trypsin Inhibitors from a DNA-Encoded Chemical Library“. Bioconjugate Chemistry 21, Nr. 10 (20.10.2010): 1836–41. http://dx.doi.org/10.1021/bc100198x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

Shi, Bingbing, Yu Zhou, Yiran Huang, Jianfu Zhang und Xiaoyu Li. „Recent advances on the encoding and selection methods of DNA-encoded chemical library“. Bioorganic & Medicinal Chemistry Letters 27, Nr. 3 (Februar 2017): 361–69. http://dx.doi.org/10.1016/j.bmcl.2016.12.025.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

Leimbacher, Markus, Yixin Zhang, Luca Mannocci, Michael Stravs, Tim Geppert, Jörg Scheuermann, Gisbert Schneider und Dario Neri. „Discovery of Small-Molecule Interleukin-2 Inhibitors from a DNA-Encoded Chemical Library“. Chemistry - A European Journal 18, Nr. 25 (15.05.2012): 7729–37. http://dx.doi.org/10.1002/chem.201200952.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

Parandoosh, Z., S. K. Knowles, X. Y. Xiao, C. Zhao, G. S. David und M. P. Nova. „Encoded chemical synthesis coupled to screening: "Pot Assay"“. Combinatorial Chemistry & High Throughput Screening 1, Nr. 3 (Oktober 1998): 135–42. http://dx.doi.org/10.2174/138620730103220120141950.

Der volle Inhalt der Quelle
Annotation:
A variety of screening methodologies is available to identify lead compounds. Screening methods that would permit the direct use of libraries made via the Radiofrequency Encoded Combinatorial chemistry paradigm (each individual small molecule in the library is presented separately on an individual encoded support) have the potential to diminish burdensome steps in this process. Here we report on our studies leading to such a direct method, which we have termed a Pot Assay. Pot Assay is a multiplex assay, which simultaneously measures specific binding of a number of ligands to at least one target. Pot Assay uses specific radiofrequency signals to decode compounds that are high affinity binders. We validated this approach by evaluating the interaction of biotin and its analogs with labeled streptavidin. This report introduces Pot Assay as a rapid, simple, sensitive and accurate format for identifying active members of libraries synthesized on solid supports. The success of this study demonstrates the power of coupling Radiofrequency Encoded Combinatorial chemistry and screening. This assay format may be applied to a wide range of screens that are based on binding events: ligand/receptor, inhibitor/enzyme, antigen/antibody, protein/protein, DNA/protein, and RNA/DNA.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

Chen, Ying-Chu, John C. Faver, Angela F. Ku, Gabriella Miklossy, Kevin Riehle, Kurt M. Bohren, Melek N. Ucisik, Martin M. Matzuk, Zhifeng Yu und Nicholas Simmons. „C–N Coupling of DNA-Conjugated (Hetero)aryl Bromides and Chlorides for DNA-Encoded Chemical Library Synthesis“. Bioconjugate Chemistry 31, Nr. 3 (05.02.2020): 770–80. http://dx.doi.org/10.1021/acs.bioconjchem.9b00863.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
30

Buller, Fabian, Luca Mannocci, Yixin Zhang, Christoph E. Dumelin, Jörg Scheuermann und Dario Neri. „Design and synthesis of a novel DNA-encoded chemical library using Diels-Alder cycloadditions“. Bioorganic & Medicinal Chemistry Letters 18, Nr. 22 (November 2008): 5926–31. http://dx.doi.org/10.1016/j.bmcl.2008.07.038.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
31

Lemke, Mike, Hannah Ravenscroft, Nicole J. Rueb, Dmitri Kireev, Dana Ferraris und Raphael M. Franzini. „Integrating DNA-encoded chemical libraries with virtual combinatorial library screening: Optimizing a PARP10 inhibitor“. Bioorganic & Medicinal Chemistry Letters 30, Nr. 19 (Oktober 2020): 127464. http://dx.doi.org/10.1016/j.bmcl.2020.127464.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
32

Franzini, Raphael M., Torun Ekblad, Nan Zhong, Moreno Wichert, Willy Decurtins, Angela Nauer, Mauro Zimmermann et al. „Identification of Structure-Activity Relationships from Screening a Structurally Compact DNA-Encoded Chemical Library“. Angewandte Chemie 127, Nr. 13 (03.02.2015): 3999–4003. http://dx.doi.org/10.1002/ange.201410736.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
33

Franzini, Raphael M., Torun Ekblad, Nan Zhong, Moreno Wichert, Willy Decurtins, Angela Nauer, Mauro Zimmermann et al. „Identification of Structure-Activity Relationships from Screening a Structurally Compact DNA-Encoded Chemical Library“. Angewandte Chemie International Edition 54, Nr. 13 (03.02.2015): 3927–31. http://dx.doi.org/10.1002/anie.201410736.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
34

Disch, Jeremy S., Jennifer M. Duffy, Esther C. Y. Lee, Diana Gikunju, Betty Chan, Benjamin Levin, Michael I. Monteiro et al. „Bispecific Estrogen Receptor α Degraders Incorporating Novel Binders Identified Using DNA-Encoded Chemical Library Screening“. Journal of Medicinal Chemistry 64, Nr. 8 (12.04.2021): 5049–66. http://dx.doi.org/10.1021/acs.jmedchem.1c00127.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
35

Yuen, Lik Hang, Srikanta Dana, Yu Liu, Samuel I. Bloom, Ann-Gerd Thorsell, Dario Neri, Anthony J. Donato, Dmitri Kireev, Herwig Schüler und Raphael M. Franzini. „A Focused DNA-Encoded Chemical Library for the Discovery of Inhibitors of NAD+-Dependent Enzymes“. Journal of the American Chemical Society 141, Nr. 13 (11.03.2019): 5169–81. http://dx.doi.org/10.1021/jacs.8b08039.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
36

Samain, Florent, Torun Ekblad, Gediminas Mikutis, Nan Zhong, Mauro Zimmermann, Angela Nauer, Davor Bajic et al. „Tankyrase 1 Inhibitors with Drug-like Properties Identified by Screening a DNA-Encoded Chemical Library“. Journal of Medicinal Chemistry 58, Nr. 12 (10.06.2015): 5143–49. http://dx.doi.org/10.1021/acs.jmedchem.5b00432.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
37

Hall, Justin, Timothy L. Foley, Qiuxia Chen, David I. Israel, Yanshan Xu, Kristin K. Ford, Ping Xie, Jing Fan und Jinqiao Wan. „A simple method for determining compound affinity and chemical yield from DNA-encoded library selections“. Biochemical and Biophysical Research Communications 527, Nr. 1 (Juni 2020): 250–56. http://dx.doi.org/10.1016/j.bbrc.2020.04.024.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
38

Buller, Fabian, Yixin Zhang, Jörg Scheuermann, Juliane Schäfer, Peter Bühlmann und Dario Neri. „Discovery of TNF Inhibitors from a DNA-Encoded Chemical Library based on Diels-Alder Cycloaddition“. Chemistry & Biology 16, Nr. 10 (Oktober 2009): 1075–86. http://dx.doi.org/10.1016/j.chembiol.2009.09.011.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
39

Zhu, Zhengrong, LaShadric C. Grady, Yun Ding, Kenneth E. Lind, Christopher P. Davie, Christopher B. Phelps und Ghotas Evindar. „Development of a Selection Method for Discovering Irreversible (Covalent) Binders from a DNA-Encoded Library“. SLAS DISCOVERY: Advancing the Science of Drug Discovery 24, Nr. 2 (01.11.2018): 169–74. http://dx.doi.org/10.1177/2472555218808454.

Der volle Inhalt der Quelle
Annotation:
DNA-encoded libraries (DELs) have been broadly applied to identify chemical probes for target validation and lead discovery. To date, the main application of the DEL platform has been the identification of reversible ligands using multiple rounds of affinity selection. Irreversible (covalent) inhibition offers a unique mechanism of action for drug discovery research. In this study, we report a developing method of identifying irreversible (covalent) ligands from DELs. The new method was validated by using 3C protease (3CP) and on-DNA irreversible tool compounds (rupintrivir derivatives) spiked into a library at the same concentration as individual members of that library. After affinity selections against 3CP, the irreversible tool compounds were specifically enriched compared with the library members. In addition, we compared two immobilization methods and concluded that microscale columns packed with the appropriate affinity resin gave higher tool compound recovery than magnetic beads.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
40

Kuai, Letian, Thomas O’Keeffe und Christopher Arico-Muendel. „Randomness in DNA Encoded Library Selection Data Can Be Modeled for More Reliable Enrichment Calculation“. SLAS DISCOVERY: Advancing the Science of Drug Discovery 23, Nr. 5 (13.02.2018): 405–16. http://dx.doi.org/10.1177/2472555218757718.

Der volle Inhalt der Quelle
Annotation:
DNA Encoded Libraries (DELs) use unique DNA sequences to tag each chemical warhead within a library mixture to enable deconvolution following affinity selection against a target protein. With next-generation sequencing, millions to billions of sequences can be read and counted to report binding events. This unprecedented capability has enabled researchers to synthesize and analyze numerically large chemical libraries. Despite the common perception that each library member undergoes a miniaturized affinity assay, selections with higher complexity libraries often produce results that are difficult to rank order. In this study, we aimed to understand the robustness of DEL selection by examining the sequencing readouts of warheads and chemotype families among a large number of experimentally repeated selections. The results revealed that (1) the output of DEL selection is intrinsically noisy but can be reliably modeled by the Poisson distribution, and (2) Poisson noise is the dominating noise at low copy counts and can be estimated even from a single experiment. We also discuss the shortcomings of data analyses based on directly using copy counts and their linear transformations, and propose a framework that incorporates proper normalization and confidence interval calculation to help researchers better understand DEL data.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
41

Amigo, Jorge, Ramón Rama-Garda, Xabier Bello, Beatriz Sobrino, Jesús de Blas, María Martín-Ortega, Theodore C. Jessop, Ángel Carracedo, María Isabel García Loza und Eduardo Domínguez. „tagFinder: A Novel Tag Analysis Methodology That Enables Detection of Molecules from DNA-Encoded Chemical Libraries“. SLAS DISCOVERY: Advancing the Science of Drug Discovery 23, Nr. 5 (23.01.2018): 397–404. http://dx.doi.org/10.1177/2472555217753840.

Der volle Inhalt der Quelle
Annotation:
Available tools to analyze sequencing data coming from DNA-encoded chemical libraries (DELs) are often limited to in-house methods, which usually rely on strictly looking for the particular DEL structure used. Current methods do not take into account technological errors, such as library codification and sequencing errors, when detecting the sequences. The vast amount of data produced by next-generation sequencing of DEL screens is usually enough to extract the minimum information needed for compound identification. Here, we report a methodology to deconvolute encoding oligonucleotides, thus optimizing the sequencing power regardless of the library size, design complexity, or sequencing technology chosen. tagFinder is a highly flexible tool for fast tag detection and thorough DEL results characterization, which requires minimal hardware resources, scales linearly, and does not introduce any analytical error. The methodology can even deal with sequencing errors and PCR duplicates on single- or double-stranded DNA, enhancing the analytical detection and quantification of molecules and the informativeness of the entire process. Source code is available at https://github.com/jamigo/tagFinder .
APA, Harvard, Vancouver, ISO und andere Zitierweisen
42

Ruff, Yves, Roberto Martinez, Xavier Pellé, Pierre Nimsgern, Pascale Fille, Maxim Ratnikov und Frédéric Berst. „An Amphiphilic Polymer-Supported Strategy Enables Chemical Transformations under Anhydrous Conditions for DNA-Encoded Library Synthesis“. ACS Combinatorial Science 22, Nr. 3 (10.02.2020): 120–28. http://dx.doi.org/10.1021/acscombsci.9b00164.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
43

Li, Yizhou, Gunther Zimmermann, Jörg Scheuermann und Dario Neri. „Quantitative PCR is a Valuable Tool to Monitor the Performance of DNA-Encoded Chemical Library Selections“. ChemBioChem 18, Nr. 9 (16.03.2017): 848–52. http://dx.doi.org/10.1002/cbic.201600626.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
44

Kim, Dongwook, Yixing Sun, Dan Xie, Kyle E. Denton, Hao Chen, Hang Lin, Michael K. Wendt, Carol Beth Post und Casey J. Krusemark. „Application of a Substrate-Mediated Selection with c-Src Tyrosine Kinase to a DNA-Encoded Chemical Library“. Molecules 24, Nr. 15 (30.07.2019): 2764. http://dx.doi.org/10.3390/molecules24152764.

Der volle Inhalt der Quelle
Annotation:
As aberrant activity of protein kinases is observed in many disease states, these enzymes are common targets for therapeutics and detection of activity levels. The development of non-natural protein kinase substrates offers an approach to protein substrate competitive inhibitors, a class of kinase inhibitors with promise for improved specificity. Also, kinase activity detection approaches would benefit from substrates with improved activity and specificity. Here, we apply a substrate-mediated selection to a peptidomimetic DNA-encoded chemical library for enrichment of molecules that can be phosphorylated by the protein tyrosine kinase, c-Src. Several substrates were identified and characterized for activity. A lead compound (SrcDEL10) showed both the ability to serve as a substrate and to promote ATP hydrolysis by the kinase. In inhibition assays, compounds displayed IC50′s ranging from of 8–100 µM. NMR analysis of SrcDEL10 bound to the c-Src:ATP complex was conducted to characterize the binding mode. An ester derivative of the lead compound demonstrated cellular activity with inhibition of Src-dependent signaling in cell culture. Together, the results show the potential for substrate-mediated selections of DNA-encoded libraries to discover molecules with functions other than simple protein binding and offer a new discovery method for development of synthetic tyrosine kinase substrates.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
45

Rectenwald, Justin M., Shiva Krishna Reddy Guduru, Zhao Dang, Leonard B. Collins, Yi-En Liao, Jacqueline L. Norris-Drouin, Stephanie H. Cholensky et al. „Design and Construction of a Focused DNA-Encoded Library for Multivalent Chromatin Reader Proteins“. Molecules 25, Nr. 4 (22.02.2020): 979. http://dx.doi.org/10.3390/molecules25040979.

