Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Distributed Acoustic Sensing (DAS)“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Distributed Acoustic Sensing (DAS)" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Distributed Acoustic Sensing (DAS)"
Chambers, Derrick, Peiyao Li, Harpreet Sethi und Jeffery Shragge. „Monitoring industrial acoustics with distributed acoustic sensing“. Journal of the Acoustical Society of America 151, Nr. 4 (April 2022): A58. http://dx.doi.org/10.1121/10.0010648.
Der volle Inhalt der QuelleShang, Ying, Maocheng Sun, Chen Wang, Jian Yang, Yuankai Du, Jichao Yi, Wenan Zhao, Yingying Wang, Yanjie Zhao und Jiasheng Ni. „Research Progress in Distributed Acoustic Sensing Techniques“. Sensors 22, Nr. 16 (13.08.2022): 6060. http://dx.doi.org/10.3390/s22166060.
Der volle Inhalt der QuelleAbadi, Shima, William S. Wilcock und Brad P. Lipovsky. „Detecting hydro-acoustic signals using Distributed Acoustics Sensing technology“. Journal of the Acoustical Society of America 152, Nr. 4 (Oktober 2022): A201. http://dx.doi.org/10.1121/10.0016027.
Der volle Inhalt der QuelleShen, Zhichao, Wenbo Wu und Ying-Tsong Lin. „High-resolution observations of shallow-water acoustic propagation with distributed acoustic sensing“. Journal of the Acoustical Society of America 156, Nr. 4 (01.10.2024): 2237–49. http://dx.doi.org/10.1121/10.0030400.
Der volle Inhalt der QuelleEllmauthaler, Andreas, Brian C. Seabrook, Glenn A. Wilson, John Maida, Jeff Bush, Michel LeBlanc, James Dupree und Mauricio Uribe. „Distributed acoustic sensing of subsea wells“. Leading Edge 39, Nr. 11 (November 2020): 801–7. http://dx.doi.org/10.1190/tle39110801.1.
Der volle Inhalt der QuelleSchmidt, Henrik. „Distributed acoustic sensing in shallow water“. Journal of the Acoustical Society of America 120, Nr. 5 (November 2006): 3297. http://dx.doi.org/10.1121/1.4778019.
Der volle Inhalt der QuelleRosalie, Cedric, Nik Rajic, Patrick Norman und Claire Davis. „Acoustic Source Localisation Using Distributed Sensing“. Procedia Engineering 188 (2017): 499–507. http://dx.doi.org/10.1016/j.proeng.2017.04.514.
Der volle Inhalt der QuelleSchick, Yannik, Guilherme H. Weber, Marco Da Silva, Cicero Martelli und Mark W. Hlawitschka. „Flow monitoring in a bubble column reactor by Distributed Acoustic Sensing“. tm - Technisches Messen 91, s1 (01.08.2024): 14–19. http://dx.doi.org/10.1515/teme-2024-0048.
Der volle Inhalt der QuelleBecker, Matthew, Thomas Coleman, Christopher Ciervo, Matthew Cole und Michael Mondanos. „Fluid pressure sensing with fiber-optic distributed acoustic sensing“. Leading Edge 36, Nr. 12 (Dezember 2017): 1018–23. http://dx.doi.org/10.1190/tle36121018.1.
Der volle Inhalt der QuelleDouglass, Alexander S., John Ragland und Shima Abadi. „Overview of distributed acoustic sensing technology and recently acquired data sets“. Journal of the Acoustical Society of America 153, Nr. 3_supplement (01.03.2023): A64. http://dx.doi.org/10.1121/10.0018174.
Der volle Inhalt der QuelleDissertationen zum Thema "Distributed Acoustic Sensing (DAS)"
Hu, Di. „Fully Distributed Multi-parameter Sensors Based on Acoustic Fiber Bragg Gratings“. Diss., Virginia Tech, 2017. http://hdl.handle.net/10919/85112.
Der volle Inhalt der QuellePh. D.
dos, Santos Maia Correa Julia. „Distributed Acoustic Sensing for Seismic Imaging and Reservoir Monitoring Applied to CO2 Geosequestration“. Thesis, Curtin University, 2018. http://hdl.handle.net/20.500.11937/75668.
Der volle Inhalt der QuelleMarcon, Leonardo. „Development of high performance distributed acoustic sensors based on Rayleigh backscattering“. Doctoral thesis, Università degli studi di Padova, 2019. http://hdl.handle.net/11577/3423194.
Der volle Inhalt der QuelleCiervo, Christopher M. „Establishing Hydraulic Connectivity in Bedrock by Measuring the Hydromechanical Response of Fractures with Distributed Acoustic Sensing (DAS)“. Thesis, California State University, Long Beach, 2018. http://pqdtopen.proquest.com/#viewpdf?dispub=10840951.
Der volle Inhalt der QuelleFiber optic Distributed Acoustic Sensing (DAS) is based on the principles of Coherent Rayleigh Optical Time Domain Reflectometry, where light pulses are fired through an optical fiber, and photon backscatter is measured with an optical sensor. Strain in the fiber causes changes in the amplitude and phase of backscattered light. Using light’s two-way travel time, the optical sensor measures strain at distributed points along the length of fiber. In this work, DAS was adapted to establish hydraulic connectivity in bedrock by measuring hydromechanical strain in an observation well, as periodic well tests were conducted at mHz frequencies at an interrogation well ~30 m away. A lognormal relationship with a strong degree of interdependence was found between measured displacements and pressure amplitudes. This behavior is consistent with the semi-logarithmic closure law of fractured rock. The nanometer scale displacements reported here, however, suggest closure occurring as in-contact asperities deform, rather than opposing fracture surfaces coming into contact.
Wild, Graham. „Distributed optical fibre smart sensors for acoustic sensing in the structural health monitoring of robust aerospace vehicles“. Thesis, Edith Cowan University, Research Online, Perth, Western Australia, 2010. https://ro.ecu.edu.au/theses/1873.
Der volle Inhalt der QuelleWang, Yunjing. „Fiber-Optic Sensors for Fully-Distributed Physical, Chemical and Biological Measurement“. Diss., Virginia Tech, 2013. http://hdl.handle.net/10919/19222.
Der volle Inhalt der QuelleThis dissertation presents a fully-distributed fiber-optic sensing technique based on a traveling long-period grating (T-LPG) in a single-mode fiber. The T-LPG is generated by pulsed acoustic waves that propagate along the fiber. When there are changes in the fiber surrounding medium or in the fiber surface coating, induced by various physical, chemical or biological stimuli, the optical transmission spectrum of the T-LPG may shift. Therefore, by measuring the T-LPG resonance wavelength at different locations along the fiber, distributed measurement can be realized for a number of parameters beyond temperature and strain.
Based on this platform, fully-distributed temperature measurement in a 2.5m fiber was demonstrated. Then by coating the fiber with functional coatings, fully-distributed biological and chemical sensing was also demonstrated. In the biological sensing experiment, immunoglobulin G (IgG) was immobilized onto the fiber surface, and the experimental results show that only specific antigen-antibody binding can introduce a measurable shift in the transmission optical spectrum of the T-LPG when it passes through the pretreated fiber segment. In the hydrogen sensing experiment, the fiber was coated with a platinum (Pt) catalyst layer, which is heated by the thermal energy released from Pt-assisted combustion of H2 and O2, and the resulted temperature change gives rise to a measurable T-LPG wavelength shift when the T-LPG passes through. Hydrogen concentration from 1% to 3.8% was detected in the experiment. This technique may also permit measurement of other quantities by changing the functional coating on the fiber; therefore it is expected to be capable of other fully-distributed sensing applications.
Ph. D.
Schilke, Sven. „Importance du couplage des capteurs distribués à fibre optique dans le cadre des VSP“. Thesis, Paris Sciences et Lettres (ComUE), 2017. http://www.theses.fr/2017PSLEM042/document.
Der volle Inhalt der QuelleDistributed Acoustic Sensing (DAS) is a new technology of seismic acquisition that relies on traditional fibre-optic cables to provide inline strain measurement. This acquisition system is largely used in vertical seismic profiling (VSP) surveys. Coupling is a key factor influencing data quality. While geophones and accelerometers are clamped to the borehole wall during VSP surveys, the fibre cable is either clamped and then cemented behind the casing, or attached with rigid clamps to the tubing, or loosely lowered into the borehole. The latter deployment strategy, also called wireline deployment, usually acquires the lowest level of signal but is regarded as the most cost-effective in particular for existing well installations. This PhD thesis addresses the problematic of coupling of DAS using wireline deployment. We develop numerical models that are used to analyse real data. The interpretation of these results allows us concluding that an immediate contact of the cable with the borehole wall with a computed contact force is required to provide good coupling conditions. Based on those findings, we propose solutions to further optimise DAS acquisitions. We numerically modify the contact force and the elastic properties of the DAS cable and show how these modifications can improve but also deteriorate data quality. Finally, we propose a coupling detection algorithm that is applied to real datasets and allows ensuring the acquisition of data with a high signal-to-noise ratio
Huynh, Camille. „Real-time seismic monitoring using DAS fiber-optic instrumentation and machine learning : towards autonomous classification of natural and anthropogenic events“. Electronic Thesis or Diss., Strasbourg, 2025. http://www.theses.fr/2025STRAH001.
Der volle Inhalt der QuelleIn recent years, alongside traditional seismometer-based approaches, a new technology based on the use of optical fibers has emerged for monitoring natural or anthropogenic acoustic events: Distributed Acoustic Sensing (DAS). This innovative technology enables the measurement of seismic vibrations at very high spatial resolution over distances ranging from tens of meters to several hundred kilometers. Although these data are larger and more complex to process than those from traditional seismometers, they offer promising perspectives, particularly for analyzing the wavefields generated by earthquakes, detecting landslides, monitoring various anthropogenic events (such as pedestrian movements, vehicle movements, or seismic signals from human activities), low-amplitude or highly localized events, and precisely locating the origin of these seismic events. The goal of this thesis is to develop and test automated data analysis chains using AI-based approaches to detect, classify and analyze near-real-time fiber-optics DAS data. The objective is focused on local and regional monitoring of specific areas to enable the real-time detection and identification of natural events such as earthquakes and landslides
Schilke, Sven. „Importance du couplage des capteurs distribués à fibre optique dans le cadre des VSP“. Electronic Thesis or Diss., Paris Sciences et Lettres (ComUE), 2017. http://www.theses.fr/2017PSLEM042.
Der volle Inhalt der QuelleDistributed Acoustic Sensing (DAS) is a new technology of seismic acquisition that relies on traditional fibre-optic cables to provide inline strain measurement. This acquisition system is largely used in vertical seismic profiling (VSP) surveys. Coupling is a key factor influencing data quality. While geophones and accelerometers are clamped to the borehole wall during VSP surveys, the fibre cable is either clamped and then cemented behind the casing, or attached with rigid clamps to the tubing, or loosely lowered into the borehole. The latter deployment strategy, also called wireline deployment, usually acquires the lowest level of signal but is regarded as the most cost-effective in particular for existing well installations. This PhD thesis addresses the problematic of coupling of DAS using wireline deployment. We develop numerical models that are used to analyse real data. The interpretation of these results allows us concluding that an immediate contact of the cable with the borehole wall with a computed contact force is required to provide good coupling conditions. Based on those findings, we propose solutions to further optimise DAS acquisitions. We numerically modify the contact force and the elastic properties of the DAS cable and show how these modifications can improve but also deteriorate data quality. Finally, we propose a coupling detection algorithm that is applied to real datasets and allows ensuring the acquisition of data with a high signal-to-noise ratio
Becerril, Carlos Ernesto. „Développement de la mesure acoustique distribuée (DAS) à basse fréquence pour la détection des tsunamis“. Electronic Thesis or Diss., Université Côte d'Azur, 2024. http://www.theses.fr/2024COAZ5078.
Der volle Inhalt der QuelleTo date, an effective Tsunami Early-Warning System (TEWS) at a global scale is not yet in place. This reflects a proverbial challenge in geosciences: To instrument the world's ocean floors and conduct long-term observations with sufficient spatial and temporal coverage. A paradigm in the form of a novel photonic technology has been proposed for truly multi-scale monitoring, whilst keeping costs relatively low. Distributed Acoustic Sensing (DAS) uses optical fibers themselves to measure the spatial distribution of environmental properties along every point of the optic fiber. By leveraging the more than one million kilometers of optical fiber laid across the continents and oceans, the scientific community stands to gain permanent, global monitoring network of densely-spaced, highly sensitive single-component sensors, capable of providing continuous real-time data. Although it's been shown that DAS is capable of recording long-period oceanographic phenomena such as tides and gravity waves waves, and empirical observations of sensitivity to seafloor pressure variations; the pressure detection mechanism in DAS remains to be quantitatively described.Within this context, this thesis aims to provide a proof-of-concept of a specific DAS architecture (phase-sensitive detection employing chirped laser pulses) suitable for TEWS applications. Towards this objective, this work assessed the sensitivity required, and considers DAS instrument performance to ascertain detection of tsunami waves. A derived model of the expected seafloor strains potentially induced by tsunami waves is presented and finds seafloor compliance and the Poisson effect on the cable as the primary mechanisms through which DAS is anticipated to record the passage of tsunami waves. The analysis of the derived model is supported by fully coupled 3-D physics-based simulations of earthquake rupture, seismo-acoustic waves and tsunami wave propagation. Furthermore, as most instrumentation, the sensitivity at low frequencies is primarily hindered by 1/f instrument noise. This work identifies several enhancements in the opto-electronic hardware towards reducing instrument noise, and increase of sensitivity to low-frequency signals relevant to tsunami signals, specifically in the 1-10 mHz regime. The theoretical analysis and numerical simulations presented in this work point to the real possibility of detecting tsunami waves using fiber optic cables
Bücher zum Thema "Distributed Acoustic Sensing (DAS)"
Singal, S. P., Hrsg. Acoustic Remote Sensing Applications. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/bfb0009557.
Der volle Inhalt der QuelleBradley, Stuart. Atmospheric acoustic remote sensing. Boca Raton: CRC Press, 2008.
Den vollen Inhalt der Quelle findenP, Singal S., Hrsg. Acoustic remote sensing applications. Berlin: Springer-Verlag, 1997.
Den vollen Inhalt der Quelle findenElhoseny, Mohamed, Xiaohui Yuan und Salah-ddine Krit, Hrsg. Distributed Sensing and Intelligent Systems. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-64258-7.
Der volle Inhalt der QuelleColuccia, Giulio, Chiara Ravazzi und Enrico Magli. Compressed Sensing for Distributed Systems. Singapore: Springer Singapore, 2015. http://dx.doi.org/10.1007/978-981-287-390-3.
Der volle Inhalt der QuelleMazzeo, Pier Luigi, Paolo Spagnolo und Thomas B. Moeslund, Hrsg. Activity Monitoring by Multiple Distributed Sensing. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-13323-2.
Der volle Inhalt der Quelle1947-, Dakin John, Hrsg. The Distributed fibre optic sensing handbook. Kempston, Bedford, UK: IFS Publications, 1990.
Den vollen Inhalt der Quelle findenGao, Fei. Multi-wave Electromagnetic-Acoustic Sensing and Imaging. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-3716-0.
Der volle Inhalt der QuelleSniatala, Pawel, M. Hadi Amini und Kianoosh G. Boroojeni. Fundamentals of Brooks–Iyengar Distributed Sensing Algorithm. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-33132-0.
Der volle Inhalt der QuelleUnited States. National Aeronautics and Space Administration. Scientific and Technical Information Program., Hrsg. Distributed acoustic receptivity in laminar flow control configurations. [Washington, DC]: National Aeronautics and Space Administration, Office of Management, Scientific and Technical Information Program, 1992.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Distributed Acoustic Sensing (DAS)"
Li, Zhiheng. „Exploiting CNN-BiLSTM Model for Distributed Acoustic Sensing Event Recognition“. In Advances in Intelligent Systems Research, 333–41. Dordrecht: Atlantis Press International BV, 2024. http://dx.doi.org/10.2991/978-94-6463-512-6_36.
Der volle Inhalt der QuelleKosuke, Nakashima, Fujioka Kazuyori, Ueno Shinya, Yamazaki Mitsuru, Yashima Atsushi, Murata Yoshinobu und Sawada Kazuhide. „Structural Health Monitoring of Expressway Embankment Using Distributed Acoustic Sensing (DAS)“. In Environmental Science and Engineering, 161–71. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-99-9203-4_11.
Der volle Inhalt der QuelleMa, G., W. Qin, C. Shi, H. Zhou, Y. Li und C. Li. „Electrical Discharge Localization for Gas Insulated Line Based on Distributed Acoustic Sensing“. In Lecture Notes in Electrical Engineering, 606–14. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-31676-1_57.
Der volle Inhalt der QuelleShahabudin, Mohd Safuwan Bin, Nor Farisha Binti Muhamad Krishnan und Farahida Hanim Binti Mausor. „Spiking Neural Network for Microseismic Events Detection Using Distributed Acoustic Sensing Data“. In Lecture Notes in Networks and Systems, 317–26. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-66965-1_31.
Der volle Inhalt der QuelleChandran, Satishvaran Ragu, Hisham Mohamad, Muhammad Yusoff Mohd Nasir, Muhammad Farid Ghazali, Muhammad Aizzuddin Abdullah und Vorathin Epin. „A Comparative Study of Seismic Characteristics Between Distributed Acoustic Sensing (DAS) and Geophones“. In Advances in Civil Engineering Materials, 771–83. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-97-0751-5_66.
Der volle Inhalt der QuelleJensen, Andrew L., William A. Redford, Nimran P. Shergill, Luke B. Beardslee und Carly M. Donahue. „Identification of Bird Species in Large Multi-channel Data Streams Using Distributed Acoustic Sensing“. In Conference Proceedings of the Society for Experimental Mechanics Series, 97–107. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-68142-4_13.
Der volle Inhalt der QuelleZhang, Cheng-Cheng, und Bin Shi. „Evaluating Dark Fiber Distributed Acoustic and Strain Sensing for Shallow Ground Movement Monitoring: A Field Trial“. In Environmental Science and Engineering, 665–73. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-99-9061-0_47.
Der volle Inhalt der QuelleVantassel, Joseph P., Brady R. Cox, Peter G. Hubbard, Michael Yust, Farnyuh Menq, Kyle Spikes und Dante Fratta. „Effectiveness of Distributed Acoustic Sensing for Acquiring Surface Wave Dispersion Data Using Multichannel Analysis of Surface Waves“. In Proceedings of the 4th International Conference on Performance Based Design in Earthquake Geotechnical Engineering (Beijing 2022), 1000–1008. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-11898-2_77.
Der volle Inhalt der QuelleAimar, Mauro, Brady R. Cox und Sebastiano Foti. „Surface Wave Testing with Distributed Acoustic Sensing Measurements to Estimate the Shear-Wave Velocity and the Small-Strain Damping Ratio“. In Springer Series in Geomechanics and Geoengineering, 145–52. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-34761-0_18.
Der volle Inhalt der QuelleWang, Zheng, Tao Xie, Cheng-Cheng Zhang und Bin Shi. „Assessing the Impact of Borehole Coupling Materials on Shallow Downhole Fiber-Optic Distributed Acoustic Sensing (FO-DAS) Using Laboratory Simulations“. In Environmental Science and Engineering, 51–60. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-99-9069-6_4.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Distributed Acoustic Sensing (DAS)"
Badillo, Diego, und Marcelo A. Soto. „Acoustic Source Localisation Based on Distributed Acoustic Sensing and Sequential Least Squares Programming“. In Optical Sensors, SF4C.4. Washington, D.C.: Optica Publishing Group, 2024. https://doi.org/10.1364/sensors.2024.sf4c.4.
Der volle Inhalt der QuelleLu, Ping. „High Performance Distributed Acoustic Sensing Enabled by Continuously Enhanced Backscattering Fiber“. In Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides, BW2A.1. Washington, D.C.: Optica Publishing Group, 2024. https://doi.org/10.1364/bgpp.2024.bw2a.1.
Der volle Inhalt der QuelleNing, Ivan Lim Chen, und Paul Sava. „Multicomponent distributed acoustic sensing“. In SEG Technical Program Expanded Abstracts 2016. Society of Exploration Geophysicists, 2016. http://dx.doi.org/10.1190/segam2016-13952981.1.
Der volle Inhalt der QuelleCrickmore, R. I., C. Minto, A. Godfrey und R. Ellwood. „Quantitative Underwater Acoustic Measurements Using Distributed Acoustic Sensing“. In Optical Fiber Sensors. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/ofs.2022.w4.15.
Der volle Inhalt der QuelleParker, Tom R., Arran Gillies, Sergey V. Shatalin und Mahmoud Farhadiroushan. „The intelligent distributed acoustic sensing“. In OFS2014 23rd International Conference on Optical Fiber Sensors, herausgegeben von José M. López-Higuera, Julian D. C. Jones, Manuel López-Amo und José L. Santos. SPIE, 2014. http://dx.doi.org/10.1117/12.2064889.
Der volle Inhalt der QuelleKirkendall, Clay. „Distributed Acoustic and Seismic Sensing“. In OFC/NFOEC 2007 - 2007 Conference on Optical Fiber Communication and the National Fiber Optic Engineers Conference. IEEE, 2007. http://dx.doi.org/10.1109/ofc.2007.4348619.
Der volle Inhalt der QuelleGonzalez-Herraez, Miguel, Maria R. Fernandez-Ruiz, Regina Magalhaes, Luis Costa, Hugo F. Martins, Carlos Becerril, Sonia Martin-Lopez et al. „Distributed Acoustic Sensing in Seismology“. In Optical Fiber Sensors. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/ofs.2022.th2.1.
Der volle Inhalt der QuelleGonzalez-Herraez, Miguel, Maria R. Fernandez-Ruiz, Regina Magalhaes, Luis Costa, Hugo F. Martins, Andrés Garcia-Ruiz, Sonia Martin-Lopez, Ethan Williams, Zhongwen Zhan und Roel Vantilho. „Distributed acoustic sensing in seismology“. In Optical Fiber Sensors. Washington, D.C.: OSA, 2021. http://dx.doi.org/10.1364/ofs.2020.th2.1.
Der volle Inhalt der QuelleJin, Zhicheng, Jiageng Chen, Yanming Chang, Qingwen Liu und Zuyuan He. „Silicon Photonic Distributed Acoustic Sensing Interrogator“. In Optical Fiber Sensors. Washington, D.C.: Optica Publishing Group, 2023. http://dx.doi.org/10.1364/ofs.2023.th5.5.
Der volle Inhalt der QuelleClarke, A., D. Miller, T. Parker und J. Greer. „Advanced Applications of Distributed Acoustic Sensing“. In EAGE/DGG Workshop 2017. Netherlands: EAGE Publications BV, 2017. http://dx.doi.org/10.3997/2214-4609.201700151.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Distributed Acoustic Sensing (DAS)"
Baker, Michael, Robert Abbott und William O'Rourke. The Cryosphere/Ocean Distributed Acoustic Sensing (CODAS) Experiment. Office of Scientific and Technical Information (OSTI), September 2023. http://dx.doi.org/10.2172/2430275.
Der volle Inhalt der QuelleQuinn, Meghan. Geotechnical effects on fiber optic distributed acoustic sensing performance. Engineer Research and Development Center (U.S.), Juli 2021. http://dx.doi.org/10.21079/11681/41325.
Der volle Inhalt der QuelleViens, Loic. Distributed Acoustic Sensing as a Monitoring Tool at LANL. Office of Scientific and Technical Information (OSTI), Oktober 2023. http://dx.doi.org/10.2172/2203386.
Der volle Inhalt der QuelleSiebenaler, Shane. PR-015-163766-R01 Field Testing of Distributed Acoustic Sensing Systems. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), Juli 2018. http://dx.doi.org/10.55274/r0011503.
Der volle Inhalt der QuelleBecker, Matthew. Phase I Project: Fiber Optic Distributed Acoustic Sensing for Periodic Hydraulic Tests. Office of Scientific and Technical Information (OSTI), Dezember 2017. http://dx.doi.org/10.2172/1430694.
Der volle Inhalt der QuellePorritt, Robert, Robert Abbott und Christian Poppeliers. Quantitative assessment of Distributed Acoustic Sensing at the Source Physics Experiment, Phase II. Office of Scientific and Technical Information (OSTI), November 2021. http://dx.doi.org/10.2172/1833177.
Der volle Inhalt der QuellePorritt, Robert, Robert Abbott und Christian Poppeliers. Quantitative assessment of Distributed Acoustic Sensing at the Source Physics Experiment, Phase II. Office of Scientific and Technical Information (OSTI), Januar 2022. http://dx.doi.org/10.2172/1855336.
Der volle Inhalt der QuelleViens, Loic. Probing the Solid Earth and the Hydrosphere with Ocean-Bottom Distributed Acoustic Sensing. Office of Scientific and Technical Information (OSTI), November 2023. http://dx.doi.org/10.2172/2205032.
Der volle Inhalt der QuelleBruno, Michael S., Kang Lao, Nicky Oliver und Matthew Becker. Use of Fiber Optic Distributed Acoustic Sensing for Measuring Hydraulic Connectivity for Geothermal Applications. Office of Scientific and Technical Information (OSTI), April 2018. http://dx.doi.org/10.2172/1434494.
Der volle Inhalt der QuelleIchinose, G., und R. Mellors. Seismic Array Analysis Using Fiber-Optic Distributed Acoustic Sensing on Small Local and Regional Earthquakes. Office of Scientific and Technical Information (OSTI), August 2021. http://dx.doi.org/10.2172/1818399.
Der volle Inhalt der Quelle