Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „DNA Effect of radiation on“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "DNA Effect of radiation on" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "DNA Effect of radiation on"
Jalal, Nasir, Saba Haq, Namrah Anwar, Saadiya Nazeer und Umar Saeed. „Radiation induced bystander effect and DNA damage“. Journal of Cancer Research and Therapeutics 10, Nr. 4 (2014): 819. http://dx.doi.org/10.4103/0973-1482.144587.
Der volle Inhalt der QuelleKalinich, John F., George N. Catravas und Stephen L. Snyder. „The Effect of γ Radiation on DNA Methylation“. Radiation Research 117, Nr. 2 (Februar 1989): 185. http://dx.doi.org/10.2307/3577319.
Der volle Inhalt der QuelleRita, Ghosh, und Hansda Surajit. „Targeted and non-targeted effects of radiation in mammalian cells: An overview“. Archives of Biotechnology and Biomedicine 5, Nr. 1 (12.04.2021): 013–19. http://dx.doi.org/10.29328/journal.abb.1001023.
Der volle Inhalt der QuelleYokoya, A., N. Shikazono, K. Fujii, A. Urushibara, K. Akamatsu und R. Watanabe. „DNA damage induced by the direct effect of radiation“. Radiation Physics and Chemistry 77, Nr. 10-12 (Oktober 2008): 1280–85. http://dx.doi.org/10.1016/j.radphyschem.2008.05.021.
Der volle Inhalt der QuelleGeorgakilas, Alexandros G. „Role of DNA Damage and Repair in Detrimental Effects of Ionizing Radiation“. Radiation 1, Nr. 1 (22.10.2020): 1–4. http://dx.doi.org/10.3390/radiation1010001.
Der volle Inhalt der QuelleTuraeva, N. N., S. Schroeder und B. L. Oksengendler. „Effect of Anderson Localization on Auger Destruction of DNA“. ISRN Biophysics 2012 (05.12.2012): 1–3. http://dx.doi.org/10.5402/2012/972085.
Der volle Inhalt der QuelleGaneva, Roumiana L., und Lyuben M. Tzvetkov. „Effect of Cisplatin Alone and in Combination with γ-Radiation on the Initiation of DNA Synthesis in Friend Leukemia Cells“. Zeitschrift für Naturforschung C 52, Nr. 5-6 (01.06.1997): 405–7. http://dx.doi.org/10.1515/znc-1997-5-620.
Der volle Inhalt der QuelleGreubel, Christoph, Volker Hable, Guido A. Drexler, Andreas Hauptner, Steffen Dietzel, Hilmar Strickfaden, Iris Baur et al. „Competition effect in DNA damage response“. Radiation and Environmental Biophysics 47, Nr. 4 (23.07.2008): 423–29. http://dx.doi.org/10.1007/s00411-008-0182-z.
Der volle Inhalt der QuelleBangruwa, Neeraj, Manish Srivastava und Debabrata Mishra. „Radiation-Induced Effect on Spin-Selective Electron Transfer through Self-Assembled Monolayers of ds-DNA“. Magnetochemistry 7, Nr. 7 (08.07.2021): 98. http://dx.doi.org/10.3390/magnetochemistry7070098.
Der volle Inhalt der Quellerezaiekahkhaie, sakine, und Khadije Rezaie Keikhaie. „The Role of Ionizing Radiation in Cellular Signaling Pathways, Mutagenesis, and Carcinogenesis“. International Journal of Basic Science in Medicine 3, Nr. 4 (13.01.2019): 147–53. http://dx.doi.org/10.15171/ijbsm.2018.26.
Der volle Inhalt der QuelleDissertationen zum Thema "DNA Effect of radiation on"
MacPhail, Susan Helen. „Effect of intercellular contact on radiation-induced DNA damage“. Thesis, University of British Columbia, 1988. http://hdl.handle.net/2429/27986.
Der volle Inhalt der QuelleMedicine, Faculty of
Pathology and Laboratory Medicine, Department of
Graduate
Bajinskis, Ainars. „Studies of DNA repair strategies in response to complex DNA damages“. Doctoral thesis, Stockholms universitet, Institutionen för genetik, mikrobiologi och toxikologi, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-72472.
Der volle Inhalt der QuelleAt the time of doctoral defense, the following paper was unpublished and had a status as follows: Paper 2: Manuscript.
Morabito, Brian Joseph. „Quantitating radiation induced DNA breaks by capillary electrophoresis“. Thesis, Georgia Institute of Technology, 1997. http://hdl.handle.net/1853/16339.
Der volle Inhalt der QuelleBraddock, M. „Effects of radiation on DNA“. Thesis, University of Salford, 1985. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.356177.
Der volle Inhalt der QuelleVerma, Meera Mary. „On the effect of UV-irradiation on DNA replication in Escherichia coli“. Title page, contents and summary only, 1985. http://web4.library.adelaide.edu.au/theses/09PH/09phv522.pdf.
Der volle Inhalt der QuelleByrne, Shaun Edward. „An investigation into the processing of ionising radiation induced clustered DNA damage sites using mammalian cell extracts“. Thesis, University of Oxford, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.670082.
Der volle Inhalt der QuelleRoos, Wynand Paul. „The influence of DNA damage, DNA repair and chromatin structure on radiosensitivity“. Thesis, Stellenbosch : Stellenbosch University, 2001. http://hdl.handle.net/10019.1/52540.
Der volle Inhalt der QuelleENGLISH ABSTRACT: The factors which control radiosensitivity are of vital importance for the understanding of cell inactivation and for cancer therapy. Cell cycle blocks, total induced DNA damage, DNA repair, apoptosis and chromatin structure are likely to playa role in the responses leading to cell death. I have examined aspects of irradiation-induced G2/M blocks in DNA damage and repair. In HT29, L132 and ATs4 cells the total amount of induced DNA damage by isodoses of 4.5 Gy, 5 Gy and 2 Gy was found to be 14 %, 14 % and 12 % respectively. Most of the DNA repair was completed before the G2/M maximum and only 3 % of DNA damage remains to be restored in the G2/M block. The radiosensitivity in eleven cell lines was found to range from SF2 of 0.02 to 0.61. By FADU assay the undamaged DNA at 5 Gy was found to range from 56% to 93%. The initial DNA damage and radiosensitivity were highly correlated (r2=0. 81). After 5 Gy irradiation and 12 hours repair two groups of cell lines emerged. The group 1 cell lines restored undamaged DNA to a level ranging from 94 % to 98 %. The group 2 cell lines restored the undamaged DNA to a level ranging from 77 % to 82 %. No correlation was seen between residual DNA damage remaining after 12 hours repair and radiosensitivity. In CHO-K1 cells chromatin condensation induced by Nocodazole was found to marginally increase the radiosensitivity as shown by the change of the mean inactivation dose (D) from 4.446 to 4.376 Gy. Nocodazole also increased the initial DNA damage, induced by 5 Gy, from 7 % to 13 %. In xrs1 cells these conditions increased the radiosensitivity from D of 1.209 to 0.7836 Gy and the initial DNA damage from 43 % to 57 %. Disruption of chromatin structure with a hypertonic medium was found to increase radiosensitivity in CHO-K1 cells from D of 4.446 to 3.092 Gy and the initial DNA damage from 7 % to 15 %. In xrs1 cells these conditions caused radiosensitivity to decrease from D of 1.209 to 1.609 Gy and the initial DNA damage from 43 % to 36 %. Repair inhibition by Wortmannin increased the radiosensitivity in CHO-K1 from a D of 5.914 Gy in DMSO controls to a D 3.043 Gy. In xrs1 cells repair inhibition had no effect on radiosensitivity. Significant inhibition of repair was seen in CHO-K1 at 2 hours (p<0.0001) and at 20 hours (p=0.0095). No inhibition of repair was seen in xrs1 cells at 2 hours (p=0.6082) or 20 hours (p=0.6069). While DNA repair must be allocated to the post-irradiation period, the G2/M block seen in p53 mutants reaches a maximum only 12 hours post-irradiation when most of the repair is completed. As the G2/M block resolves and cells reenter cycle 28 hours after the G2 maximum it appears that repair processes cannot be the only reason for the G2IM cell cycle arrest. At low doses of irradiation initial DNA damage correlates with radiosensitivity. This suggests that the initial DNA damage is a determinant for radiosensitivity. Repair of DNA double-strand breaks by the non-homologous end joining (NHEJ) mechanism, identified by inhibition with Wortmannin, was shown to influence residual DNA damage and cell survival. Both the initial DNA damage and DNA repair were found to be influenced by chromatin structure. Chromatin structure was modulated by high salt and by Nocodazole, and has heen identified as a parameter which influences radiosensitivity.
AFRIKAANSE OPSOMMING: Die faktore wat betrokke is in die meganisme van stralings-sensitisering is van hoogs belang vir die begrip van sel inaktiveering en kanker terapie. Sel siklus blokke, totale geïnduseerde DNS skade, DNS herstel, apoptose en chromatien struktuur is moontlike rol vertolkers in die sellulêre response wat ly tot seldood. Ek het die aspekte van stralings-geïnduseerde G2/M blokke in DNS skade en DNS herstelondersoek. Die hoeveelheid geïnduseerde DNS skade, deur ooreenstemmende stralings-dosisse, in HT29, L132 en ATs4 selle is 14 %, 14 % en 12 %. Meeste van die DNS herstel is klaar voordat die G2/M maksimum beryk word en net 3 % DNS skade blyoor om herstel te word in die G2/M blok. Die stralings-sensitiwiteit in elf sel lyne varieer tussen 'n SF2 van 0.02 en 0.61. Deur die gebruik van die FADU metode is gevind dat die onbeskadigde DNS na 5 Gy bestraling varieer tussen 56 % en 93 %. Die totale geïnduseerde DNS skade en stralings-sensitiwiteit was hoogs gekorreleer (r2=0.81). Na 5 Gy bestraling en 12 ure herstel kan die sel lyne in twee groepe gegroepeer word. Die groep 1 sellyne herstel die onbeskadigde DNS terug na 'n vlak wat varieer tussen 94 % en 98 %. Die groep 2 sel lyne herstel die onbeskadigde DNS terug tot op 'n vlak wat varieer tussen 77 % en 82 %. Geen korrelasie is gesien tussen oorblywende DNS skade en stralings-sensitiwiteit na 12 ure herstel nie. In die CHO-K1 sel lyn, chromatien kompaksie geïnduseer deur Nocodazole, vererger die stralings- sensitiwiteit soos gesien deur die gemiddelde inaktiveerings dosis (D) wat verlaag het van 4.446 tot 4.376. Nocodazole het ook die totale DNS skade verhoog van 7 % tot 13 %. Onder dieselfde kondisies, in die xrs1 sel lyn, is 'n verergering van stralings-sensitiwiteit (D) gesien van 1.209 tot 0.7836 en verhoog ONS skade van 43 % tot 57 %. Die ontwrigting van die chromatien struktuur deur die gebruik van hipertoniese medium het die stralings-sensitiwiteit (D) vererger in CHO-K1 selle van 4.446 tot 3.092. Die totale ONS skade is verhoog van 7 % tot 15 %. Onder dieselfde kondisies, in die xrs1 sellyn, verbeter die stralings-sensitiwiteit (D) van 1.209 tot 1.609 en die totale ONS skade verminder van 43 % tot 36 %. ONS herstel inaktiveering in die teenwoordigheid van Wortmannin het die stralings-sensitiwiteit (D) in CHO-K1 selle vererger van 5.914 in DMSO verwysings kondisies tot 3.043. Die ONS herstel inaktiveering in xrs1 selle het geen uitwerking gehaat op stralingssensitiwiteit nie. Noemenswaardige inaktiveering van ONS herstel is gesien in CHO-K1 selle na 2 ure (p<0.0001) en na 20 ure (p=0.0095). Geen inaktiveering is gesien in xrs1 selle na 2 ure (p=0.6082) of na 20 ure (p=0.6069) nie. TerwylONS herstel moet plaasvind na die bestralings periode, beryk die G2/M blok in p53 gemuteerde selle sy maksimum 12 ure na bestraling terwyl meeste van die ONS herstel alreeds voltooi is. Aangesien die G2/M blok eers 28 ure later begin sirkuleer moet die G2/M blok nog 'n funksie vervul anders as ONS herstel. By lae dosisse van bestraling korreleer die totale geïnduseerde ONS skade met stralings-sensitiwiteit. Dit dui daarop dat die totale ONS skade 'n bepalende faktor moet wees in stralings-sensitiwiteit. Die herstel van ONS skade deur die nie-homoloë eindpunt samevoeging (NHES) meganisme, geïdentifiseer deur inaktiveering deur Wortmann in, het 'n invloed op oorblywende ONS skade en sellulêre oorlewing. Beide die totale ONS skade en ONS herstel was beïnvloed deur die chromatien struktuur. Chromatien struktuur was gemoduleer deur hoë sout konsentrasies en deur Nocodazole, en is geïdentifiseer as a belangrike parameter wat stralings-sensitiwiteit beïnvloed.
Starrs, Sharon Margaret. „Molecular mechanisms of DNA photodamage“. Thesis, Queen's University Belfast, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.314222.
Der volle Inhalt der QuelleSweeney, Marion Carol. „The effects of gamma radiation on DNA“. Thesis, University of Leicester, 1986. http://hdl.handle.net/2381/33943.
Der volle Inhalt der QuelleElsy, David. „The effects of gamma-radiation on DNA“. Thesis, University of Leicester, 1991. http://hdl.handle.net/2381/33664.
Der volle Inhalt der QuelleBücher zum Thema "DNA Effect of radiation on"
NATO Advanced Research Workshop on the Early Effects of Radiation on DNA (1990 San Miniato, Italy). The early effects of radiation on DNA. Berlin: Springer-Verlag, 1991.
Den vollen Inhalt der Quelle findenNATO Advanced Study Institute on Radiation Carcinogenesis and DNA Alterations (1984 Kerkyra, Greece). Radiation carcinogenesis and DNA alterations. New York: Plenum Press, 1986.
Den vollen Inhalt der Quelle findenBraddock, Martin. Effects of radiation on DNA. Salford: University of Salford, 1985.
Den vollen Inhalt der Quelle findenPrzybytniak, Grażyna. Rodniki powstające w DNA i jego nukleotydach pod wpływem promieniowania jonizującego. Warszawa: Instytut Chemii i Techniki Jądrowej, 2004.
Den vollen Inhalt der Quelle findenVilenchik, M. M. Nestabilʹnostʹ DNK i otdalennye vozdeĭstvii͡a︡ izlucheniĭ. Moskva: Ėnergoatomizdat, 1987.
Den vollen Inhalt der Quelle findenMarikki, Laiho, und SpringerLink (Online service), Hrsg. Molecular Determinants of Radiation Response. New York, NY: Springer Science+Business Media, LLC, 2011.
Den vollen Inhalt der Quelle findenFielden, E. M., und P. O’Neill, Hrsg. The Early Effects of Radiation on DNA. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-75148-6.
Der volle Inhalt der QuelleSharpatyĭ, V. A. Radiat︠s︡ionnai︠a︡ khimii︠a︡ biopolimerov. Moskva: GEOS, 2008.
Den vollen Inhalt der Quelle findenUCLA SymposiaColloquium, Ionizing Radiation Damage to DNA, Molecular Aspects (1990 Lake Tahoe, Calif.). Ionizing radiation damage to DNA: Molecular aspects : proceedings of a Radiation Research Society-UCLA Symposia Colloquium held at Lake Tahoe, California, January 16-21, 1990. Herausgegeben von Wallace Susan S, Painter Robert B, Radiation Research Society (U.S.) und University of California, Los Angeles. New York, N.Y: Wiley-Liss, 1990.
Den vollen Inhalt der Quelle findenKruszewski, Marcin. Podłoże odwrotnej krzyżowej oporności komórek L5178Y na promieniowanie jonizujące i nadtlenek wodoru. Warszawa: Instytut Chemii i Techniki Jądrowej, 1999., 1999.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "DNA Effect of radiation on"
Kiefer, Jürgen. „Photo- and Radiation Chemistry of DNA“. In Biological Radiation Effects, 104–20. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-83769-2_6.
Der volle Inhalt der QuelleSagstuen, E., E. O. Hole, W. H. Nelson und D. M. Close. „The Effect of Environment upon DNA Free Radicals“. In The Early Effects of Radiation on DNA, 215–30. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-75148-6_23.
Der volle Inhalt der QuelleSwenberg, Charles E. „DNA and Radioprotection“. In Terrestrial Space Radiation and Its Biological Effects, 675–95. Boston, MA: Springer US, 1988. http://dx.doi.org/10.1007/978-1-4613-1567-4_47.
Der volle Inhalt der QuelleBarendsen, G. W. „The Dependence of Dose-Effect Relations for Various Responses in Mammalian Cells on Radiation Quality, Implications for Mechanisms of Carcinogenesis“. In Radiation Carcinogenesis and DNA Alterations, 583–91. Boston, MA: Springer US, 1986. http://dx.doi.org/10.1007/978-1-4684-5269-3_49.
Der volle Inhalt der QuelleEdwards, A. A., und D. C. Lloyd. „Chromosomal Damage in Human Lymphocytes: Effect of Radiation Quality“. In The Early Effects of Radiation on DNA, 385–96. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-75148-6_40.
Der volle Inhalt der Quellevan der Schans, G. P. „Effect of Dose Modifiers on Radiation-Induced Cellular DNA Damage“. In The Early Effects of Radiation on DNA, 347–62. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-75148-6_36.
Der volle Inhalt der QuelleFrankenberg, D. „Repair of DNA Damage and its Effect on RBE - An Experimental Approach“. In The Early Effects of Radiation on DNA, 287–305. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-75148-6_30.
Der volle Inhalt der QuelleMcClellan, R. O., B. B. Boecker, F. F. Hahn, B. A. Muggenburg und R. G. Cuddihy. „Carcinogenic Effects of Inhaled Radionuclides“. In Radiation Carcinogenesis and DNA Alterations, 147–54. Boston, MA: Springer US, 1986. http://dx.doi.org/10.1007/978-1-4684-5269-3_8.
Der volle Inhalt der QuelleField, S. B. „Non-Stochastic Effects: Compatibility with Present ICRP Recommendations“. In Radiation Carcinogenesis and DNA Alterations, 539–57. Boston, MA: Springer US, 1986. http://dx.doi.org/10.1007/978-1-4684-5269-3_45.
Der volle Inhalt der QuelleOlive, P. L. „Discussion: Cellular DNA Strand Breakage“. In The Early Effects of Radiation on DNA, 107–10. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-75148-6_11.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "DNA Effect of radiation on"
Ram, Vineetha, VISHNU KAVUNGAL, Pradeep Chandran und Nampoori Vadakkedathu Parameswaran Narayana. „Silver Nanoparticles as Radiation Absorbers to Reduce the Effect of Mobile Phone Radiation on DNA“. In International Conference on Fibre Optics and Photonics. Washington, D.C.: OSA, 2012. http://dx.doi.org/10.1364/photonics.2012.w3b.3.
Der volle Inhalt der QuellePrahardi, R., und Arundito Widikusumo. „Zero Dose“. In Seminar Si-INTAN. Badan Pengawas Tenaga Nuklir, 2021. http://dx.doi.org/10.53862/ssi.v1.062021.008.
Der volle Inhalt der QuellePrahardi, R., und Arundito Widikusumo. „Pentingnya Pendidikan dan Pelatihan Bagi Pekerja Radiasi“. In Seminar Si-INTAN. Badan Pengawas Tenaga Nuklir, 2021. http://dx.doi.org/10.53862/ssi.v1.062021.005.
Der volle Inhalt der QuelleDicu, Tiberius, Ion D. Postescu, Vasile Foriş, Ioana Brie, Eva Fischer-Fodor, Valentin Cernea, Mircea Moldovan, Constantin Cosma, Madalin Bunoiu und Iosif Malaescu. „The Effect of a Grape Seed Extract on Radiation-Induced DNA Damage in Human Lymphocytes“. In PROCEEDINGS OF THE PHYSICS CONFERENCE: TIM—08. AIP, 2009. http://dx.doi.org/10.1063/1.3153444.
Der volle Inhalt der QuelleCao, En-Hua, Ju-jun Wang und Shu-min Xin. „Nonlinear biological effects of high-intensity visible laser radiation on DNA“. In OE/LASE'93: Optics, Electro-Optics, & Laser Applications in Science& Engineering, herausgegeben von Steven L. Jacques und Abraham Katzir. SPIE, 1993. http://dx.doi.org/10.1117/12.147670.
Der volle Inhalt der QuelleBera, Partha P., Henry F. Schaefer, George Maroulis und Theodore E. Simos. „Elementary Energetic Effects of Radiation Damage to DNA and RNA Subunits“. In Computational Methods in Science and Engineering. AIP, 2007. http://dx.doi.org/10.1063/1.2826997.