Der volle Inhalt der Quelle
Annotation:
Chromatin structure and function, and consequently cellular phenotype, is regulated in part by a network of chromatin-modifying enzymes that place post-translational modifications (PTMs) on histone tails. These marks serve as recruitment sites for other chromatin regulatory complexes that ‘read’ these PTMs. High-quality chemical probes that can block reader functions of proteins involved in chromatin regulation are important tools to improve our understanding of pathways involved in chromatin dynamics. Insight into the intricate system of chromatin PTMs and their context within the epigenome is also therapeutically important as misregulation of this complex system is implicated in numerous human diseases. Using computational methods, along with structure-based knowledge, we have designed and constructed a focused DNA-Encoded Library (DEL) containing approximately 60,000 compounds targeting bi-valent methyl-lysine (Kme) reader domains. Additionally, we have constructed DNA-barcoded control compounds to allow optimization of selection conditions using a model Kme reader domain. We anticipate that this target-class focused approach will serve as a new method for rapid discovery of inhibitors for multivalent chromatin reader domains.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
46

Brown, Dean G., Giles A. Brown, Paolo Centrella, Kaan Certel, Robert M. Cooke, John W. Cuozzo, Niek Dekker et al. „Agonists and Antagonists of Protease-Activated Receptor 2 Discovered within a DNA-Encoded Chemical Library Using Mutational Stabilization of the Target“. SLAS DISCOVERY: Advancing the Science of Drug Discovery 23, Nr. 5 (09.01.2018): 429–36. http://dx.doi.org/10.1177/2472555217749847.

Der volle Inhalt der Quelle
Annotation:
The discovery of ligands via affinity-mediated selection of DNA-encoded chemical libraries is driven by the quality and concentration of the protein target. G-protein-coupled receptors (GPCRs) and other membrane-bound targets can be difficult to isolate in their functional state and at high concentrations, and therefore have been challenging for affinity-mediated selection. Here, we report a successful selection campaign against protease-activated receptor 2 (PAR2). Using a thermo-stabilized mutant of PAR2, we conducted affinity selection using our >100-billion-compound DNA-encoded library. We observed a number of putative ligands enriched upon selection, and subsequent cellular profiling revealed these ligands to comprise both agonists and antagonists. The agonist series shared structural similarity with known agonists. The antagonists were shown to bind in a novel allosteric binding site on the PAR2 protein. This report serves to demonstrate that cell-free affinity selection against GPCRs can be achieved with mutant stabilized protein targets.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
47

Lee, Esther C. Y., Andrew J. McRiner, Katy E. Georgiadis, Julie Liu, Zooey Wang, Andrew D. Ferguson, Benjamin Levin et al. „Discovery of Novel, Potent Inhibitors of Hydroxy Acid Oxidase 1 (HAO1) Using DNA-Encoded Chemical Library Screening“. Journal of Medicinal Chemistry 64, Nr. 10 (06.05.2021): 6730–44. http://dx.doi.org/10.1021/acs.jmedchem.0c02271.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
48

Yuen, Lik Hang, Srikanta Dana, Yu Liu, Samuel I. Bloom, Ann-Gerd Thorsell, Dario Neri, Anthony J. Donato, Dmitri Kireev, Herwig Schüler und Raphael M. Franzini. „Correction to “A Focused DNA-Encoded Chemical Library for the Discovery of Inhibitors of NAD+-Dependent Enzymes”“. Journal of the American Chemical Society 143, Nr. 29 (16.07.2021): 11272–73. http://dx.doi.org/10.1021/jacs.1c06352.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
49

Sannino, Alessandro, Adrián Gironda-Martínez, Émile M. D. Gorre, Luca Prati, Jacopo Piazzi, Jörg Scheuermann, Dario Neri, Etienne J. Donckele und Florent Samain. „Critical Evaluation of Photo-cross-linking Parameters for the Implementation of Efficient DNA-Encoded Chemical Library Selections“. ACS Combinatorial Science 22, Nr. 4 (28.02.2020): 204–12. http://dx.doi.org/10.1021/acscombsci.0c00023.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
50

Shi, Bingbing, Yuqing Deng, Peng Zhao und Xiaoyu Li. „Selecting a DNA-Encoded Chemical Library against Non-immobilized Proteins Using a “Ligate–Cross-Link–Purify” Strategy“. Bioconjugate Chemistry 28, Nr. 9 (10.08.2017): 2293–301. http://dx.doi.org/10.1021/acs.bioconjchem.7b00343.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie