Zeitschriftenartikel zum Thema „Disordered Rocksalt“

Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Disordered Rocksalt.

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Disordered Rocksalt" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

Pi, Liquan, Erik Björklund, Gregory Rees, Robert House und Peter Bruce. „Understanding the Degradation Mechanisms in Lithium Manganese Oxyfluoride Cathodes“. ECS Meeting Abstracts MA2023-01, Nr. 2 (28.08.2023): 493. http://dx.doi.org/10.1149/ma2023-012493mtgabs.

Der volle Inhalt der Quelle
Annotation:
The development of next-generation nickel and cobalt-free Li-ion batteries with significantly greater energy density for electric vehicles is largely contingent on the discovery of new cathode materials. A number of novel candidates with a disordered rocksalt crystal structure have recently been reported to exhibit high capacities, offering a highly promising new avenue for cathode research.1–5 However, disordered rocksalt cathode materials generally suffer from voltage and capacity fade over cycling. For example, the Mn-based archetypal oxyfluoride Li2MnO2F shows 254 mAh g-1 discharge capacity in the first cycle but fades to 104 mAh g-1 after 100 cycles. For improving these materials leading to practical devices, it is vital to develop an understanding of the fading mechanisms. Various explanations have been proposed for the gradual deterioration in performance of disordered rocksalt oxide and oxyfluoride cathodes. These include O-loss and surface densification4,6, growth of a CEI layer7, phase segregation6,8. In this study, we examine the main degradation mechanisms in Li2MnO2F over cycling and demonstrate that the capacity and voltage retention can be improved through compositional control, figure below. This understanding points the way to manganese oxyfluorides with better cycling performance. House, R. A. et al. Lithium manganese oxyfluoride as a new cathode material exhibiting oxygen redox. Energy Environ. Sci. 11, 926–932 (2018). Lee, J. et al. Reversible Mn2+/Mn4+ double redox in lithium-excess cathode materials. Nature 556, 185–190 (2018). Yabuuchi, N. et al. Origin of stabilization and destabilization in solid-state redox reaction of oxide ions for lithium-ion batteries. Nat. Commun. 7, 1–10 (2016). Li, L. et al. Fluorination‐Enhanced Surface Stability of Cation‐Disordered Rocksalt Cathodes for Li‐Ion Batteries. Adv. Funct. Mater. 2101888, 2101888 (2021). Chen, R. et al. Disordered lithium-rich oxyfluoride as a stable host for enhanced Li+ intercalation storage. Adv. Energy Mater. 5, (2015). Chen, D., Kan, W. H. & Chen, G. Understanding Performance Degradation in Cation-Disordered Rock-Salt Oxide Cathodes. Adv. Energy Mater. 9, 1–15 (2019). Källquist, I. et al. Degradation Mechanisms in Li2VO2F Li-Rich Disordered Rock-Salt Cathodes. Chem. Mater. 31, 6084–6096 (2019). Chen, D., Ahn, J., Self, E., Nanda, J. & Chen, G. Understanding cation-disordered rocksalt oxyfluoride cathodes. J. Mater. Chem. A 2, 7826–7837 (2021). Figure 1
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Ahn, Juhyeon, und Guoying Chen. „Development of Cation-Disordered Rocksalt Cathodes“. ECS Meeting Abstracts MA2021-02, Nr. 3 (19.10.2021): 392. http://dx.doi.org/10.1149/ma2021-023392mtgabs.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Chen, Dongchang, Juhyeon Ahn, Ethan Self, Jagjit Nanda und Guoying Chen. „Understanding cation-disordered rocksalt oxyfluoride cathodes“. Journal of Materials Chemistry A 9, Nr. 12 (2021): 7826–37. http://dx.doi.org/10.1039/d0ta12179g.

Der volle Inhalt der Quelle
Annotation:
A “concerted-densification” based failure mechanism, involving atomic-level changes in both transition-metal cationic sublattice and oxygen/fluorine anionic sublattice, is proposed for the degradation of F-DRX cathode materials.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Kitchaev, Daniil A., Zhengyan Lun, William D. Richards, Huiwen Ji, Raphaële J. Clément, Mahalingam Balasubramanian, Deok-Hwang Kwon et al. „Design principles for high transition metal capacity in disordered rocksalt Li-ion cathodes“. Energy & Environmental Science 11, Nr. 8 (2018): 2159–71. http://dx.doi.org/10.1039/c8ee00816g.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

House, Robert A., Liyu Jin, Urmimala Maitra, Kazuki Tsuruta, James W. Somerville, Dominic P. Förstermann, Felix Massel, Laurent Duda, Matthew R. Roberts und Peter G. Bruce. „Lithium manganese oxyfluoride as a new cathode material exhibiting oxygen redox“. Energy & Environmental Science 11, Nr. 4 (2018): 926–32. http://dx.doi.org/10.1039/c7ee03195e.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Chen, Ying, und Chun Huang. „Realising higher capacity and stability for disordered rocksalt oxyfluoride cathode materials for Li ion batteries“. RSC Advances 13, Nr. 42 (2023): 29343–53. http://dx.doi.org/10.1039/d3ra05684h.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Ahn, Juhyeon, und Guoying Chen. „(Invited) High-Energy Mn-Rich Disordered Rocksalt Cathodes“. ECS Meeting Abstracts MA2022-02, Nr. 1 (09.10.2022): 35. http://dx.doi.org/10.1149/ma2022-02135mtgabs.

Der volle Inhalt der Quelle
Annotation:
In recent years, cation-disordered Li-excess rocksalts (DRX) have emerged as a promising new class of high-energy cathode materials for lithium-ion batteries. [1] Aside from the desirable Co-free chemistry, these compounds offer exceptionally large charge storage capacities by utilizing the redox reactions of both cationic transition-metals and anionic oxygen in the lattice. While early research focused on DRX oxides, which met with significant challenges in voltage stability and capacity retention upon cycling [2-3], recent studies shifted towards oxyfluorides with a substantial level of F substitution. It was found that incorporating F into the anionic sublattice can reduce oxygen gas release, impedance rise and capacity fade, consequently improving cathode cycling stability. [4-5] To this end, developing synthesis methods to incorporate large F content in the lattice as well as designing and optimizing oxyfluoride chemistry for both high energy density and cycling stability are imperative. While high F substitution levels (up to 30-40 at.%) in DRX have been achieved through mechanochemical synthesis, the method has limitations in industrial application due to poor scalability. Solid-state synthesis, on the other hand, are readily scalable and often offers drop-in replacement in materials processing. In this presentation, we show our recent effort in developing calcination-based fluorination approach to achieve high-level fluorination of Mn-redox-active DRX materials. [6] The unique behavior of capacity rise upon cycling of a new class of Mn-rich DRX oxyfluoride cathodes will be reported. Our understanding in how chemistry can impact local and long-range structures and their evolution during electrochemical cycling will also be presented, as well as perspectives on future directions in DRX development. References Lee, J.; Urban, A.; Li, X.; Su, D.; Hautier, G.; Ceder, G. Unlocking the Potential of Cation-Disordered Oxides for Rechargeable Lithium Batteries. Science 2014, 343, 519. Yabuuchi, N.; Takeuchi, M.; Nakayama, M.; Shiiba, H.; Ogawa, M.; Nakayama, K.; Ohta, T.; Endo, D.; Ozaki, T.; Inamasu, T.; Sato, K.; Komaba, S., High-Capacity Electrode Materials for Rechargeable Lithium Batteries: Li3NbO4-based System with Cation-Disordered Rocksalt Structure. Natl. Acad. Sci. 2015, 112, 7650. Chen, D.; Kan, W. H.; Chen, G. Understanding Performance Degradation in Cation-Disordered Rock-Salt Oxide Cathodes. Energy Mater. 2019, 9, 1901255. Lee, J.; Papp, J. K.; Clément, R. J.; Sallis, S.; Kwon, D.-H.; Shi, T.; Yang, W.; McCloskey, B. D.; Ceder, G. Mitigating oxygen loss to improve the cycling performance of high capacity cation-disordered cathode materials. Commun. 2017, 8, 981. Lun, Z.; Ouyang, B.; Kitchaev, D. A.; Clément, R. J.; Papp, J. K.; Balasubramanian, M.; Tian, Y.; Lei, T.; Shi, T.; McCloskey, B. D.; Lee, J.; Ceder, G. Improved Cycling Performance of Li-Excess Cation-Disordered Cathode Materials upon Fluorine Substitution. Energy Mater. 2018, 9,1802959. Ahn, J.; Chen, D.; Chen, G.. A Fluorination Method for Improving Cation-Disordered Rocksalt Cathode Performance. Energy Mater. 2020, 10, 2001671.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Sato, Kei, Masanobu Nakayama, Alexey M. Glushenkov, Takahiro Mukai, Yu Hashimoto, Keisuke Yamanaka, Masashi Yoshimura, Toshiaki Ohta und Naoaki Yabuuchi. „Na-Excess Cation-Disordered Rocksalt Oxide: Na1.3Nb0.3Mn0.4O2“. Chemistry of Materials 29, Nr. 12 (14.06.2017): 5043–47. http://dx.doi.org/10.1021/acs.chemmater.7b00172.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Sato, Takahito, Kei Sato, Wenwen Zhao, Yoshio Kajiya und Naoaki Yabuuchi. „Metastable and nanosize cation-disordered rocksalt-type oxides: revisit of stoichiometric LiMnO2 and NaMnO2“. Journal of Materials Chemistry A 6, Nr. 28 (2018): 13943–51. http://dx.doi.org/10.1039/c8ta03667e.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Clément, R. J., Z. Lun und G. Ceder. „Cation-disordered rocksalt transition metal oxides and oxyfluorides for high energy lithium-ion cathodes“. Energy & Environmental Science 13, Nr. 2 (2020): 345–73. http://dx.doi.org/10.1039/c9ee02803j.

Der volle Inhalt der Quelle
Annotation:
Cation-disordered rocksalt oxides and oxyfluorides are promising high energy density lithium-ion cathodes, yet require a detailed understanding of the impact of disorder and short-range order on the structural and electrochemical properties.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

Celasun, Yagmur, Jean-François Colin, Sébastien Martinet, Anass Benayad und David Peralta. „Lithium-Rich Rock Salt Type Sulfides-Selenides (Li2TiSexS3−x): High Energy Cathode Materials for Lithium-Ion Batteries“. Materials 15, Nr. 9 (22.04.2022): 3037. http://dx.doi.org/10.3390/ma15093037.

Der volle Inhalt der Quelle
Annotation:
Lithium-rich disordered rocksalt Li2TiS3 offers large discharge capacities (>350 mAh·g−1) and can be considered a promising cathode material for high-energy lithium-ion battery applications. However, the quick fading of the specific capacity results in a poor cycle life of the system, especially when liquid electrolyte-based batteries are used. Our efforts to solve the cycling stability problem resulted in the discovery of new high-energy selenium-substituted materials (Li2TiSexS3−x), which were prepared using a wet mechanochemistry process. X-ray diffraction analysis confirmed that all compositions were obtained in cation-disordered rocksalt phase and that the lattice parameters were expanded by selenium substitution. Substituted materials delivered large reversible capacities, with smaller average potentials, and their cycling stability was superior compared to Li2TiS3 upon cycling at a rate of C/10 between 3.0–1.6 V vs. Li+/Li.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

Li, Linze, Juhyeon Ahn, Yuan Yue, Wei Tong, Guoying Chen und Chongmin Wang. „Fluorination‐Enhanced Surface Stability of Disordered Rocksalt Cathodes“. Advanced Materials 34, Nr. 12 (08.02.2022): 2106256. http://dx.doi.org/10.1002/adma.202106256.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Xu, Xiaoyu, Liquan Pi, John-Joseph Marie, Gregory J. Rees, Chen Gong, Shengda Pu, Robert A. House, Alexander W. Robertson und Peter G. Bruce. „Li2NiO2F a New Oxyfluoride Disordered Rocksalt Cathode Material“. Journal of The Electrochemical Society 168, Nr. 8 (01.08.2021): 080521. http://dx.doi.org/10.1149/1945-7111/ac1be1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

Lun, Zhengyan, Bin Ouyang, Raphaële J. Clément, Deok-Hwang Kwon und Gerbrand Ceder. „High-Capacity Mn-Based Cation-Disordered Rocksalt Cathodes“. ECS Meeting Abstracts MA2020-01, Nr. 2 (01.05.2020): 187. http://dx.doi.org/10.1149/ma2020-012187mtgabs.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

Ahn, Juhyeon, Dongchang Chen und Guoying Chen. „Improving Performance of Cation-Disordered Rocksalt Oxyfluoride Cathodes“. ECS Meeting Abstracts MA2020-02, Nr. 2 (23.11.2020): 339. http://dx.doi.org/10.1149/ma2020-022339mtgabs.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

Zhong, Peichen, Zijian Cai, Yaqian Zhang, Raynald Giovine, Bin Ouyang, Guobo Zeng, Yu Chen, Raphaële Clément, Zhengyan Lun und Gerbrand Ceder. „Increasing Capacity in Disordered Rocksalt Cathodes by Mg Doping“. Chemistry of Materials 32, Nr. 24 (03.12.2020): 10728–36. http://dx.doi.org/10.1021/acs.chemmater.0c04109.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

Privitera, Stefania, Antonio M. Mio, Julia Benke, Christoph Persch, Emanuele Smecca, Alessandra Alberti und Emanuele Rimini. „Phase Transitions in Ge-Sb-Te Alloys Induced by Ion Irradiations“. MRS Advances 1, Nr. 39 (2016): 2701–9. http://dx.doi.org/10.1557/adv.2016.280.

Der volle Inhalt der Quelle
Annotation:
ABSTRACTThe variation of the electrical and optical properties under 150 keV Ar+ ion irradiation has been studied in Ge2Sb2Te5 polycrystalline films, either in the rocksalt or in the trigonal structure, by in situ reflectivity measurements and ex situ resistance measurements. As the irradiation dose increases, the disorder introduced in the crystalline films increases and the reflectivity decreases, down to a minimum value that corresponds to complete amorphization. Large differences are found by changing the irradiation temperature, for the two crystalline structures. Indeed, the measured amorphization threshold is the same for the two crystalline phases and equal to 1x1013 cm-2 under irradiation at 77K, whilst at room temperature the trigonal phase requires a dose almost double than the rocksalt phase to be amorphized. By structural analyses we found that, before amorphization, ion irradiation induces a transition from the trigonal to the rocksalt structure. The van der Waals gaps present in the trigonal phase might act as preferential sinks for the displaced and mobile atoms, thus promoting this transition. By further increasing the irradiation dose the formed disordered rocksalt phase converts into the amorphous phase. Ion irradiation also affects the electrical properties of the material: the disorder modifies the temperature dependence of resistance of the trigonal Ge2Sb2Te5 and induces a change of sign (from metallic to insulating behavior) at a dose of 2x1013 cm-2, well below the amorphization threshold.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

Kosova, N. V., K. V. Mishchenko, O. A. Podgornova, D. O. Semykina und A. A. Shindrov. „High Energy Density Electrode Materials with the Disordered Rocksalt Structure“. Russian Journal of Electrochemistry 58, Nr. 7 (Juli 2022): 567–73. http://dx.doi.org/10.1134/s1023193522070084.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

Li, Hao, Richie Fong, Moohyun Woo, Hoda Ahmed, Dong-Hwa Seo, Rahul Malik und Jinhyuk Lee. „Toward high-energy Mn-based disordered-rocksalt Li-ion cathodes“. Joule 6, Nr. 1 (Januar 2022): 53–91. http://dx.doi.org/10.1016/j.joule.2021.11.005.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

Chen, Dongchang, Jin Zhang, Zhisen Jiang, Chenxi Wei, Jordan Burns, Linze Li, Chongmin Wang, Kristin Persson, Yijin Liu und Guoying Chen. „Role of Fluorine in Chemomechanics of Cation-Disordered Rocksalt Cathodes“. Chemistry of Materials 33, Nr. 17 (26.08.2021): 7028–38. http://dx.doi.org/10.1021/acs.chemmater.1c02118.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

Ahn, Juhyeon, Dongchang Chen und Guoying Chen. „A Fluorination Method for Improving Cation‐Disordered Rocksalt Cathode Performance“. Advanced Energy Materials 10, Nr. 35 (28.07.2020): 2001671. http://dx.doi.org/10.1002/aenm.202001671.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

Stone, K. H., Y. Liu, D. Sokaras, W. Chueh und J. L. Nelson Weker. „Phase evolution during solid-state synthesis of disordered rocksalt cathodes“. Acta Crystallographica Section A Foundations and Advances 79, a2 (22.08.2023): C34. http://dx.doi.org/10.1107/s205327332309575x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

Shirazi Moghadam, Y., A. El Kharbachi, G. Melinte, T. Diemant und M. Fichtner. „Bulk and Surface Stabilization Process of Metastable Li-Rich Disordered Rocksalt Oxyfluorides as Efficient Cathode Materials“. Journal of The Electrochemical Society 169, Nr. 12 (01.12.2022): 120514. http://dx.doi.org/10.1149/1945-7111/acaa62.

Der volle Inhalt der Quelle
Annotation:
Manganese based disordered rocksalt systems have attracted attention as Co-free and high capacity cathode materials for Li-ion batteries. However, for a practical application these materials are considered as metastable and exhibit too limited cyclability. In order to improve the structural stability of the disordered rocksalt Li1+xMn2/3Ti1/3O2Fx (0 ≤ x ≤ 1) system during cycling, we have introduced a mild temperature heat treatment process under reducing atmosphere, which is intended to overcome the structural anomalies formed during the mechanochemical synthesis. The heat-treated samples presented better electrochemical properties, which are ascribed to a structural defect mitigation process both at the surface and in the bulk, resulting in improved crystal structure stability. In addition, the optimized particle size and the smaller BET surface area induced by the recrystallization contributes to the observed enhanced performance. Among the studied compositions, the heat treated Li2Mn2/3Ti1/3O2F sample displayed better electrochemical performance with a discharge capacity of 165 mAh g−1 after 100 cycles at 0.1 C (∼80% of the initial capacity), when combined with further conditioning of the cells. The results point explicitly towards a guided stabilization approach, which could have a beneficial effect regarding the application of DRS oxyfluoride materials for sustainable LIBs.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

Lun, Zhengyan, Bin Ouyang, Zijian Cai, Raphaële J. Clément, Deok-Hwang Kwon, Jianping Huang, Joseph K. Papp et al. „Design Principles for High-Capacity Mn-Based Cation-Disordered Rocksalt Cathodes“. Chem 6, Nr. 1 (Januar 2020): 153–68. http://dx.doi.org/10.1016/j.chempr.2019.10.001.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

Clement, Raphaele J., Raynald Giovine, Yuefan Ji, Ashlea Patterson, Emily E. Foley, Zhengyan Lun, Daniil Kitchaev et al. „(Invited) Novel Approaches for the Study of Disordered Rocksalt Oxyfluoride Intercalation Cathodes“. ECS Meeting Abstracts MA2021-02, Nr. 2 (19.10.2021): 190. http://dx.doi.org/10.1149/ma2021-022190mtgabs.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

Yue, Yuan, Yang Ha, Tzu-Yang Huang, Ning Li, Linze Li, Qingtian Li, Jun Feng et al. „Interplay between Cation and Anion Redox in Ni-Based Disordered Rocksalt Cathodes“. ACS Nano 15, Nr. 8 (04.08.2021): 13360–69. http://dx.doi.org/10.1021/acsnano.1c03289.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

Yue, Yuan, Yang Ha, Raynald Giovine, Raphaële Clément, Wanli Yang und Wei Tong. „High-Voltage Reactivity and Long-Term Stability of Cation-Disordered Rocksalt Cathodes“. Chemistry of Materials 34, Nr. 4 (08.02.2022): 1524–32. http://dx.doi.org/10.1021/acs.chemmater.1c03115.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

Lee, Jinhyuk, Chao Wang, Dong-Hwa Seo und Ju Li. „Dual Roles of Li-Excess for Disordered-Rocksalt Li-Ion Battery Cathodes“. ECS Meeting Abstracts MA2021-02, Nr. 3 (19.10.2021): 375. http://dx.doi.org/10.1149/ma2021-023375mtgabs.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

Lee, Jinhyuk, und Ju Li. „Reevaluating the Criticality of Li-Excess for Disordered-Rocksalt Li-Battery Cathodes“. ECS Meeting Abstracts MA2021-01, Nr. 2 (30.05.2021): 72. http://dx.doi.org/10.1149/ma2021-01272mtgabs.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
30

Jones, Michael A., Philip J. Reeves, Ieuan D. Seymour, Matthew J. Cliffe, Siân E. Dutton und Clare P. Grey. „Short-range ordering in a battery electrode, the ‘cation-disordered’ rocksalt Li1.25Nb0.25Mn0.5O2“. Chemical Communications 55, Nr. 61 (2019): 9027–30. http://dx.doi.org/10.1039/c9cc04250d.

Der volle Inhalt der Quelle
Annotation:
We demonstrate short-range ordering in Li-ion battery material Li1.25Nb0.25Mn0.5O2, and identify its local structure and correlation length—which is sensitive to synthesis conditions and has important consequences for the material's electrochemistry.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
31

Naylor, Andrew J., Ida Källquist, David Peralta, Jean-Frederic Martin, Adrien Boulineau, Jean-François Colin, Christian Baur et al. „Stabilization of Li-Rich Disordered Rocksalt Oxyfluoride Cathodes by Particle Surface Modification“. ACS Applied Energy Materials 3, Nr. 6 (29.05.2020): 5937–48. http://dx.doi.org/10.1021/acsaem.0c00839.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
32

Shi, Tan, Penghao Xiao, Deok-Hwang Kwon, Gopalakrishnan Sai Gautam, Khetpakorn Chakarawet, Hyunchul Kim, Shou-Hang Bo und Gerbrand Ceder. „Shear-Assisted Formation of Cation-Disordered Rocksalt NaMO2 (M = Fe or Mn)“. Chemistry of Materials 30, Nr. 24 (21.11.2018): 8811–21. http://dx.doi.org/10.1021/acs.chemmater.8b03490.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
33

Nakajima, Mizuki, und Naoaki Yabuuchi. „Lithium-Excess Cation-Disordered Rocksalt-Type Oxide with Nanoscale Phase Segregation: Li1.25Nb0.25V0.5O2“. Chemistry of Materials 29, Nr. 16 (31.07.2017): 6927–35. http://dx.doi.org/10.1021/acs.chemmater.7b02343.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
34

Zhong, Peichen, Zijian Cai, Yaqian Zhang, Bin Ouyang, Guobo Zeng, Yu Chen, Zhengyan Lun und Gerbrand Ceder. „Resolving Li-F Locking Effect in Disordered Rocksalt Cathodes with Mg-Doping“. ECS Meeting Abstracts MA2020-02, Nr. 1 (23.11.2020): 129. http://dx.doi.org/10.1149/ma2020-021129mtgabs.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
35

Liu, Haodong, Zhuoying Zhu, Huolin Xin, Jun Lu, Ping Liu und Shyue Ping Ong. „(Invited) Novel Disordered Rocksalt Electrodes for Safe, Fast Charging Lithium-Ion Batteries“. ECS Meeting Abstracts MA2020-02, Nr. 1 (23.11.2020): 22. http://dx.doi.org/10.1149/ma2020-02122mtgabs.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
36

Lun, Zhengyan, Bin Ouyang, Deok-Hwang Kwon und Gerbrand Ceder. „Short-Range Order and Macroscopic Lithium Transport in Cation-Disordered Rocksalt Cathodes“. ECS Meeting Abstracts MA2020-02, Nr. 1 (23.11.2020): 75. http://dx.doi.org/10.1149/ma2020-02175mtgabs.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
37

Li, Yining, Yi Li, Haoxin Li, Yang Gan, Wujie Qiu und Jianjun Liu. „Rational design of high reversible capacity in Li-rich disordered rocksalt cathodes“. Nano Energy 119 (Januar 2024): 109064. http://dx.doi.org/10.1016/j.nanoen.2023.109064.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
38

Lee, Jinhyuk, Chao Wang, Rahul Malik, Yanhao Dong, Yimeng Huang, Dong‐Hwa Seo und Ju Li. „Determining the Criticality of Li‐Excess for Disordered‐Rocksalt Li‐Ion Battery Cathodes“. Advanced Energy Materials 11, Nr. 24 (05.05.2021): 2100204. http://dx.doi.org/10.1002/aenm.202100204.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
39

Yue, Yuan, Ning Li, Yang Ha, Matthew J. Crafton, Bryan D. McCloskey, Wanli Yang und Wei Tong. „Tailoring the Redox Reactions for High‐Capacity Cycling of Cation‐Disordered Rocksalt Cathodes“. Advanced Functional Materials 31, Nr. 14 (27.01.2021): 2008696. http://dx.doi.org/10.1002/adfm.202008696.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
40

Li, Linze, Zhengyan Lun, Dongchang Chen, Yuan Yue, Wei Tong, Guoying Chen, Gerbrand Ceder und Chongmin Wang. „Fluorination‐Enhanced Surface Stability of Cation‐Disordered Rocksalt Cathodes for Li‐Ion Batteries“. Advanced Functional Materials 31, Nr. 25 (17.04.2021): 2101888. http://dx.doi.org/10.1002/adfm.202101888.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
41

Li, Linze, Zhengyan Lun, Dongchang Chen, Yuan Yue, Wei Tong, Guoying Chen, Gerbrand Ceder und Chongmin Wang. „Atomic-scale mechanisms for fluorination-enhanced cycling stability of cation-disordered rocksalt cathodes“. Microscopy and Microanalysis 27, S1 (30.07.2021): 1256–58. http://dx.doi.org/10.1017/s1431927621004712.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
42

Brinkmann, Jan-Paul, Niloofar Ehteshami-Flammer, Mingzeng Luo, Marco Leißing, Stephan Röser, Sascha Nowak, Yong Yang, Martin Winter und Jie Li. „Compatibility of Various Electrolytes with Cation Disordered Rocksalt Cathodes in Lithium Ion Batteries“. ACS Applied Energy Materials 4, Nr. 10 (04.10.2021): 10909–20. http://dx.doi.org/10.1021/acsaem.1c01879.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
43

Brinkmann, Jan-Paul, Niloofar Ehteshami-Flammer, Mingzeng Luo, Marco Leißing, Stephan Röser, Sascha Nowak, Yong Yang, Martin Winter und Jie Li. „Compatibility of Various Electrolytes with Cation Disordered Rocksalt Cathodes in Lithium Ion Batteries“. ACS Applied Energy Materials 4, Nr. 10 (04.10.2021): 10909–20. http://dx.doi.org/10.1021/acsaem.1c01879.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
44

Crafton, Matthew, Yuan Yue, Wei Tong und Bryan D. McCloskey. „Anion Reactivity in Cation-Disordered Rocksalt Cathode Materials: The Influence of Fluorine Substitution“. ECS Meeting Abstracts MA2020-02, Nr. 1 (23.11.2020): 160. http://dx.doi.org/10.1149/ma2020-021160mtgabs.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
45

Crafton, Matthew J., Yuan Yue, Tzu‐Yang Huang, Wei Tong und Bryan D. McCloskey. „Anion Reactivity in Cation‐Disordered Rocksalt Cathode Materials: The Influence of Fluorine Substitution“. Advanced Energy Materials 10, Nr. 35 (02.08.2020): 2001500. http://dx.doi.org/10.1002/aenm.202001500.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
46

Kobayashi, Tokio, Wenwen Zhao, Hongahally Basappa Rajendra, Keisuke Yamanaka, Toshiaki Ohta und Naoaki Yabuuchi. „Nanosize Cation‐Disordered Rocksalt Oxides: Na 2 TiO 3 –NaMnO 2 Binary System“. Small 16, Nr. 12 (März 2020): 1902462. http://dx.doi.org/10.1002/smll.201902462.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
47

Singh, Aditya Narayan, Amir Hajibabaei, Miran Ha, Abhishek Meena, Hyun-Seok Kim, Chinna Bathula und Kyung-Wan Nam. „Reduced Potential Barrier of Sodium-Substituted Disordered Rocksalt Cathode for Oxygen Evolution Electrocatalysts“. Nanomaterials 13, Nr. 1 (20.12.2022): 10. http://dx.doi.org/10.3390/nano13010010.

Der volle Inhalt der Quelle
Annotation:
Cation-disordered rocksalt (DRX) cathodes have been viewed as next-generation high-energy density materials surpassing conventional layered cathodes for lithium-ion battery (LIB) technology. Utilizing the opportunity of a better cation mixing facility in DRX, we synthesize Na-doped DRX as an efficient electrocatalyst toward oxygen evolution reaction (OER). This novel OER electrocatalyst generates a current density of 10 mA cm−2 at an overpotential (η) of 270 mV, Tafel slope of 67.5 mV dec−1, and long-term stability >5.5 days’ superior to benchmark IrO2 (η = 330 mV with Tafel slope = 74.8 mV dec−1). This superior electrochemical behavior is well supported by experiment and sparse Gaussian process potential (SGPP) machine learning-based search for minimum energy structure. Moreover, as oxygen binding energy (OBE) on the surface closely relates to OER activity, our density functional theory (DFT) calculations reveal that Na-doping assists in facile O2 evolution (OBE = 5.45 eV) compared with pristine-DRX (6.51 eV).
APA, Harvard, Vancouver, ISO und andere Zitierweisen
48

Yang, Julia H., Haegyeom Kim und Gerbrand Ceder. „Insights into Layered Oxide Cathodes for Rechargeable Batteries“. Molecules 26, Nr. 11 (26.05.2021): 3173. http://dx.doi.org/10.3390/molecules26113173.

Der volle Inhalt der Quelle
Annotation:
Layered intercalation compounds are the dominant cathode materials for rechargeable Li-ion batteries. In this article we summarize in a pedagogical way our work in understanding how the structure’s topology, electronic structure, and chemistry interact to determine its electrochemical performance. We discuss how alkali–alkali interactions within the Li layer influence the voltage profile, the role of the transition metal electronic structure in dictating O3-structural stability, and the mechanism for alkali diffusion. We then briefly delve into emerging, next-generation Li-ion cathodes that move beyond layered intercalation hosts by discussing disordered rocksalt Li-excess structures, a class of materials which may be essential in circumventing impending resource limitations in our era of clean energy technology.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
49

Yue, Yuan, Ning Li, Linze Li, Emily E. Foley, Yanbao Fu, Vincent S. Battaglia, Raphaële J. Clément, Chongmin Wang und Wei Tong. „Redox Behaviors in a Li-Excess Cation-Disordered Mn–Nb–O–F Rocksalt Cathode“. Chemistry of Materials 32, Nr. 11 (04.05.2020): 4490–98. http://dx.doi.org/10.1021/acs.chemmater.9b05221.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
50

Chen, Dongchang, Jinpeng Wu, Joseph K. Papp, Bryan D. McCloskey, Wanli Yang und Guoying Chen. „Role of Redox‐Inactive Transition‐Metals in the Behavior of Cation‐Disordered Rocksalt Cathodes“. Small 16, Nr. 22 (04.05.2020): 2000656. http://dx.doi.org/10.1002/smll.202000656.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie