Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Distributed reflectometry.

Zeitschriftenartikel zum Thema „Distributed reflectometry“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Distributed reflectometry" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

Mizuno, Yosuke, Neisei Hayashi, Hideyuki Fukuda, Kwang Yong Song und Kentaro Nakamura. „Ultrahigh-speed distributed Brillouin reflectometry“. Light: Science & Applications 5, Nr. 12 (30.06.2016): e16184-e16184. http://dx.doi.org/10.1038/lsa.2016.184.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Gorlov, N. I., und I. V. Bogachkov. „DISTRIBUTED SENSING OF FIBER-OPTIC COMMUNICATION LINES USING BRILLOUIN SCATTERING“. DYNAMICS OF SYSTEMS, MECHANISMS AND MACHINES 11, Nr. 4 (2023): 71–75. http://dx.doi.org/10.25206/2310-9793-2023-11-4-71-75.

Der volle Inhalt der Quelle
Annotation:
The report discusses the main aspects of distributed sensing of fiber-optic communication lines using Brillouin scattering. The results of the study of the main functional capabilities of the method of coherent reflectometry and the method of counter propagating waves are presented. Special attention is paid to the principles of construction of reflectometric systems and the analysis of requirements for optical radiation sources. In conclusion, the main problems and prospects of practical implementation of the investigated method in the practice of monitoring fiber-optic communication lines are formulated
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Zahoor, Rizwan, Raffaele Vallifuoco, Luigi Zeni und Aldo Minardo. „Distributed Temperature Sensing through Network Analysis Frequency-Domain Reflectometry“. Sensors 24, Nr. 7 (08.04.2024): 2378. http://dx.doi.org/10.3390/s24072378.

Der volle Inhalt der Quelle
Annotation:
In this paper, we propose and demonstrate a network analysis optical frequency domain reflectometer (NA-OFDR) for distributed temperature measurements at high spatial (down to ≈3 cm) and temperature resolution. The system makes use of a frequency-stepped, continuous-wave (cw) laser whose output light is modulated using a vector network analyzer. The latter is also used to demodulate the amplitude of the beat signal formed by coherently mixing the Rayleigh backscattered light with a local oscillator. The system is capable of attaining high measurand resolution (≈50 mK at 3-cm spatial resolution) thanks to the high sensitivity of coherent Rayleigh scattering to temperature. Furthermore, unlike the conventional optical-frequency domain reflectometry (OFDR), the proposed system does not rely on the use of a tunable laser and therefore is less prone to limitations related to the laser coherence or sweep nonlinearity. Two configurations are analyzed, both numerically and experimentally, based on either a double-sideband or single-sideband modulated probe light. The results confirm the validity of the proposed approach.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Volanthen, M., H. Geiger und J. P. Dakin. „Distributed grating sensors using low-coherence reflectometry“. Journal of Lightwave Technology 15, Nr. 11 (1997): 2076–82. http://dx.doi.org/10.1109/50.641525.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Dominauskas, Aurimas, Dirk Heider und John W. Gillespie. „Electric time-domain reflectometry distributed flow sensor“. Composites Part A: Applied Science and Manufacturing 38, Nr. 1 (Januar 2007): 138–46. http://dx.doi.org/10.1016/j.compositesa.2006.01.019.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Bao, Xiaoyi, und Yuan Wang. „Recent Advancements in Rayleigh Scattering-Based Distributed Fiber Sensors“. Advanced Devices & Instrumentation 2021 (11.03.2021): 1–17. http://dx.doi.org/10.34133/2021/8696571.

Der volle Inhalt der Quelle
Annotation:
Recently, Rayleigh scattering-based distributed fiber sensors have been widely used for measurement of static and dynamic phenomena such as temperature change, dynamic strain, and sound waves. In this review paper, several sensing systems including traditional Rayleigh optical time domain reflectometry (OTDR), Φ-OTDR, chirped pulse Φ-OTDR, and optical frequency domain reflectometry (OFDR) are introduced for their working principles and recent progress with different instrumentations for various applications. Beyond the sensing technology and instrumentation, we also discuss new types of fiber sensors, such as ultraweak fiber Bragg gratings and random fiber gratings for distributed sensing and their interrogators. Ultimately, the limitations of Rayleigh-based distributed sensing systems are discussed.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Rahman, Saifur, Farman Ali, Fazal Muhammad, Muhammad Irfan, Adam Glowacz, Mohammed Shahed Akond, Ammar Armghan, Salim Nasar Faraj Mursal, Amjad Ali und Fahad Salem Alkahtani. „Analyzing Distributed Vibrating Sensing Technologies in Optical Meshes“. Micromachines 13, Nr. 1 (05.01.2022): 85. http://dx.doi.org/10.3390/mi13010085.

Der volle Inhalt der Quelle
Annotation:
Hundreds of kilometers of optical fibers are installed for optical meshes (OMs) to transmit data over long distances. The visualization of these deployed optical fibers is a highlighted issue because the conventional procedure can only measure the optical losses. Thus, this paper presents distributed vibration sensing (DVS) estimation mechanisms to visualize the optical fiber behavior installed for OMs which is not possible by conventional measurements. The proposed technique will detect the power of light inside the optical fiber, as well as different physical parameters such as the phase of transmitted light inside the thread, the frequency of vibration, and optical losses. The applicability of optical frequency domain reflectometry (OFDR) and optical time-domain reflectometry (OTDR) DVS techniques are validated theoretically for various state detection procedures in optical fibers. The simulation model is investigated in terms of elapsed time, the spectrum of a light signal, frequency, and the impact of many external physical accidents with optical fibers.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Kiyozumi, Takaki, Tomoya Miyamae, Kohei Noda, Heeyoung Lee, Kentaro Nakamura und Yosuke Mizuno. „Super-simplified optical correlation-domain reflectometry“. Japanese Journal of Applied Physics 61, Nr. 7 (01.07.2022): 078005. http://dx.doi.org/10.35848/1347-4065/ac7272.

Der volle Inhalt der Quelle
Annotation:
Abstract Optical correlation-domain reflectometry (OCDR), which is known as one of the fiber-optic techniques for distributed reflectivity sensing, conventionally included an acousto-optic modulator, a reference path, and erbium-doped fiber amplifiers in its setup. In this work, by removing all of these components simultaneously, we develop a super-simplified configuration of OCDR, which consists of a light source and a photodetector only. We experimentally show that this system can still perform distributed reflectivity sensing with a moderate signal-to-noise ratio, which will boost the portability and cost efficiency of the OCDR technology.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Fan, Xinyu, Bin Wang, Guangyao Yang und Zuyuan He. „Slope-Assisted Brillouin-Based Distributed Fiber-Optic Sensing Techniques“. Advanced Devices & Instrumentation 2021 (14.07.2021): 1–16. http://dx.doi.org/10.34133/2021/9756875.

Der volle Inhalt der Quelle
Annotation:
Brillouin-based fiber-optic sensing has been regarded as a powerful distributed measurement tool for monitoring the conditions of modern large civil and geotechnical structures, since it provides continuous environmental information (e.g., temperature and strain) along the whole fiber used for sensing applications. In the past few decades, great research efforts were devoted to improve its performance in terms of measurement range, spatial resolution, measurement speed, sensitivity, and cost-effectiveness, of which the slope-assisted measurement scheme, achieved by exploiting the linear slope of the Brillouin gain spectrum (BGS), have paved the way for dynamic distributed fiber-optic sensing. In this article, slope-assisted Brillouin-based distributed fiber-optic sensing techniques demonstrated in the past few years will be reviewed, including the slope-assisted Brillouin optical time-domain analysis/reflectometry (SA-BOTDA/SA-BOTDR), the slope-assisted Brillouin dynamic grating (BDG) sensor, and the slope-assisted Brillouin optical correlation domain analysis/reflectometry (SA-BOCDA/SA-BOCDR). Avenues for future research and development of slope-assisted Brillouin-based fiber-optic sensors are also prospected.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Zhou, Da-Peng, Liang Chen und Xiaoyi Bao. „Distributed dynamic strain measurement using optical frequency-domain reflectometry“. Applied Optics 55, Nr. 24 (18.08.2016): 6735. http://dx.doi.org/10.1364/ao.55.006735.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

Crunelle, Cathy, Marc Legre, M. Wuilpart, Patrice Megret und Nicolas Gisin. „Distributed Temperature Sensor Interrogator Based on Polarization-Sensitive Reflectometry“. IEEE Sensors Journal 9, Nr. 9 (September 2009): 1125–29. http://dx.doi.org/10.1109/jsen.2009.2026525.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

Mizuno, Yosuke, Heeyoung Lee und Kentaro Nakamura. „Recent Advances in Brillouin Optical Correlation-Domain Reflectometry“. Applied Sciences 8, Nr. 10 (08.10.2018): 1845. http://dx.doi.org/10.3390/app8101845.

Der volle Inhalt der Quelle
Annotation:
Distributed fiber-optic sensing based on Brillouin scattering has been extensively studied and many configurations have been developed so far. In this paper, we review the recent advances in Brillouin optical correlation-domain reflectometry (BOCDR), which is known as a unique technique with intrinsic single-end accessibility, high spatial resolution, and cost efficiency. We briefly discuss the advantages and disadvantages of BOCDR over other Brillouin-based distributed sensing techniques, and present the fundamental principle and properties of BOCDR with some special schemes for enhancing the performance. We also describe the recent development of a high-speed configuration of BOCDR (slope-assisted BOCDR), which offers a beyond-nominal-resolution detectability. The paper is summarized with some future prospects.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Shatalin, Sergey V., Vladimir N. Treschikov und Alan J. Rogers. „Interferometric optical time-domain reflectometry for distributed optical-fiber sensing“. Applied Optics 37, Nr. 24 (20.08.1998): 5600. http://dx.doi.org/10.1364/ao.37.005600.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

Wiedmann, U., P. Gallion, Y. Jaouen und C. Chabran. „Analysis of distributed feedback lasers using optical low-coherence reflectometry“. Journal of Lightwave Technology 16, Nr. 5 (Mai 1998): 864–69. http://dx.doi.org/10.1109/50.669020.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

Palmieri, Luca, und Andrea Galtarossa. „Distributed Polarization-Sensitive Reflectometry in Nonreciprocal Single-Mode Optical Fibers“. Journal of Lightwave Technology 29, Nr. 21 (November 2011): 3178–84. http://dx.doi.org/10.1109/jlt.2011.2167221.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

Zhou, Da-Peng, Zengguang Qin, Wenhai Li, Liang Chen und Xiaoyi Bao. „Distributed vibration sensing with time-resolved optical frequency-domain reflectometry“. Optics Express 20, Nr. 12 (25.05.2012): 13138. http://dx.doi.org/10.1364/oe.20.013138.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

Lelong, Adrien, Laurent Sommervogel, Nicolas Ravot und Marc Olivas Carrion. „Distributed Reflectometry Method for Wire Fault Location Using Selective Average“. IEEE Sensors Journal 10, Nr. 2 (Februar 2010): 300–310. http://dx.doi.org/10.1109/jsen.2009.2033946.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

Lee, Bo Mi, Kenneth J. Loh und Francesco Lanza di Scalea. „Distributed Strain Sensing Using Electrical Time Domain Reflectometry With Nanocomposites“. IEEE Sensors Journal 18, Nr. 23 (01.12.2018): 9515–25. http://dx.doi.org/10.1109/jsen.2018.2872910.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

Wang, Chen, Ying Shang, Xiaohui Liu, Chang Wang, Hongzhong Wang und Gangding Peng. „Interferometric distributed sensing system with phase optical time-domain reflectometry“. Photonic Sensors 7, Nr. 2 (30.11.2016): 157–62. http://dx.doi.org/10.1007/s13320-016-0350-8.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

Hua, Peidong, Zhenyang Ding, Kun Liu, Haohan Guo, Ming Pan, Teng Zhang, Sheng Li, Junfeng Jiang und Tiegen Liu. „Distributed optical fiber biosensor based on optical frequency domain reflectometry“. Biosensors and Bioelectronics 228 (Mai 2023): 115184. http://dx.doi.org/10.1016/j.bios.2023.115184.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

Lu, Li Dong, Yun Liang, Bing Lin Li und Jing Hong Guo. „A Novel Distributed Optical Fiber Sensing System Based on Parallel Computing“. Advanced Materials Research 756-759 (September 2013): 731–35. http://dx.doi.org/10.4028/www.scientific.net/amr.756-759.731.

Der volle Inhalt der Quelle
Annotation:
A new Brillouin optical time domain reflectometry (BOTDR) based on parallel computing method to extract the spontaneous Brillouin scattering spectra is proposed. By use of parallel computing method, the speed of digital signal processing unit in the new BOTDR can be improved by more than 40 times, which benefits dynamic measurement of the temperature and/or strain along the fiber under test.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

Suzuki, Yukihiro, Heeyoung Lee, Haruki Sasage, Kohei Noda, Kentaro Nakamura und Yosuke Mizuno. „Proof-of-concept demonstration of double-slope-assisted Brillouin optical correlation-domain reflectometry“. Japanese Journal of Applied Physics 62, Nr. 10 (01.10.2023): 108005. http://dx.doi.org/10.35848/1347-4065/acfa4c.

Der volle Inhalt der Quelle
Annotation:
Abstract We develop a new configuration of distributed strain and temperature sensing technology called double-slope-assisted Brillouin optical correlation-domain reflectometry. Its loss-independent operation is demonstrated through simplified simulation and proof-of-concept experiments using a standard silica single-mode fiber.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

Li, Heng, Ziyang Feng, Shaohua Xu, Mingde Zheng, Wentao Zhang und Feiyu Zheng. „Optical fiber sensing and tensor AP clustering for high-speed road tunnel vehicle detection“. Advances in Computer and Engineering Technology Research 1, Nr. 2 (18.04.2024): 159. http://dx.doi.org/10.61935/acetr.2.1.2024.p159.

Der volle Inhalt der Quelle
Annotation:
Aiming at the problems of signal acquisition, feature extraction and vehicle recognition in highway tunnel vehicle detection, a new tunnel vehicle detection method is proposed by combining optical time-domain reflectometry distributed fiber sensing technology and tensor affine propagation clustering algorithm. Firstly, the distributed optical fiber system designed by optical time domain reflectometry was used to collect the running signals of tunnel vehicles and obtain the measurement data. Secondly, a high-order tensor sample set is constructed by using the spatial resolution of optical fiber as channel number and combining the feature number, time domain and frequency domain. Finally, tensor affine propagation clustering method and other clustering methods are used to test the accuracy. The test results show that the proposed method can better classify vehicles without destroying the original high-dimensional data structure. Meanwhile, the unsupervised clustering algorithm also reduces manual intervention in the identification process, increases the intelligence level of the whole vehicle detection model, and effectively improves the detection accuracy rate of tunnel vehicles.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

Sifta, Radim, Petr Munster, Petr Sysel, Tomas Horvath, Vit Novotny, Ondrej Krajsa und Miloslav Filka. „Distributed Fiber-Optic Sensor for Detection and Localization of Acoustic Vibrations“. Metrology and Measurement Systems 22, Nr. 1 (01.03.2015): 111–18. http://dx.doi.org/10.1515/mms-2015-0009.

Der volle Inhalt der Quelle
Annotation:
Abstract A sensing system utilizing a standard optical fiber as a distributed sensor for the detection and localization of mechanical vibrations is presented. Vibrations can be caused by various external factors, like moving people, cars, trains, and other objects producing mechanical vibrations that are sensed by a fiber. In our laboratory we have designed a sensing system based on the Φ-OTDR (phase sensitive Optical Time Domain Reflectometry) using an extremely narrow laser and EDFAs.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

Novotný, Vít, Petr Sysel, Aleš Prokeš, Pavel Hanák, Karel Slavíček und Jiří Přinosil. „Fiber Optic Based Distributed Mechanical Vibration Sensing“. Sensors 21, Nr. 14 (13.07.2021): 4779. http://dx.doi.org/10.3390/s21144779.

Der volle Inhalt der Quelle
Annotation:
The distributed long-range sensing system, using the standard telecommunication single-mode optical fiber for the distributed sensing of mechanical vibrations, is described. Various events generating vibrations, such as a walking or running person, moving car, train, and many other vibration sources, can be detected, localized, and classified. The sensor is based on phase-sensitive optical time-domain reflectometry (ϕ-OTDR). Related sensing system components were designed and constructed, and the system was tested both in the laboratory and in the real deployment, with an 88 km telecom optical link, and the results are presented in this paper. A two-fiber sensor unit, with a double-sensing range was also designed, and its scheme is described. The unit was constructed and the initial measurement results are presented.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

Shiloh, Lihi, und Avishay Eyal. „Distributed acoustic and vibration sensing via optical fractional Fourier transform reflectometry“. Optics Express 23, Nr. 4 (11.02.2015): 4296. http://dx.doi.org/10.1364/oe.23.004296.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

Lin, Mark W., Jagan Thaduri und Ayo O. Abatan. „Development of an electrical time domain reflectometry (ETDR) distributed strain sensor“. Measurement Science and Technology 16, Nr. 7 (15.06.2005): 1495–505. http://dx.doi.org/10.1088/0957-0233/16/7/012.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

Rizzolo, S., E. Marin, A. Boukenter, Y. Ouerdane, M. Cannas, J. Perisse, S. Bauer et al. „Radiation Hardened Optical Frequency Domain Reflectometry Distributed Temperature Fiber-Based Sensors“. IEEE Transactions on Nuclear Science 62, Nr. 6 (Dezember 2015): 2988–94. http://dx.doi.org/10.1109/tns.2015.2482942.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

Rizzolo, S., C. Sabatier, A. Boukenter, E. Marin, Y. Ouerdane, M. Cannas, J. Perisse, J. R. Mace, S. Bauer und S. Girard. „Radiation Characterization of Optical Frequency Domain Reflectometry Fiber-Based Distributed Sensors“. IEEE Transactions on Nuclear Science 63, Nr. 3 (Juni 2016): 1688–93. http://dx.doi.org/10.1109/tns.2016.2527831.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
30

Eich, Susanne, Elmar Schmälzlin und Hans-Gerd Löhmannsröben. „Distributed Fiber Optical Sensing of Oxygen with Optical Time Domain Reflectometry“. Sensors 13, Nr. 6 (31.05.2013): 7170–83. http://dx.doi.org/10.3390/s130607170.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
31

Caucheteur, Christophe, Marc Wuilpart, Chengkun Chen, Patrice Mégret und Jacques Albert. „Quasi-distributed refractometer using tilted Bragg gratings and time domain reflectometry“. Optics Express 16, Nr. 22 (20.10.2008): 17882. http://dx.doi.org/10.1364/oe.16.017882.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
32

Wang, Feng, Xuping Zhang, Xiangchuan Wang und Haisheng Chen. „Distributed fiber strain and vibration sensor based on Brillouin optical time-domain reflectometry and polarization optical time-domain reflectometry“. Optics Letters 38, Nr. 14 (05.07.2013): 2437. http://dx.doi.org/10.1364/ol.38.002437.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
33

Ghoussoub, Yara E., Maximilian Zerball, Hadi M. Fares, John F. Ankner, Regine von Klitzing und Joseph B. Schlenoff. „Ion distribution in dry polyelectrolyte multilayers: a neutron reflectometry study“. Soft Matter 14, Nr. 9 (2018): 1699–708. http://dx.doi.org/10.1039/c7sm02461d.

Der volle Inhalt der Quelle
Annotation:
Counterions were found to be uniformly distributed in polycation-terminated films of poly(diallyldimethylammonium) and poly(styrenesulfonate) prepared on silicon wafers using layer-by-layer adsorption.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
34

Liehr, Sascha, Sven Münzenberger und Katerina Krebber. „Wavelength-Scanning Distributed Acoustic Sensing for Structural Monitoring and Seismic Applications“. Proceedings 15, Nr. 1 (24.07.2019): 30. http://dx.doi.org/10.3390/proceedings2019015030.

Der volle Inhalt der Quelle
Annotation:
We introduce wavelength-scanning coherent optical time domain reflectometry (WS-COTDR) for dynamic vibration sensing along optical fibers. The method is based on spectral shift computation from Rayleigh backscatter spectra. Artificial neural networks (ANNs) are used for fast and high-resolution strain computation from raw measurement data. The applicability of the method is demonstrated for vibration monitoring of a reinforced concrete bridge. We demonstrate another application example for quasi-static and dynamic measurement of ground deformation and surface wave propagation along a dark fiber in a telecommunication cable.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
35

Romanet, Maxime, Etienne Rochat, Kien Phan Huy und Jean-Charles Beugnot. „Single-photon detector-based long-distance Brillouin optical time domain reflectometry“. EPJ Web of Conferences 287 (2023): 09013. http://dx.doi.org/10.1051/epjconf/202328709013.

Der volle Inhalt der Quelle
Annotation:
We present a long-range Brillouin optical time domain reflectometer (BOTDR) based on photon counting technology. We demonstrate experimentally the ability to perform a distributed temperature measurement, by detecting a hot spot in a thermal bath at 100 km, and the possibility to achieve measurement until 120 km with a spatial resolution of 10 m. We use the slope of a fiber Bragg grating (FBG) as a frequency discriminator, to convert count rate variation into a frequency shift. A performance study of our distributed sensor as a function of spatial resolution is also presented.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
36

Wosniok, Aleksander, und Katerina Krebber. „Distributed fiber optic radiation sensors“. Safety of Nuclear Waste Disposal 1 (10.11.2021): 15–16. http://dx.doi.org/10.5194/sand-1-15-2021.

Der volle Inhalt der Quelle
Annotation:
Abstract. The international research efforts focused on the development of radiation sensors based on optic fibers have their origins in the 1970s (Evans et al., 1978). Generally, the lightweight fiber optic sensors are immune to electromagnetic field interference and high voltages making them deployable in harsh environments at hard to reach areas where conventional sensors usually will not work at all. A further advantage of such radiation sensors is the possibility of remote and real-time monitoring (Huston et al., 2001). In this work, we present our results achieved in several research activities for development of fiber optic dosimeters. The findings show that both the measurement of the radiation-induced attenuation (RIA) along the entire sensing fiber and the accompanying change in the refractive index of the fiber core can be used for distributed radiation monitoring in the kGy and MGy range, respectively. Depending on the fiber type and material the RIA shows varying response to dose rates, environmental temperatures and the wavelength of the laser source used. Thereby, an operation with visible laser light provides most favorable performance in terms of high radiation sensitivity. Operating at these wavelengths, RIA monitoring could yield high-sensitivity dose measurement with sub-gray resolution and accuracy (Stajanca and Krebber, 2017b); however, conventional optical time-domain reflectometry (OTDR) systems for RIA measurements operating in the visible range suffer from low-spatial resolution, long measurement times and poor signal-to-noise (SNR) ratio. The limitations of the OTDR performance can be overcome by the incoherent optical frequency domain reflectometry (I-OFDR) developed by the Federal Institute of Materials Research and Testing (BAM, Liehr et al., 2009) with potential for dynamic real-time measurement. Over the years, several highly radiation sensitive fibers, such as perfluorinated polymer optical fibers (PF-POF, Stajanca and Krebber, 2017a), phosphorous-doped silica optical fibers (SOF, Paul et al., 2009), aluminium-doped SOF (Faustov et al., 2013) and erbium-doped SOF (Wosniok et al., 2016) have been identified and are commercially available. As mentioned before, the radiation-induced RIA increase is associated with an increase in the refractive index leading also to material compaction in the fiber core. The latter two effects can be used for measuring radiation distribution based on Brillouin scattering in the range of high radiation doses of several MGy (Phéron et al., 2012; Wosniok et al., 2016). When using fiber optic sensors for radiation monitoring, the existing post-irradiation annealing behavior of the optical fiber sensors must also be considered.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
37

Lee, Noda, Mizuno und Nakamura. „Distributed Strain Measurement Using Power-Based Brillouin Sensor with Three Folded Dynamic Range“. Proceedings 15, Nr. 1 (15.07.2019): 26. http://dx.doi.org/10.3390/proceedings2019015026.

Der volle Inhalt der Quelle
Annotation:
We clarify that, unlike time-domain techniques, slope-assisted Brillouin optical correlation-domain reflectometry has a trade-off relation between the strain dynamic range and the spatial resolution. This trade-off is shown to be caused by its unique bell-shaped noise floor, which is inherently unavoidable in correlation-domain systems. Subsequently, we experimentally show that, at the cost of lowered spatial resolution, the strain dynamic range can be 3 times wider than the previously reported value.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
38

RANDALL, SUMMER LOCKERBIE, ANATOL M. BRODSKY und LLOYD W. BURGESS. „MANIFESTATION OF MIE RESONANCES IN COHERENT LIGHT BACKSCATTERING FROM RANDOM MEDIA“. Modern Physics Letters B 19, Nr. 04 (28.02.2005): 181–88. http://dx.doi.org/10.1142/s0217984905008190.

Der volle Inhalt der Quelle
Annotation:
Utilization of Optical Low Coherence Reflectometry (OLCR) for measurement of coherent backscattering of light from media with randomly-distributed spherical particles shows the influence of Mie resonances over the parameter interval where particle radii are comparable to the wavelength of light. Results advance the understanding of the theoretically and practically important problem of wave propagation in multiscattering random media.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
39

Hubbard, Peter G., James Xu, Shenghan Zhang, Matthew Dejong, Linqing Luo, Kenichi Soga, Carlo Papa et al. „Dynamic structural health monitoring of a model wind turbine tower using distributed acoustic sensing (DAS)“. Journal of Civil Structural Health Monitoring 11, Nr. 3 (05.05.2021): 833–49. http://dx.doi.org/10.1007/s13349-021-00483-y.

Der volle Inhalt der Quelle
Annotation:
AbstractMaintenance of wind turbine towers is currently a manual process that requires visual inspection and bolt tightening yearly. This process is costly to energy companies and its necessity is not well-defined. In this study, two Rayleigh-based distributed fiber optic sensing technologies are evaluated and compared for their ability to monitor the dynamic structural behavior of a model wind turbine tower subject to free and forced vibration. They are further tested for their ability to detect structural phenomena associated with loose bolts and material damage within the tower. The two technologies examined are optical frequency domain reflectometry (OFDR) and phase-based optical time domain reflectometry ($$\phi$$ ϕ -OTDR), which is a technology used in distributed acoustic sensing (DAS). OFDR is a tested and proven strain measurement technology commonly used for structural health monitoring but can only make strain measurements over short distances (10 s of meters). OFDR was used to validate the measurements made with $$\phi$$ ϕ -OTDR which can measure over much longer distances (several kilometers). Due to its sensing distance capability, $$\phi$$ ϕ -OTDR is a promising technology for monitoring many wind turbines networked together with a single fiber optic cable. This study presents a first-of-its-kind use of $$\phi$$ ϕ -OTDR for structural health monitoring to demonstrate its capabilities.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
40

Boujia, Nissrine, Franziska Schmidt, Christophe Chevalier, Dominique Siegert und Damien Pham Van Bang. „Distributed Optical Fiber-Based Approach for Soil–Structure Interaction“. Sensors 20, Nr. 1 (06.01.2020): 321. http://dx.doi.org/10.3390/s20010321.

Der volle Inhalt der Quelle
Annotation:
Scour is a hydraulic risk threatening the stability of bridges in fluvial and coastal areas. Therefore, developing permanent and real-time monitoring techniques is crucial. Recent advances in strain measurements using fiber optic sensors allow new opportunities for scour monitoring. In this study, the innovative optical frequency domain reflectometry (OFDR) was used to evaluate the effect of scour by performing distributed strain measurements along a rod under static lateral loads. An analytical analysis based on the Winkler model of the soil was carefully established and used to evaluate the accuracy of the fiber optic sensors and helped interpret the measurements results. Dynamic tests were also performed and results from static and dynamic tests were compared using an equivalent cantilever model.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
41

Liu Kun, 刘琨, 冯博文 Feng Bowen, 刘铁根 Liu Tiegen, 江俊峰 Jiang Junfeng und 杜阳 Du Yang. „Continuous Distributed Fiber Strain Location Sensing Based on Optical Frequency Domain Reflectometry“. Chinese Journal of Lasers 42, Nr. 5 (2015): 0505006. http://dx.doi.org/10.3788/cjl201542.0505006.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
42

Ding, Zhenyang, Chenhuan Wang, Kun Liu, Junfeng Jiang, Di Yang, Guanyi Pan, Zelin Pu und Tiegen Liu. „Distributed Optical Fiber Sensors Based on Optical Frequency Domain Reflectometry: A review“. Sensors 18, Nr. 4 (03.04.2018): 1072. http://dx.doi.org/10.3390/s18041072.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
43

Fan, Xinyu, Guangyao Yang, Shuai Wang, Qingwen Liu und Zuyuan He. „Distributed Fiber-Optic Vibration Sensing Based on Phase Extraction From Optical Reflectometry“. Journal of Lightwave Technology 35, Nr. 16 (15.08.2017): 3281–88. http://dx.doi.org/10.1109/jlt.2016.2604859.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
44

Gorshkov, B. G., G. B. Gorshkov und M. A. Taranov. „Simultaneous temperature and strain sensing using distributed Raman optical time-domain reflectometry“. Laser Physics Letters 14, Nr. 1 (25.11.2016): 015103. http://dx.doi.org/10.1088/1612-202x/14/1/015103.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
45

Auzanneau, F. „Chaos time‐domain reflectometry for distributed diagnosis of complex topology wired networks“. Electronics Letters 52, Nr. 4 (Februar 2016): 280–81. http://dx.doi.org/10.1049/el.2015.3456.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
46

Marcon, Leonardo, Andrea Galtarossa und Luca Palmieri. „High-frequency high-resolution distributed acoustic sensing by optical frequency domain reflectometry“. Optics Express 27, Nr. 10 (30.04.2019): 13923. http://dx.doi.org/10.1364/oe.27.013923.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
47

Veronese, Riccardo, Andrea Galtarossa und Luca Palmieri. „Distributed Characterization of Few-Mode Fibers Based on Optical Frequency Domain Reflectometry“. Journal of Lightwave Technology 38, Nr. 17 (01.09.2020): 4843–49. http://dx.doi.org/10.1109/jlt.2020.2993228.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
48

Wang, Chang, Chen Wang, Ying Shang, Xiaohui Liu und Gangding Peng. „Distributed acoustic mapping based on interferometry of phase optical time-domain reflectometry“. Optics Communications 346 (Juli 2015): 172–77. http://dx.doi.org/10.1016/j.optcom.2015.02.044.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
49

Wegmuller, A., M. Legre und N. Gisin. „Distributed beatlength measurement in single-mode fibers with optical frequency-domain reflectometry“. Journal of Lightwave Technology 20, Nr. 5 (Mai 2002): 828–35. http://dx.doi.org/10.1109/jlt.2002.1007936.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
50

Han, Ming, Yunjing Wang und Anbo Wang. „Grating-assisted polarization optical time-domain reflectometry for distributed fiber-optic sensing“. Optics Letters 32, Nr. 14 (05.07.2007): 2028. http://dx.doi.org/10.1364/ol.32.002028.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie