Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Dissipative Scheme“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Dissipative Scheme" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Dissipative Scheme"
HANSEN, JAKOB, ALEXEI KHOKHLOV und IGOR NOVIKOV. „PROPERTIES OF FOUR NUMERICAL SCHEMES APPLIED TO A NONLINEAR SCALAR WAVE EQUATION WITH A GR-TYPE NONLINEARITY“. International Journal of Modern Physics D 13, Nr. 05 (Mai 2004): 961–82. http://dx.doi.org/10.1142/s021827180400502x.
Der volle Inhalt der QuelleBurkhardt, Ulrike, und Erich Becker. „A Consistent Diffusion–Dissipation Parameterization in the ECHAM Climate Model“. Monthly Weather Review 134, Nr. 4 (01.04.2006): 1194–204. http://dx.doi.org/10.1175/mwr3112.1.
Der volle Inhalt der QuelleChen, Xiaowei, Mingzhan Song und Songhe Song. „A Fourth Order Energy Dissipative Scheme for a Traffic Flow Model“. Mathematics 8, Nr. 8 (28.07.2020): 1238. http://dx.doi.org/10.3390/math8081238.
Der volle Inhalt der QuelleNajafiyazdi, Mostafa, Luc Mongeau und Siva Nadarajah. „Low-dissipation low-dispersion explicit Taylor-Galerkin schemes from the Runge-Kutta kernels“. International Journal of Aeroacoustics 17, Nr. 1-2 (24.02.2018): 88–113. http://dx.doi.org/10.1177/1475472x17743657.
Der volle Inhalt der QuelleZlotnik, Alexander, und Timofey Lomonosov. „VERIFICATION OF AN ENTROPY DISSIPATIVE QGD-SCHEME“. Mathematical Modelling and Analysis 24, Nr. 2 (05.02.2019): 179–94. http://dx.doi.org/10.3846/mma.2019.013.
Der volle Inhalt der QuelleAppadu, A. R. „Numerical Solution of the 1D Advection-Diffusion Equation Using Standard and Nonstandard Finite Difference Schemes“. Journal of Applied Mathematics 2013 (2013): 1–14. http://dx.doi.org/10.1155/2013/734374.
Der volle Inhalt der QuelleLin, F. B., und F. Sotiropoulos. „Assessment of Artificial Dissipation Models for Three-Dimensional Incompressible Flow Solutions“. Journal of Fluids Engineering 119, Nr. 2 (01.06.1997): 331–40. http://dx.doi.org/10.1115/1.2819138.
Der volle Inhalt der QuelleZhang, Yang, Laiping Zhang, Xin He und Xiaogang Deng. „An Improved Second-Order Finite-Volume Algorithm for Detached-Eddy Simulation Based on Hybrid Grids“. Communications in Computational Physics 20, Nr. 2 (21.07.2016): 459–85. http://dx.doi.org/10.4208/cicp.190915.240216a.
Der volle Inhalt der QuelleLu, Changna, Qianqian Gao, Chen Fu und Hongwei Yang. „Finite Element Method of BBM-Burgers Equation with Dissipative Term Based on Adaptive Moving Mesh“. Discrete Dynamics in Nature and Society 2017 (2017): 1–11. http://dx.doi.org/10.1155/2017/3427376.
Der volle Inhalt der QuelleMai-Duy, N., N. Phan-Thien und T. Tran-Cong. „An improved dissipative particle dynamics scheme“. Applied Mathematical Modelling 46 (Juni 2017): 602–17. http://dx.doi.org/10.1016/j.apm.2017.01.086.
Der volle Inhalt der QuelleDissertationen zum Thema "Dissipative Scheme"
Fiebach, André [Verfasser]. „A dissipative finite volume scheme for reaction-diffusion systems in heterogeneous materials / André Fiebach“. Berlin : Freie Universität Berlin, 2014. http://d-nb.info/1057869732/34.
Der volle Inhalt der QuelleAvila, Jorge Andrés Julca. „Solução numérica em jatos de líquidos metaestáveis com evaporação rápida“. Universidade de São Paulo, 2008. http://www.teses.usp.br/teses/disponiveis/3/3150/tde-13082008-010924/.
Der volle Inhalt der QuelleThis study analyses the rapid evaporation of superheated or metastable liquid jets in a two-dimensional region. The phenomenon is triggered, in this case, when a jet in its liquid phase at high temperature and pressure, emerges from a small aperture nozzle and expands into a low pressure chamber, below saturation pressure. During the evolution of the process, after crossing the saturation curve, one observes that the fluid remains in a superheated liquid state. Then, suddenly the superheated liquid changes phase by means of an oblique evaporation wave. This phase change transforms the liquid into a biphasic mixture at high velocity pointing toward different directions, with increasing supersonic velocity as an expansion process takes place to the chamber back pressure, after going through a compression shock wave. The equations which govern this phenomenon are: the equations of conservation of mass, momentum and energy and an equation of state. Due to its steady state process, the numerical simulation is by means of a finite difference method using the McCormack method of Discretization. As this method does not capture shock waves, a second finite difference method is used to reach this task, the method uses the transient equations version of the conservation laws, applying the Dispersion-Controlled Dissipative (DCD) scheme. Numerical results using the code ShoWPhasT-2D v2 and experimental data have been compared, and the numerical results from the DCD-2D v1 have been analysed.
Bensaid, Bilel. „Analyse et développement de nouveaux optimiseurs en Machine Learning“. Electronic Thesis or Diss., Bordeaux, 2024. http://www.theses.fr/2024BORD0218.
Der volle Inhalt der QuelleOver the last few years, developping an explainable and frugal artificial intelligence (AI) became a fundamental challenge, especially when AI is used in safety-critical systems and demands ever more energy. This issue is even more serious regarding the huge number of hyperparameters to tune to make the models work. Among these parameters, the optimizer as well as its associated tunings appear as the most important leverages to improve these models [196]. This thesis focuses on the analysis of learning process/optimizer for neural networks, by identifying mathematical properties closely related to these two challenges. First, undesirable behaviors preventing the design of explainable and frugal networks are identified. Then, these behaviors are explained using two tools: Lyapunov stability and geometrical integrators. Through numerical experiments, the learning process stabilization improves the overall performances and allows the design of shallow networks. Theoretically, the suggested point of view enables to derive convergence guarantees for classical Deep Learning optimizers. The same approach is valuable for mini-batch optimization where unwelcome phenomenons proliferate: the concept of balanced splitting scheme becomes essential to enhance the learning process understanding and improve its robustness. This study paves the way to the design of new adaptive optimizers, by exploiting the deep relation between robust optimization and invariant preserving scheme for dynamical systems
Petropoulos, Ilias. „Study of high-order vorticity confinement schemes“. Thesis, Paris, ENSAM, 2018. http://www.theses.fr/2018ENAM0001/document.
Der volle Inhalt der QuelleVortices are flow structures of primary interest in a wide range of fluid dynamics applications including wakes, fluid-structure interaction, flow separation and turbulence. Albeit their importance, standard Computational Fluid Dynamics (CFD) methods very often fail to provide an accurate representation of vortices. This is primarily related to the schemes’ numerical dissipation which, if inadequately tuned for the calculation of vortical flows, results in the artificial spreading and diffusion of vortices in numerical simulations. Among other approaches, the Vorticity Confinement (VC) method of J. Steinhoff allows balancing the baseline dissipation within vortices by introducing non-linear anti-dissipation in the discretization of the flow equations, but remains at most first-order accurate. At the same time, remarkable progress has recently been made on the development of high-order numerical methods. These allow reducing the problem of excess dissipation, but the diffusion of vortices remains important for many applications. The present study aims at developing high-order extensions of the VC method to reduce the excess dissipation of vortices, while preserving the accuracy of high-order methods. First, the schemes are analyzed in the case of the linear transport equation, based on time-space coupled and uncoupled formulations. A spectral analysis of nonlinear schemes with VC is performed analytically and numerically, due to their nonlinear character. These schemes exhibit improved dispersive and dissipative properties compared to their linear counterparts at all orders of accuracy. In a second step, third- and fifth-order accurate VC schemes are developed for the compressible Navier-Stokes equations. These remain conservative, rotationally invariant and independent of the baseline scheme, as the original VC2 formulation. Numerical tests validate the increased order of accuracy and the capability of high-order VC extensions to balance dissipation within vortices. Finally, schemes with VC are applied to the calculation of turbulent flows, in an implicit Large Eddy Simulation (ILES) approach. In these applications, numerical schemes with VC exhibit improved resolvability compared to their baseline linear version, while they are capable of producing consistent results even in complex vortical flows
Wajid, Hafiz Abdul. „Dispersive and dissipative properties of high order schemes for computational wave propagation“. Thesis, University of Strathclyde, 2009. http://oleg.lib.strath.ac.uk:80/R/?func=dbin-jump-full&object_id=11530.
Der volle Inhalt der QuelleLee, Dongwook. „An unsplit staggered mesh scheme for multidimensional magnetohydrodynamics a staggered dissipation-control differencing algorithm /“. College Park, Md. : University of Maryland, 2006. http://hdl.handle.net/1903/3842.
Der volle Inhalt der QuelleThesis research directed by: Applied Mathematics and Scientific Computation Program. Title from t.p. of PDF. Includes bibliographical references. Published by UMI Dissertation Services, Ann Arbor, Mich. Also available in paper.
Nazari, Farshid. „Strongly Stable and Accurate Numerical Integration Schemes for Nonlinear Systems in Atmospheric Models“. Thesis, Université d'Ottawa / University of Ottawa, 2015. http://hdl.handle.net/10393/32128.
Der volle Inhalt der QuelleAzim, Riasat. „Low-Storage Hybrid MacCormack-type Schemes with High Order Temporal Accuracy for Computational Aeroacoustics“. University of Toledo / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1515720270119389.
Der volle Inhalt der QuelleHuart, Robin. „Simulation numérique d'écoulements magnétohydrodynamiques par des schémas distribuant le résidu“. Thesis, Bordeaux 1, 2012. http://www.theses.fr/2012BOR14480/document.
Der volle Inhalt der QuelleDuring this thesis, we worked on the numerical resolution of the Magnetohydrodynamic (MHD) equations, to which we added a hyperbolic transport equation for the divergence errors of the magnetic field.The first step consisted in symmetrizing the new ideal MHD system in order to study its eigensystem, which was the opportunity to remind the role of the entropy in this calculation as well as in the Clausius-Duhem inequality. Next, we aimed at solving these ideal equations by the mean of Residual Distribution (RD) schemes.The four main schemes were tested, and we showed among other things that the N scheme (although it has been proven very efficient with Euler equations in Fluid Mechanics) could not give satisfying results with the MHD equations. Classical strategies for the limitation and the stabilization were revisited then. Moreover,since we dealt with unsteady equations, we had to formulate atime discretization and a spatial distribution of the unsteady terms (as well as possible sources). We first choosed an implicit approach allowing us to be powerful on the long simulations needed for tokamak experiments, and to treat the divergence cleaning part in an original and efficient way. The convergence problems of our Newton-Raphson algorithm having not been fully resolved, we turned to an explicit alternative (Runge-Kutta type).Finally, we discussed about the principles of higher order schemes (theoretically, up to arbitrary orders, taking into account the Gibbs phenomenon) thanks to any type of 2D or 3D finite element (properly defined), without having been able to to validate all these aspects. We also implemented the dissipative part of the full MHD equations (in the classical sense, i.e. omitting the Hall effect) by the use of a RD/Galerkin coupling
Langenberg, Marcel Simon Verfasser], Marcus [Akademischer Betreuer] Müller, Marcus [Gutachter] Müller, Reiner [Gutachter] Kree, Cynthia A. [Gutachter] [Volkert, Krüger [Gutachter], Annette [Gutachter] Zippelius und Stefan [Gutachter] Klumpp. „Energy dissipation and transport in polymeric switchable nanostructures via a new energy-conserving Monte-Carlo scheme / Marcel Simon Langenberg ; Gutachter: Marcus Müller, Reiner Kree, Cynthia Volkert, Krüger, Annette Zippelius, Stefan Klumpp ; Betreuer: Marcus Müller“. Göttingen : Niedersächsische Staats- und Universitätsbibliothek Göttingen, 2018. http://d-nb.info/1156460581/34.
Der volle Inhalt der QuelleBücher zum Thema "Dissipative Scheme"
Yeffet, Amir. A non-dissipative staggered fourth-order accurate explicit finite difference scheme for the time-domain Maxwell's equations. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1999.
Den vollen Inhalt der Quelle findenYeffet, Amir. A non-dissipative staggered fourth-order accurate explicit finite difference scheme for the time-domain Maxwell's equations. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1999.
Den vollen Inhalt der Quelle findenYeffet, Amir. A non-dissipative staggered fourth-order accurate explicit finite difference scheme for the time-domain Maxwell's equations. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1999.
Den vollen Inhalt der Quelle findenYeffet, Amir. A non-dissipative staggered fourth-order accurate explicit finite difference scheme for the time-domain Maxwell's equations. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1999.
Den vollen Inhalt der Quelle findenYeffet, Amir. A non-dissipative staggered fourth-order accurate explicit finite difference scheme for the time-domain Maxwell's equations. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1999.
Den vollen Inhalt der Quelle findenRoe, P. L. Linear bicharacteristic schemes without dissipation. Hampton, VA: Institute for Computer Applications in Science and Engineering, NASA Langley Research Center, 1994.
Den vollen Inhalt der Quelle findenInstitute for Computer Applications in Science and Engineering., Hrsg. Linear bicharacteristic schemes without dissipation. Hampton, VA: Institute for Computer Applications in Science and Engineering, NASA Langley Research Center, 1994.
Den vollen Inhalt der Quelle findenR, Radespiel, Turkel E und Institute for Computer Applications in Science and Engineering., Hrsg. Comparison of several dissipation algorithms for central difference schemes. Hampton, VA: Institute for Computer Applications in Science and Engineering, NASA Langley Research Center, 1997.
Den vollen Inhalt der Quelle findenSwanson, R. Charles. On central-difference and upwind schemes. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, Institute for Computer Applications in Science and Engineering, 1990.
Den vollen Inhalt der Quelle findenSwanson, R. Charles. On central-difference and upwind schemes. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, Institute for Computer Applications in Science and Engineering, 1990.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Dissipative Scheme"
Wen, Chih-Yung, Yazhong Jiang und Lisong Shi. „Non-dissipative Core Scheme of CESE Method“. In Engineering Applications of Computational Methods, 7–19. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-0876-9_2.
Der volle Inhalt der QuellePoluru, Venkata Reddy. „A Low Dissipative Scheme for Hyperbolic Conservation Laws“. In Lecture Notes in Mechanical Engineering, 583–89. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-9956-9_57.
Der volle Inhalt der QuelleWen, Chih-Yung, Yazhong Jiang und Lisong Shi. „CESE Schemes with Numerical Dissipation“. In Engineering Applications of Computational Methods, 21–36. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-0876-9_3.
Der volle Inhalt der QuelleAristova, Elena N. „Hermitian Grid-Characteristic Scheme for Linear Transport Equation and Its Dissipative-Dispersion Properties“. In Smart Modelling for Engineering Systems, 51–64. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-33-4619-2_5.
Der volle Inhalt der QuelleFu, Lei, Chenliang Gu und Jiachang Shi. „Dissipative Control for Singular T-S Fuzzy Systems Under Dynamic Event-Triggered Scheme“. In Proceedings of International Conference on Image, Vision and Intelligent Systems 2023 (ICIVIS 2023), 708–16. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-97-0855-0_68.
Der volle Inhalt der QuelleWen, Chih-Yung, Yazhong Jiang und Lisong Shi. „Multi-dimensional CESE Schemes“. In Engineering Applications of Computational Methods, 37–55. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-0876-9_4.
Der volle Inhalt der QuelleYang, Yan. „Hybrid Scheme for Compressible MHD Turbulence“. In Energy Transfer and Dissipation in Plasma Turbulence, 35–67. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-8149-2_3.
Der volle Inhalt der QuelleYee, H. C., und B. Sjögreen. „Designing Adaptive Low Dissipative High Order Schemes“. In Computational Fluid Dynamics 2002, 124–27. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-642-59334-5_15.
Der volle Inhalt der QuelleSonar, Thomas. „Entropy Dissipation in Finite Difference Schemes“. In Nonlinear Hyperbolic Problems: Theoretical, Applied, and Computational Aspects, 544–49. Wiesbaden: Vieweg+Teubner Verlag, 1993. http://dx.doi.org/10.1007/978-3-322-87871-7_66.
Der volle Inhalt der QuelleWu, Xinyuan, und Bin Wang. „Linearly-Fitted Conservative (Dissipative) Schemes for Nonlinear Wave Equations“. In Geometric Integrators for Differential Equations with Highly Oscillatory Solutions, 235–61. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-0147-7_8.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Dissipative Scheme"
Hou, Daizheng, Yanfei Zhang und Yafu Zhou. „A Novel Heat Dissipation Optimization Design Scheme of Printed Circuit Board“. In 2024 3rd International Conference on Energy, Power and Electrical Technology (ICEPET), 1635–41. IEEE, 2024. http://dx.doi.org/10.1109/icepet61938.2024.10627435.
Der volle Inhalt der QuelleHenke, Jan-Wilke, Yujia Yang, F. Jasmin Kappert, Arslan S. Raja, Germaine Arend, Guanhao Huang, Armin Feist et al. „Probing the Formation of Nonlinear Optical States with Free Electrons“. In CLEO: Fundamental Science, FW3P.3. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/cleo_fs.2024.fw3p.3.
Der volle Inhalt der QuellePinho, Pedro V., André G. Primo, Natália C. Carvalho, Rodrigo Benevides, Cauê M. Kersul, Simon Groeblacher, Gustavo S. Wiedehecker und Thiago P. Mayer Alegre. „Quadrature-Resolved Dissipative Optomechanical Measurement“. In CLEO: Fundamental Science. Washington, D.C.: Optica Publishing Group, 2023. http://dx.doi.org/10.1364/cleo_fs.2023.fth1b.2.
Der volle Inhalt der QuellePrimo, André G., Pedro V. Pinho, Natália C. Carvalho, Rodrigo Benevides, Cauê M. Kersul, Simon Groeblacher, Gustavo S. Wiedehecker und Thiago P. Mayer Alegre. „Homodyne Detection of Dissipative Optomechanical Interactions“. In Latin America Optics and Photonics Conference. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/laop.2022.m4d.6.
Der volle Inhalt der QuelleKim, Dehee, und Jang Hyuk Kwon. „A Low Dissipative and Dispersive Scheme with a High Order WENO Dissipation for Unsteady Flow Analyses“. In 34th AIAA Fluid Dynamics Conference and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2004. http://dx.doi.org/10.2514/6.2004-2705.
Der volle Inhalt der QuelleMatsuo, T., E. Torii, Theodore E. Simos, George Psihoyios und Ch Tsitouras. „A Dissipative Linearly-Implicit Scheme for the Ginzburg-Landau Equation“. In NUMERICAL ANALYSIS AND APPLIED MATHEMATICS: International Conference on Numerical Analysis and Applied Mathematics 2009: Volume 1 and Volume 2. AIP, 2009. http://dx.doi.org/10.1063/1.3241623.
Der volle Inhalt der QuellePoe, Nicole M. W., und D. Keith Walters. „A Low-Dissipation Optimization-Based Gradient Reconstruction (OGRE) Scheme for Finite Volume Simulations“. In ASME-JSME-KSME 2011 Joint Fluids Engineering Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/ajk2011-01013.
Der volle Inhalt der QuelleTian, Cheng, Song Fu und Siya Jiang. „Numerical Dissipation Effects on Detached Eddy Simulation of Turbomachinery Flows“. In GPPS Xi'an21. GPPS, 2022. http://dx.doi.org/10.33737/gpps21-tc-74.
Der volle Inhalt der QuelleBahrainian, Seyed Saied. „Effect of Dissipative Terms on the Quality of Two and Three-Dimensional Euler Flow Solutions“. In ASME 2008 Fluids Engineering Division Summer Meeting collocated with the Heat Transfer, Energy Sustainability, and 3rd Energy Nanotechnology Conferences. ASMEDC, 2008. http://dx.doi.org/10.1115/fedsm2008-55221.
Der volle Inhalt der QuelleMa, Yian, Qijun Tan, Ruoshi Yuan, Bo Yuan und Ping Ao. „Decomposition scheme in continuous dissipative chaotic systems and role of strange attractors“. In 2013 International Conference on Noise and Fluctuations (ICNF). IEEE, 2013. http://dx.doi.org/10.1109/icnf.2013.6578915.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Dissipative Scheme"
Cabot, B., D. Eliason und L. Jameson. A Wavelet Based Dissipation Method for ALE Schemes. Office of Scientific and Technical Information (OSTI), Juli 2000. http://dx.doi.org/10.2172/793693.
Der volle Inhalt der QuelleANALYSIS OF THE SEISMIC BEHAVIOR OF INNOVATIVE ALUMINIUM ALLOY ENERGY DISSIPATION BRACES. The Hong Kong Institute of Steel Construction, August 2022. http://dx.doi.org/10.18057/icass2020.p.341.
Der volle Inhalt der Quelle