Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Distributed reflectometry“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Distributed reflectometry" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Distributed reflectometry"
Mizuno, Yosuke, Neisei Hayashi, Hideyuki Fukuda, Kwang Yong Song und Kentaro Nakamura. „Ultrahigh-speed distributed Brillouin reflectometry“. Light: Science & Applications 5, Nr. 12 (30.06.2016): e16184-e16184. http://dx.doi.org/10.1038/lsa.2016.184.
Der volle Inhalt der QuelleGorlov, N. I., und I. V. Bogachkov. „DISTRIBUTED SENSING OF FIBER-OPTIC COMMUNICATION LINES USING BRILLOUIN SCATTERING“. DYNAMICS OF SYSTEMS, MECHANISMS AND MACHINES 11, Nr. 4 (2023): 71–75. http://dx.doi.org/10.25206/2310-9793-2023-11-4-71-75.
Der volle Inhalt der QuelleZahoor, Rizwan, Raffaele Vallifuoco, Luigi Zeni und Aldo Minardo. „Distributed Temperature Sensing through Network Analysis Frequency-Domain Reflectometry“. Sensors 24, Nr. 7 (08.04.2024): 2378. http://dx.doi.org/10.3390/s24072378.
Der volle Inhalt der QuelleVolanthen, M., H. Geiger und J. P. Dakin. „Distributed grating sensors using low-coherence reflectometry“. Journal of Lightwave Technology 15, Nr. 11 (1997): 2076–82. http://dx.doi.org/10.1109/50.641525.
Der volle Inhalt der QuelleDominauskas, Aurimas, Dirk Heider und John W. Gillespie. „Electric time-domain reflectometry distributed flow sensor“. Composites Part A: Applied Science and Manufacturing 38, Nr. 1 (Januar 2007): 138–46. http://dx.doi.org/10.1016/j.compositesa.2006.01.019.
Der volle Inhalt der QuelleBao, Xiaoyi, und Yuan Wang. „Recent Advancements in Rayleigh Scattering-Based Distributed Fiber Sensors“. Advanced Devices & Instrumentation 2021 (11.03.2021): 1–17. http://dx.doi.org/10.34133/2021/8696571.
Der volle Inhalt der QuelleRahman, Saifur, Farman Ali, Fazal Muhammad, Muhammad Irfan, Adam Glowacz, Mohammed Shahed Akond, Ammar Armghan, Salim Nasar Faraj Mursal, Amjad Ali und Fahad Salem Alkahtani. „Analyzing Distributed Vibrating Sensing Technologies in Optical Meshes“. Micromachines 13, Nr. 1 (05.01.2022): 85. http://dx.doi.org/10.3390/mi13010085.
Der volle Inhalt der QuelleKiyozumi, Takaki, Tomoya Miyamae, Kohei Noda, Heeyoung Lee, Kentaro Nakamura und Yosuke Mizuno. „Super-simplified optical correlation-domain reflectometry“. Japanese Journal of Applied Physics 61, Nr. 7 (01.07.2022): 078005. http://dx.doi.org/10.35848/1347-4065/ac7272.
Der volle Inhalt der QuelleFan, Xinyu, Bin Wang, Guangyao Yang und Zuyuan He. „Slope-Assisted Brillouin-Based Distributed Fiber-Optic Sensing Techniques“. Advanced Devices & Instrumentation 2021 (14.07.2021): 1–16. http://dx.doi.org/10.34133/2021/9756875.
Der volle Inhalt der QuelleZhou, Da-Peng, Liang Chen und Xiaoyi Bao. „Distributed dynamic strain measurement using optical frequency-domain reflectometry“. Applied Optics 55, Nr. 24 (18.08.2016): 6735. http://dx.doi.org/10.1364/ao.55.006735.
Der volle Inhalt der QuelleDissertationen zum Thema "Distributed reflectometry"
Luo, Linqing. „Time-frequency localisation of distributed Brillouin Optical Time Domain Reflectometry“. Thesis, University of Cambridge, 2018. https://www.repository.cam.ac.uk/handle/1810/274568.
Der volle Inhalt der QuelleWu, Nan. „Optical Frequency Domain Reflectometry Based Quasi-distributed High Temperature Sensor“. Thesis, Virginia Tech, 2013. http://hdl.handle.net/10919/76905.
Der volle Inhalt der QuelleMaster of Science
Ek, Simon. „Distributed Temperature Sensing Using Phase-Sensitive Optical Time Domain Reflectometry“. Thesis, KTH, Tillämpad fysik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-285902.
Der volle Inhalt der QuelleDet här examensarbetet utforskar och utvärderar förmågorna att mäta temperatur hos en fas-känslig optisk tidsdomän-reflektometer (φ-OTDR), som utnyttjar bakåtriktad Rayleigh-spridning i vanliga optiska singelmodfibrer. Anordningen konstrueras och dess komponentstruktur förklaras, och ett protokoll tas fram för att utföra mätningar med den. Prestandatester utförs och anordningen visas kapabel att göra fullt distribuerade temperaturmätningar längs hundratals meter långa fibrer, med en rymdsupplösning på 1 m och en temperaturupplösning på 0.1 K. Dessutom testas förmågan att mäta normaltöjning hos testfibern med samma metod, dock med mindre framgång. Anordningen är väldigt känslig för förhållandena i omgivningen runt mätningsfibern, vilket gör den kapabel till mätningar med mycket hög precision, men också mottaglig för störningar. Lite diskussion hålls kring hur dessa störningar kan undvikas eller hanteras. Vidare visas att mätningstekniken kan köras samtidigt som andra φ-OTDR-baserade tekniker från samma anordning.
Saunders, Charles T. W. „Optical fibre sensing by time domain reflectometry“. Thesis, University of Manchester, 2006. https://www.research.manchester.ac.uk/portal/en/theses/distributed-optical-fibre-sensing(f1857f29-5af2-4e94-97dd-164f3d67f29b).html.
Der volle Inhalt der QuelleStastny, Jeffrey Allen. „Time domain reflectometry (TDR) techniques for the design of distributed sensors“. Thesis, This resource online, 1992. http://scholar.lib.vt.edu/theses/available/etd-09122009-040407/.
Der volle Inhalt der QuelleRen, Meiqi. „Distributed Optical Fiber Vibration Sensor Based on Phase-Sensitive Optical Time Domain Reflectometry“. Thesis, Université d'Ottawa / University of Ottawa, 2016. http://hdl.handle.net/10393/34400.
Der volle Inhalt der QuelleBolen, Ryan. „A study of optical frequency domain reflectometry and its associated distributed sensor applications“. Thesis, University of Ottawa (Canada), 2010. http://hdl.handle.net/10393/28464.
Der volle Inhalt der QuelleRizzolo, Serena. „Advantages and limitations of distributed optical-frequency-domain-reflectometry for optical fiber-based sensors in harsh environments“. Thesis, Lyon, 2016. http://www.theses.fr/2016LYSES013.
Der volle Inhalt der QuelleFukushima-Daiichi event on March 11th, 2011, signed a turning point in nuclear industry by highlighting several weaknesses in the control of critical systems that ensure the safety in nuclear power plant (NPP) operating, particularly, in accidentals conditions. This PhD thesis has been carried out in collaboration with AREVA, the French industrial group active in the energy domain, with the aim of realizing optical fiber sensors resistant to the harsh environment constraints of a NPP and, in particular, to monitor temperature and water level several parameters inside the spent fuel pools (SFPs). It consists of two parts organized in 7 chapters. In the first part, chapter 1 deals with the phenomena contributing to the light attenuation during its propagation along the fiber and gives an overview on the radiation effects on optical fibers. To identify the most promising technique suitable for AREVA needs, in chapter 2 is reported the state-of-the-art on the distributed OFSs with particular attention to their employment in radiation environments. The last part of this chapter is devoted to the detailed description of the OFDR that is the selected sensor technique for this application. The second part is devoted to present and discuss the obtained results. Chapter 3 gives the experimental details on radiation and thermal treatments, investigated samples and used setups. In order to determine the best fiber/setup combination, a systematic study on temperature and strain distributed sensors was carried out in relation to the harsh constraints demanded from the application. The permanent radiation (MGy dose levels) effects on different fiber classes are investigated in Chapter 4. Chapter 5 illustrates in situ measurements on radiation resistant fibers to understand the combined temperature and radiation (X-rays) effects representative of the SFP nominal and accidental conditions. Simultaneously, we have developed the OFS design for its integration at SFP facility. The prototype is described and its performance is evaluated in chapter 6. Then, the main conclusion and perspective are discussed
L'incidente di Fukushima-Daiichi dell’11 marzo 2011 ha segnato un punto di svolta per l’industria nucleare, mettendo in evidenza diversi punti deboli nel controllo di sistemi critici che garantiscono la sicurezza nelle centrali, in particolare in condizioni di incidente. Questa tesi è stata condotta in collaborazione con AREVA, il gruppo industriale francese attivo nel settore dell'energia, con l'obiettivo di produrre sensori a fibra ottica resistenti alle condizioni estreme di una centrale nucleare e, in particolare, per controllare diversi parametri all'interno di una piscina di stoccaggio di combustibile nucleare, quali la temperatura e il livello dell'acqua. La tesi si compone di due parti organizzate in 7 capitoli. Nella prima parte, il capitolo 1 riguarda i fenomeni che contribuiscono all'attenuazione della luce durante la sua propagazione nella fibra e permette di comprendere gli effetti della radiazione sulle fibre ottiche. Per identificare la tecnologia più promettente per le esigenze di AREVA, nel capitolo 2 é discusso lo stato dell’arte sui sensori distribuiti con particolare attenzione alle loro performance in ambienti radiativi. L'ultima parte di questo capitolo è dedicato ad una descrizione dettagliata della tecnica OFDR che è la tecnologia scelta per questa applicazione. La seconda parte è dedicata a presentare e discutere i risultati. Il capitolo 3 fornisce i dettagli sui campioni studiati e i trattamenti effettuati su di essi e descrive il setup utilizzato. Per determinare la migliore combinazione fibra/tecnica per l’applicazione prevista, è stato eseguito uno studio sistematico sulla risposta alla radiazione dei sensori distribuiti di temperatura e strain. Glieffetti permanenti della radiazione (dosi dell’ordine del MGy) su diverse classi di fibre, resistenti e sensibili alle radiazioni, sono discussi nel capitolo 4. Il capitolo 5 riporta le misure in situ sulle fibre resistenti alla radiazione per investigare gli effetti combinati di temperatura e radiazioni (raggi X) rappresentativi delle condizioni operative e accidentali nelle piscine di stoccaggio. Infine, abbiamo sviluppato un prototipo di sensore del livello dell’acqua nelle piscine di stoccaggio che è descritto nel capitolo 6. In seguito, le principali conclusioni e le prospettive sono discusse
Randall, Summer Lockerbie. „Development and utilization of optical low coherence reflectometry for the study of multiple scattering in randomly distributed solid-liquid suspensions /“. Thesis, Connect to this title online; UW restricted, 2004. http://hdl.handle.net/1773/8672.
Der volle Inhalt der QuelleBergdoll, Greg M. „Characterization of two Vernier-Tuned Distributed Bragg Reflector (VT-DBR) Lasers used in Swept Source Optical Coherence Tomography (SS-OCT)“. DigitalCommons@CalPoly, 2015. https://digitalcommons.calpoly.edu/theses/1461.
Der volle Inhalt der QuelleBuchteile zum Thema "Distributed reflectometry"
Pradhan, Himansu Shekhar, P. K. Sahu, D. Ghosh und S. Mahapatra. „Brillouin Distributed Temperature Sensor Using Optical Time Domain Reflectometry Techniques“. In Smart Sensors, Measurement and Instrumentation, 207–21. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-42625-9_10.
Der volle Inhalt der QuelleSallem, Soumaya, Ousama Osman, Laurent Sommervogel, Marc Olivas, Arnaud Peltier, Françoise Paladian und Pierre Bonnet. „Wired Network Distributed Diagnosis and Sensors Communications by Multi-carrier Time Domain Reflectometry“. In Advances in Intelligent Systems and Computing, 1038–46. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-01057-7_77.
Der volle Inhalt der Quelle„Principles of Optical Time-Domain Reflectometry (OTDR) for Distributed Sensing“. In An Introduction to Distributed Optical Fibre Sensors, 55–106. CRC Press, 2017. http://dx.doi.org/10.1201/9781315119014-4.
Der volle Inhalt der QuelleShishkin, Victor, Kenji Tanaka und Hideaki Murayama. „Proposal on Miniaturization of Distributed Sensing System Based on Optical Frequency Domain Reflectometry“. In Advances in Transdisciplinary Engineering. IOS Press, 2019. http://dx.doi.org/10.3233/atde190103.
Der volle Inhalt der Quelle„Distributed strain measurement in steel slab-on-girder bridge via Brillouin optical time domain reflectometry“. In Advances in Bridge Maintenance, Safety Management, and Life-Cycle Performance, Set of Book & CD-ROM, 899–900. CRC Press, 2015. http://dx.doi.org/10.1201/b18175-367.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Distributed reflectometry"
Yoon, Myung-Keun, Daniel F. Dolan und Steve Gabriel. „Time domain reflectometry as a distributed strain sensor“. In The 15th International Symposium on: Smart Structures and Materials & Nondestructive Evaluation and Health Monitoring, herausgegeben von Masayoshi Tomizuka. SPIE, 2008. http://dx.doi.org/10.1117/12.776224.
Der volle Inhalt der QuelleKreger, Stephen T., Emily Templeton, Daniel Kominsky und Brian Templeton. „Distributed polarization state sensing with optical frequency domain reflectometry“. In Fiber Optic Sensors and Applications XVI, herausgegeben von Glen A. Sanders, Robert A. Lieberman und Ingrid U. Scheel. SPIE, 2019. http://dx.doi.org/10.1117/12.2519184.
Der volle Inhalt der QuelleXiao, Hu, Huafeng Lu, Zeheng Zhang, Guolu Yin und Tao Zhu. „Distributed pH sensing based on optical frequency domain reflectometry“. In 2021 International Conference on Optical Instruments and Technology: Optical Sensors and Applications, herausgegeben von Xuping Zhang, Yuncai Wang und Hai Xiao. SPIE, 2022. http://dx.doi.org/10.1117/12.2616491.
Der volle Inhalt der QuelleGorlov, Nikolai I., und Igor V. Bogachkov. „Distributed Fiber-Optic Probing using the Optical Reflectometry Method“. In 2022 IEEE International Multi-Conference on Engineering, Computer and Information Sciences (SIBIRCON). IEEE, 2022. http://dx.doi.org/10.1109/sibircon56155.2022.10016922.
Der volle Inhalt der QuelleHu, Zihe, Can Zhao und Ming Tang. „Distributed Optical Phase-sensitive Reflectometry Based on Continuous FrFT-DC Signal“. In Optical Fiber Sensors. Washington, D.C.: Optica Publishing Group, 2023. http://dx.doi.org/10.1364/ofs.2023.th6.13.
Der volle Inhalt der QuelleDeng, Yuanpeng, Qinwen Liu, He li, Zhiwei Dai und Zuyuan He. „Quasi-distributed Temperature Sensing with Enhanced Measurement Range Using OFDR and Weak Reflectors“. In Optical Fiber Sensors. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/ofs.2022.th4.20.
Der volle Inhalt der QuelleTürker, Volkan, Faruk Uyar, Tolga Kartaloğlu, Ekmel Özbay und İbrahim Özdür. „Long-Range Distributed Acoustic Sensor Based on 3x3 Coupler Assisted Passive Demodulation Scheme“. In CLEO: Applications and Technology. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/cleo_at.2022.am3m.3.
Der volle Inhalt der QuelleOrsuti, Daniele, Arman Aitkulov, Martina Cappelletti, Luca Schenato, Mirko Magarotto, Marco Santagiustina, Cristian Antonelli et al. „Multi-core Fibers as a Technological Platform for Distributed Twist Sensing“. In Optical Fiber Sensors. Washington, D.C.: Optica Publishing Group, 2023. http://dx.doi.org/10.1364/ofs.2023.th6.27.
Der volle Inhalt der QuelleXie, Dongcheng, Xiang Zhang, Yicheng Lin, Cuofu Lin, Jun Yang, Yuncai Wang und Yuwen Qin. „High Accuracy Distributed Birefringence Measurement of Polarization Maintaining Fiber Based on OFDR“. In Optical Fiber Sensors. Washington, D.C.: Optica Publishing Group, 2023. http://dx.doi.org/10.1364/ofs.2023.tu3.73.
Der volle Inhalt der QuelleShatalin, Sergey V., Vladimir N. Treschikov und Alan J. Rogers. „Interferometric optical time-domain reflectometry for distributed optical fiber sensing“. In SPIE's International Symposium on Optical Science, Engineering, and Instrumentation, herausgegeben von Ryszard J. Pryputniewicz, Gordon M. Brown und Werner P. O. Jueptner. SPIE, 1998. http://dx.doi.org/10.1117/12.316448.
Der volle Inhalt der Quelle