Der volle Inhalt der QuelleJanic, Branislava, Fangchao Liu, Kevin Bobbitt, Stephen Brown, Guangzhao Mao, Indrin J. Chetty, Benjamin Movsas und Ning Winston Wen. „Abstract 1376: Effect of gold nanoparticle on radiation induced DNA damage in MCF7 breast cancer cells“. In Proceedings: AACR Annual Meeting 2018; April 14-18, 2018; Chicago, IL. American Association for Cancer Research, 2018. http://dx.doi.org/10.1158/1538-7445.am2018-1376.
Der volle Inhalt der QuelleDan, Tu, Ajay Palagani, Tiziana DeAngelis, Sunny Han, Lance Liotta, Richard Pestell und Nicole Simone. „Abstract 3064: MicroRNA-21 enhances the effect of ionizing radiation via alteration of the DNA damage response“. In Proceedings: AACR 106th Annual Meeting 2015; April 18-22, 2015; Philadelphia, PA. American Association for Cancer Research, 2015. http://dx.doi.org/10.1158/1538-7445.am2015-3064.
Der volle Inhalt der QuelleVasilyeva, Irina, O. Korytov, V. Bespalov, A. Semenov, G. Tochil'nikov, S. Ivanov und L. Korytova. „EFFECTS OF RADIATION EXPOSURE OF THE BLADDER ON EARLY CHANGES OF EXTRACELLULAR DNA AND OTHER INDICATORS OF PERIPHERAL BLOOD“. In XIV International Scientific Conference "System Analysis in Medicine". Far Eastern Scientific Center of Physiology and Pathology of Respiration, 2020. http://dx.doi.org/10.12737/conferencearticle_5fe01d9b37c7f8.86673968.
Der volle Inhalt der QuelleVishnu, K., B. Nithyaja, M. Kailasnath und V. P. N. Nampoori. „Studies on Thermal Effects of Mobile Phone Radiation on DNA by Thermal Lens Technique“. In International Conference on Fibre Optics and Photonics. Washington, D.C.: OSA, 2012. http://dx.doi.org/10.1364/photonics.2012.mpo.5.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "DNA Effect of radiation on"
Hosselet, S. The effect of radiation penetration on DNA single-strand breaks in rat skin explants. Office of Scientific and Technical Information (OSTI), Januar 1989. http://dx.doi.org/10.2172/5561134.
Der volle Inhalt der QuellePeak, J. G., T. Ito, M. J. Peak und F. T. Robb. DNA damage produced by exposure of supercoiled plasmid DNA to high- and low-LET ionizing radiation: Effects of hydroxyl radical quenchers. DNA breakage, neutrons, OH radicals. Office of Scientific and Technical Information (OSTI), August 1994. http://dx.doi.org/10.2172/10172487.
Der volle Inhalt der QuelleSevilla, M. D. Mechanisms for radiation damage in DNA. Office of Scientific and Technical Information (OSTI), Dezember 1992. http://dx.doi.org/10.2172/7176057.
Der volle Inhalt der QuelleSevilla, M. D. Mechanisms for radiation damage in DNA. Office of Scientific and Technical Information (OSTI), Januar 1990. http://dx.doi.org/10.2172/5018151.
Der volle Inhalt der QuelleSevilla, M. D. Mechanisms for radiation damadge in DNA. Office of Scientific and Technical Information (OSTI), November 1994. http://dx.doi.org/10.2172/87116.
Der volle Inhalt der QuelleWilson, David. Repair Machinery for Radiation-Induced DNA Damage. Fort Belvoir, VA: Defense Technical Information Center, Juli 2001. http://dx.doi.org/10.21236/ada396847.
Der volle Inhalt der QuelleWilson, David. Repair Machinery for Radiation-Induced DNA Damage. Fort Belvoir, VA: Defense Technical Information Center, Juli 2000. http://dx.doi.org/10.21236/ada384080.
Der volle Inhalt der QuelleThompson, Lawrence H. Repair Machinery for Radiation-Induced DNA Damage. Fort Belvoir, VA: Defense Technical Information Center, November 2003. http://dx.doi.org/10.21236/ada423482.
Der volle Inhalt der QuelleOsman, R. Molecular mechanisms in radiation damage to DNA. Office of Scientific and Technical Information (OSTI), Oktober 1991. http://dx.doi.org/10.2172/5816640.
Der volle Inhalt der QuelleThompson, Lawrence H. Repair Machinery for Radiation-Induced DNA Damage. Fort Belvoir, VA: Defense Technical Information Center, Juli 2002. http://dx.doi.org/10.21236/ada407373.
Der volle Inhalt der Quelle