Auswahl der wissenschaftlichen Literatur zum Thema „Discrete Phase Model DPM“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Discrete Phase Model DPM" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Zeitschriftenartikel zum Thema "Discrete Phase Model DPM"

1

Chattopadhyay, Kinnor, Mihaiela Isac und Roderick I. L. Guthrie. „Considerations in Using the Discrete Phase Model (DPM)“. steel research international 82, Nr. 11 (21.06.2011): 1287–89. http://dx.doi.org/10.1002/srin.201000214.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Latif, Shahid, Zhou Hong und Muhammad Ismail. „Aerodynamic Characteristics of NACA 23015 Landing Configuration with 20o Flap in Simulated Rain“. Applied Mechanics and Materials 555 (Juni 2014): 108–12. http://dx.doi.org/10.4028/www.scientific.net/amm.555.108.

Der volle Inhalt der Quelle
Annotation:
In our numerical simulation the heavy rain effects have been studied on the aerodynamic performance of 2D cambered NACA 23015 airfoil landing configuration with 20o. We have used preprocessing software gridgen for creation of the landing configuration of the airfoil and then creating mesh around it. Fluent is used to solve the conservation equations. We have used discrete phase modeling (DPM) in Fluent to simulate the rain phenomenon in continuous phase flow by using two phase flow approach. In our study the coupling between the discrete and the continuous phase has been activated. In discrete phase model (DPM), we used the wall film model for the interaction of the continuous and discrete phase. The airfoil landing configuration exhibited significant decrease in lift and increase in drag for a given lift conditions in simulated rain. Post processing software like MATLAB, Tec plot and Origin are used to see the effects of the heavy rain and then results obtained are compared with the experimental results. Our numerical results in most of cases show similar trends with the experiments.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Freire Rigatto da Cruz, Suellen, Fabio De Assis Ressel Pereira, Daniel Da Cunha Ribeiro, André Leibsohn Martins und Oldrich Joel Romero. „STUDY OF CALCITE PRECIPITATION IN WELL CONDITIONS USING THE DDPM-DPM APPROACH“. Latin American Applied Research - An international journal 51, Nr. 2 (20.03.2021): 101–6. http://dx.doi.org/10.52292/j.laar.2021.215.

Der volle Inhalt der Quelle
Annotation:
The extraction of oil results in problems such as the scale formation in the various stages of the production process. The scale reduces all or part of the flow conduits, increasing the pressure drop and reducing oil production. In this work the three dimensional, transient, turbulent, biphasic problem is solved by combining the Dense Discrete Phase Model (DDPM) and Discrete Element Method (DEM), to analyze the influence of certain parameters on the particle deposition, which represents the calcium carbonate scale formation, inside the wall of a horizontal pipeline at well conditions. The obtained results show that particle deposition is higher at lower Reynolds numbers. The results also show that the use of DEM model is more representative, but due to the high computational effort required, it application in complex geometries must be carefully evaluated.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Ohsaki, Shuji, Ryosuke Mitani, Saki Fujiwara, Hideya Nakamura und Satoru Watano. „Numerical Simulation of Particle Motions in Cascade Impactor and Human Respiratory System“. MATEC Web of Conferences 333 (2021): 02013. http://dx.doi.org/10.1051/matecconf/202133302013.

Der volle Inhalt der Quelle
Annotation:
Dry powder inhalations (DPIs) have gathered attention as a treatment for respiratory diseases due to the large effective absorption area in a human lung. A cascade impactor is generally used to investigate the inhalation performance of DPIs. For the improvement of the efficiency of DPIs, understanding the particle motion and deposition behavior in the human lung and the cascade impactor is required. In the present study, computer simulations were conducted to calculate the particle motion and deposition behavior in the human lung and the cascade impactor. As simulation methods, a coupling model of a computational fluid dynamics and a discrete phase method (CFD−DPM) and a coupling model of a CFD and a discrete element method (CFD−DEM) were used. The CFD−DEM simulation could reproduce the experimental particle deposition behavior in the cascade impactor, although it was difficult by the CFD−DPM simulation. Furthermore, the calculation results using the CFD−DEM simulation quantitatively demonstrated the higher particle reachability into the simple lung model when smaller particles were used. It was found that the CFD−DEM simulation is a powerful tool to calculate the particle motion and deposition behavior in the cascade impactor and human lung.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Ohsaki, Shuji, Ryosuke Mitani, Saki Fujiwara, Hideya Nakamura und Satoru Watano. „Numerical Simulation of Particle Motions in Cascade Impactor and Human Respiratory System“. MATEC Web of Conferences 333 (2021): 02013. http://dx.doi.org/10.1051/matecconf/202133302013.

Der volle Inhalt der Quelle
Annotation:
Dry powder inhalations (DPIs) have gathered attention as a treatment for respiratory diseases due to the large effective absorption area in a human lung. A cascade impactor is generally used to investigate the inhalation performance of DPIs. For the improvement of the efficiency of DPIs, understanding the particle motion and deposition behavior in the human lung and the cascade impactor is required. In the present study, computer simulations were conducted to calculate the particle motion and deposition behavior in the human lung and the cascade impactor. As simulation methods, a coupling model of a computational fluid dynamics and a discrete phase method (CFD−DPM) and a coupling model of a CFD and a discrete element method (CFD−DEM) were used. The CFD−DEM simulation could reproduce the experimental particle deposition behavior in the cascade impactor, although it was difficult by the CFD−DPM simulation. Furthermore, the calculation results using the CFD−DEM simulation quantitatively demonstrated the higher particle reachability into the simple lung model when smaller particles were used. It was found that the CFD−DEM simulation is a powerful tool to calculate the particle motion and deposition behavior in the cascade impactor and human lung.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Xu, Rang Shu, Juan Juan Wang, Wei Xu und Li Bo Liu. „Numerical DPM Model for Two-Phase Flow in Aero-Engine Bearing Chamber“. Advanced Materials Research 201-203 (Februar 2011): 2267–70. http://dx.doi.org/10.4028/www.scientific.net/amr.201-203.2267.

Der volle Inhalt der Quelle
Annotation:
The main bearing chamber is a major part of the lubrication system in aero-engine, it is important to know the influence of operation parameters on air/oil two-phase flow, so as to optimize the design of aero-engine lubrication system. The air/oil two-phase flow in a simplified bearing chamber model in an aero-engine is simulated by means of discrete phase model (DPM) and wall-film model with CFD approach. The simulation results coincide with the existing experimental data. The oil film thickness and concentration of droplets in bearing chamber are presented at different rotational speeds and different lubricating oil flow rates.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Chang, Ping, Guang Xu, Fubao Zhou, Benjamin Mullins und S. Abishek. „Comparison of underground mine DPM simulation using discrete phase and continuous phase models“. Process Safety and Environmental Protection 127 (Juli 2019): 45–55. http://dx.doi.org/10.1016/j.psep.2019.04.027.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Li, Liang Chao. „CFD-DPM Modeling of Gas-Liquid Flow in a Stirred Vessel“. Advanced Materials Research 550-553 (Juli 2012): 979–83. http://dx.doi.org/10.4028/www.scientific.net/amr.550-553.979.

Der volle Inhalt der Quelle
Annotation:
Gas-liquid flow in a stirred vessel was simulated numerically with computational fluid dynamics(CFD). Gas was treated as discrete phase and described by discrete phase model (DPM), while the liquid was considered as a continuum and solved under Euler reference frame. The liquid velocity, gas holdup and gas residence time distribution in the stirred vessel were predicted. The simulation results show that gas dispersion in the stirred vessel is very non-uniformity and high gas holdup is found in the centre of the stirred vessel and vortexes while relatively low in bottom region and region between two impellers. Liquid velocity has great influence on bubble residence time and size distributions.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Cârlescu, Petru, Ioan Tenu, Marius Baetu und Radu Rosca. „CFD Study on must of Grapes Separation in a Hydrocyclone“. Advanced Materials Research 837 (November 2013): 645–50. http://dx.doi.org/10.4028/www.scientific.net/amr.837.645.

Der volle Inhalt der Quelle
Annotation:
Abstract. Hydrocyclones are increasingly used in the food industry for various separation and purification. In this paper, an optimization was made to design a hydrocyclone model using CFD (Computational Fluid Dynamics). CFD simulation is performed with FLUENT software by coupling the Reynolds Stress Model (RSM) for must of grapes flow with Discrete Phase Model (DPM) for solid particles trajectory. Coupling of discrete phase (particles) and continuous phase (must of grapes) in the mathematical model is set so that the continuous phase to influence discrete phase. Tracking particles traiectory in this hydrocyclone allows advanced degree is separation so obtained to the maximum particle size approaching the size of a yeast cell 10 μm, without separating them. Hydrocyclone dimensional designed simulation was performed and analyzed on an experimental pilot plant for three different must flow rates supply. Introduced particle flow rates simulation and experiment does not exceed 10% of the must flow rates. The degree of separation obtained is in agreement with experimental data.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

M.Mukhtar, M. A. Fatah, Aizat Abas, M. S. Haslinda, F. Che Ani, M. Z. Abdullah, A. Jalar und R. Ismail. „Discrete Phase Model (DPM) study of nano-reinforced Lead Free Solder Sn-3.0Ag-0.5Cu (SAC305)“. IOP Conference Series: Materials Science and Engineering 370 (Mai 2018): 012067. http://dx.doi.org/10.1088/1757-899x/370/1/012067.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Dissertationen zum Thema "Discrete Phase Model DPM"

1

Kupčíková, Laura. „Částice plovoucí na volné hladině vln“. Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2021. http://www.nusl.cz/ntk/nusl-444637.

Der volle Inhalt der Quelle
Annotation:
This master’s thesis deals with analytical and numerical description of surface gravity waves. Wave theories and their influence on water particle movement is described in the theoretical part of the thesis. Water particle moves in the same direction as wave propagation and this phenomenon is called Stokes drift. It has a significant influence on sediment transport and floating particle movement at water free surface. The experimental part consists of wave profile monitoring and water particle tracking in a wave flume with wave generator and beach model. The experimental results are compared with numerical simulation performed in the ANSYS Fluent software. Finally, the wave profiles obtained from simulation are compared with experimental wave profiles extracted by digital image processing.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Peña, Monferrer Carlos. „Computational fluid dynamics multiscale modelling of bubbly flow. A critical study and new developments on volume of fluid, discrete element and two-fluid methods“. Doctoral thesis, Universitat Politècnica de València, 2017. http://hdl.handle.net/10251/90493.

Der volle Inhalt der Quelle
Annotation:
The study and modelling of two-phase flow, even the simplest ones such as the bubbly flow, remains a challenge that requires exploring the physical phenomena from different spatial and temporal resolution levels. CFD (Computational Fluid Dynamics) is a widespread and promising tool for modelling, but nowadays, there is no single approach or method to predict the dynamics of these systems at the different resolution levels providing enough precision of the results. The inherent difficulties of the events occurring in this flow, mainly those related with the interface between phases, makes that low or intermediate resolution level approaches as system codes (RELAP, TRACE, ...) or 3D TFM (Two-Fluid Model) have significant issues to reproduce acceptable results, unless well-known scenarios and global values are considered. Instead, methods based on high resolution level such as Interfacial Tracking Method (ITM) or Volume Of Fluid (VOF) require a high computational effort that makes unfeasible its use in complex systems. In this thesis, an open-source simulation framework has been designed and developed using the OpenFOAM library to analyze the cases from microescale to macroscale levels. The different approaches and the information that is required in each one of them have been studied for bubbly flow. In the first part, the dynamics of single bubbles at a high resolution level have been examined through VOF. This technique has allowed to obtain accurate results related to the bubble formation, terminal velocity, path, wake and instabilities produced by the wake. However, this approach has been impractical for real scenarios with more than dozens of bubbles. Alternatively, this thesis proposes a CFD Discrete Element Method (CFD-DEM) technique, where each bubble is represented discretely. A novel solver for bubbly flow has been developed in this thesis. This includes a large number of improvements necessary to reproduce the bubble-bubble and bubble-wall interactions, turbulence, velocity seen by the bubbles, momentum and mass exchange term over the cells or bubble expansion, among others. But also new implementations as an algorithm to seed the bubbles in the system have been incorporated. As a result, this new solver gives more accurate results as the provided up to date. Following the decrease on resolution level, and therefore the required computational resources, a 3D TFM have been developed with a population balance equation solved with an implementation of the Quadrature Method Of Moments (QMOM). The solver is implemented with the same closure models as the CFD-DEM to analyze the effects involved with the lost of information due to the averaging of the instantaneous Navier-Stokes equation. The analysis of the results with CFD-DEM reveals the discrepancies found by considering averaged values and homogeneous flow in the models of the classical TFM formulation. Finally, for the lowest resolution level approach, the system code RELAP5/MOD3 is used for modelling the bubbly flow regime. The code has been modified to reproduce properly the two-phase flow characteristics in vertical pipes, comparing the performance of the calculation of the drag term based on drift-velocity and drag coefficient approaches.
El estudio y modelado de flujos bifásicos, incluso los más simples como el bubbly flow, sigue siendo un reto que conlleva aproximarse a los fenómenos físicos que lo rigen desde diferentes niveles de resolución espacial y temporal. El uso de códigos CFD (Computational Fluid Dynamics) como herramienta de modelado está muy extendida y resulta prometedora, pero hoy por hoy, no existe una única aproximación o técnica de resolución que permita predecir la dinámica de estos sistemas en los diferentes niveles de resolución, y que ofrezca suficiente precisión en sus resultados. La dificultad intrínseca de los fenómenos que allí ocurren, sobre todo los ligados a la interfase entre ambas fases, hace que los códigos de bajo o medio nivel de resolución, como pueden ser los códigos de sistema (RELAP, TRACE, etc.) o los basados en aproximaciones 3D TFM (Two-Fluid Model) tengan serios problemas para ofrecer resultados aceptables, a no ser que se trate de escenarios muy conocidos y se busquen resultados globales. En cambio, códigos basados en alto nivel de resolución, como los que utilizan VOF (Volume Of Fluid), requirieren de un esfuerzo computacional tan elevado que no pueden ser aplicados a sistemas complejos. En esta tesis, mediante el uso de la librería OpenFOAM se ha creado un marco de simulación de código abierto para analizar los escenarios desde niveles de resolución de microescala a macroescala, analizando las diferentes aproximaciones, así como la información que es necesaria aportar en cada una de ellas, para el estudio del régimen de bubbly flow. En la primera parte se estudia la dinámica de burbujas individuales a un alto nivel de resolución mediante el uso del método VOF (Volume Of Fluid). Esta técnica ha permitido obtener resultados precisos como la formación de la burbuja, velocidad terminal, camino recorrido, estela producida por la burbuja e inestabilidades que produce en su camino. Pero esta aproximación resulta inviable para entornos reales con la participación de más de unas pocas decenas de burbujas. Como alternativa, se propone el uso de técnicas CFD-DEM (Discrete Element Methods) en la que se representa a las burbujas como partículas discretas. En esta tesis se ha desarrollado un nuevo solver para bubbly flow en el que se han añadido un gran número de nuevos modelos, como los necesarios para contemplar los choques entre burbujas o con las paredes, la turbulencia, la velocidad vista por las burbujas, la distribución del intercambio de momento y masas con el fluido en las diferentes celdas por cada una de las burbujas o la expansión de la fase gaseosa entre otros. Pero también se han tenido que incluir nuevos algoritmos como el necesario para inyectar de forma adecuada la fase gaseosa en el sistema. Este nuevo solver ofrece resultados con un nivel de resolución superior a los desarrollados hasta la fecha. Siguiendo con la reducción del nivel de resolución, y por tanto los recursos computacionales necesarios, se efectúa el desarrollo de un solver tridimensional de TFM en el que se ha implementado el método QMOM (Quadrature Method Of Moments) para resolver la ecuación de balance poblacional. El solver se desarrolla con los mismos modelos de cierre que el CFD-DEM para analizar los efectos relacionados con la pérdida de información debido al promediado de las ecuaciones instantáneas de Navier-Stokes. El análisis de resultados de CFD-DEM permite determinar las discrepancias encontradas por considerar los valores promediados y el flujo homogéneo de los modelos clásicos de TFM. Por último, como aproximación de nivel de resolución más bajo, se investiga el uso uso de códigos de sistema, utilizando el código RELAP5/MOD3 para analizar el modelado del flujo en condiciones de bubbly flow. El código es modificado para reproducir correctamente el flujo bifásico en tuberías verticales, comparando el comportamiento de aproximaciones para el cálculo del término d
L'estudi i modelatge de fluxos bifàsics, fins i tot els més simples com bubbly flow, segueix sent un repte que comporta aproximar-se als fenòmens físics que ho regeixen des de diferents nivells de resolució espacial i temporal. L'ús de codis CFD (Computational Fluid Dynamics) com a eina de modelatge està molt estesa i resulta prometedora, però ara per ara, no existeix una única aproximació o tècnica de resolució que permeta predir la dinàmica d'aquests sistemes en els diferents nivells de resolució, i que oferisca suficient precisió en els seus resultats. Les dificultat intrínseques dels fenòmens que allí ocorren, sobre tots els lligats a la interfase entre les dues fases, fa que els codis de baix o mig nivell de resolució, com poden ser els codis de sistema (RELAP,TRACE, etc.) o els basats en aproximacions 3D TFM (Two-Fluid Model) tinguen seriosos problemes per a oferir resultats acceptables , llevat que es tracte d'escenaris molt coneguts i se persegueixen resultats globals. En canvi, codis basats en alt nivell de resolució, com els que utilitzen VOF (Volume Of Fluid), requereixen d'un esforç computacional tan elevat que no poden ser aplicats a sistemes complexos. En aquesta tesi, mitjançant l'ús de la llibreria OpenFOAM s'ha creat un marc de simulació de codi obert per a analitzar els escenaris des de nivells de resolució de microescala a macroescala, analitzant les diferents aproximacions, així com la informació que és necessària aportar en cadascuna d'elles, per a l'estudi del règim de bubbly flow. En la primera part s'estudia la dinàmica de bambolles individuals a un alt nivell de resolució mitjançant l'ús del mètode VOF. Aquesta tècnica ha permès obtenir resultats precisos com la formació de la bambolla, velocitat terminal, camí recorregut, estela produida per la bambolla i inestabilitats que produeix en el seu camí. Però aquesta aproximació resulta inviable per a entorns reals amb la participació de més d'unes poques desenes de bambolles. Com a alternativa en aqueix cas es proposa l'ús de tècniques CFD-DEM (Discrete Element Methods) en la qual es representa a les bambolles com a partícules discretes. En aquesta tesi s'ha desenvolupat un nou solver per a bubbly flow en el qual s'han afegit un gran nombre de nous models, com els necessaris per a contemplar els xocs entre bambolles o amb les parets, la turbulència, la velocitat vista per les bambolles, la distribució de l'intercanvi de moment i masses amb el fluid en les diferents cel·les per cadascuna de les bambolles o els models d'expansió de la fase gasosa entre uns altres. Però també s'ha hagut d'incloure nous algoritmes com el necessari per a injectar de forma adequada la fase gasosa en el sistema. Aquest nou solver ofereix resultats amb un nivell de resolució superior als desenvolupat fins la data. Seguint amb la reducció del nivell de resolució, i per tant els recursos computacionals necessaris, s'efectua el desenvolupament d'un solver tridimensional de TFM en el qual s'ha implementat el mètode QMOM (Quadrature Method Of Moments) per a resoldre l'equació de balanç poblacional. El solver es desenvolupa amb els mateixos models de tancament que el CFD-DEM per a analitzar els efectes relacionats amb la pèrdua d'informació a causa del promitjat de les equacions instantànies de Navier-Stokes. L'anàlisi de resultats de CFD-DEM permet determinar les discrepàncies ocasionades per considerar els valors promitjats i el flux homogeni dels models clàssics de TFM. Finalment, com a aproximació de nivell de resolució més baix, s'analitza l'ús de codis de sistema, utilitzant el codi RELAP5/MOD3 per a analitzar el modelatge del fluxos en règim de bubbly flow. El codi és modificat per a reproduir correctament les característiques del flux bifàsic en canonades verticals, comparant el comportament d'aproximacions per al càlcul del terme de drag basades en velocitat de drift flux model i de les basades en coe
Peña Monferrer, C. (2017). Computational fluid dynamics multiscale modelling of bubbly flow. A critical study and new developments on volume of fluid, discrete element and two-fluid methods [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/90493
TESIS
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Hardman, David. „Computational modelling of monocyte deposition in abdominal aortic aneurysms“. Thesis, University of Edinburgh, 2011. http://hdl.handle.net/1842/5585.

Der volle Inhalt der Quelle
Annotation:
Abdominal aortic aneurysm (AAA) disease involves a dilation of the aorta below the renal arteries. If the aneurysm becomes sufficiently dilated and tissue strength is less than vascular pressure, rupture of the aorta occurs entailing a high mortality rate. Despite improvements in surgical technique, the mortality rate for emergency repair remains high and so an accurate predictor of rupture risk is required. Inflammation and the associated recruitment of monocytes into the aortic wall are critical in the pathology of AAA disease, stimulating the degradation and remodeling of the vessel wall. Areas with high concentrations of macrophages may experience an increase in tissue degradation and therefore an increased risk of rupture. Determining the magnitude and distribution of monocyte recruitment can help us understand the pathology of AAA disease and add spatial accuracy to the existing rupture risk prediction models. In this study finite element computational fluid dynamics simulations of AAA haemodynamics are seeded with monocytes to elucidate patterns of cell deposition and probability of recruitment. Haemodynamics are first simulated in simplified AAA geometries of varying diameters with a patient averaged flow waveform inlet boundary condition. This allows a comparison with previous experimental investigations as well as determining trends in monocyte adhesion with aneurysm progression. Previous experimental investigations show a transition to turbulent flow occurring during the deceleration phase of the cardiac cycle. There has thus far been no investigation into the accuracy of turbulence models in simulating AAA haemodynamics and so simulations are compared using RNG κ − ε, κ − ω and LES turbulence models. The RNG κ − ε model is insufficient to model secondary flows in AAA and LES models are sensitive to inlet turbulence intensity. The probability of monocyte adhesion and recruitment depends on cell residence time and local wall shear stress. A near wall particle residence time (NWPRT)model is created incorporating a wall shear stress-limiter based on in vitro experimental data. Simulated haemodynamics show qualitative agreement with experimental results. Peaks of maximum NWPRT move downstream in successively larger geometries, correlating with vortex behaviour. Average NWPRT rises sharply in models above a critical maximum diameter. These techniques are then applied to patient-specific AAAs. Geometries are created from CT slices and velocity boundary conditions taken from Phase Contrast-MRI (PC-MRI) data for 3 patients. There is no gold standard for inlet boundary conditions and so simulations using 3 velocity components, 1 velocity component and parabolic flow profiles at the inlet are compared with each other and with PC-MRI data at the AAA midsection. The general trends in flow and wall shear stress are similar between simulations with 3 and 1 components of inlet velocity despite differences in the nature and complexity of secondary flow. Applying parabolic velocity profiles, however, can cause significant deviations in haemodynamics. Axial velocities show average to good correlation with PC-MRI data though the lower magnitude radial velocities produce high levels of noise in the raw data making comparisons difficult. Patient specific NWPRT models show monocyte infiltration is most likely at or around the iliac bifurcation.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Aldhafeery, Yousif. „Modeling of Argon-Molten steel flow in a slab continuous caster by discrete phase model“. Thesis, McGill University, 2012. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=110686.

Der volle Inhalt der Quelle
Annotation:
Improvement of steel products cleanliness and alleviating problems related to Submerged Entry Nozzle (SEN) clogging are two main requirements for the efficient operation of a steel continuous caster. Argon injection is employed to achieve these objectives. Unfortunately, argon may cause quality defects related to slag entrainment and/or pencil pipe defect as well as influence molten steel flows and temperature distributions in the SEN and in the mold region.The well-known k-ω turbulence model, together with the 3D continuity, momentum and energy equations, was employed in order to predict and quantify the single-phase velocity fields and temperature distributions for the upper mold region of a slab continuous caster. In addition, the Discrete Phase Model (DPM), which incorporates bi-directional momentum coupling and force balance over discrete bubbles, was used to simulate the two-phase liquid steel-argon flows. Transient 3D numerical simulations were carried out using the ANSYS-FLUENT code (version 12) for various injection rates of discrete argon bubbles from a porous stopper-rod into a quarter-model of SEN and mold configuration.Influence of argon injection parameters, like injection rate and bubble size, for different casting speeds of a conventional slab caster were studied thoroughly. A comparison between predicted surface velocity results and experimental results from the literature show an acceptable agreement. Simulations indicate that high argon injection rates are detrimental to flow patterns, this is especially true for low casting speeds. Since under these conditions there is a high probability of slag emulsification and bubble entrapment. Argon injection, especially with small bubble sizes, usually forms two velocity peaks at the meniscus level.These peaks have less-dominant effects for lower injection rates and/or larger bubble sizes. Whereas, higher casting speeds reduce the impact of gas injection near SEN walls due to the lower gas volume fraction in that region but enhances the superheat dissipation rate at the mold's upper region.The present modeling results show that the DPM simulations can provide reasonable qualitative guidelines in characterizing the complex molten steel-argon gas flow in the mold. The present numerical parametric study suggests that a proper control of argon injection rate, corresponding to a specific casting speed, is essential in obtaining optimum flow patterns, in reducing the slag entrainment and cold spots, and in enhancing superheat dissipation rates.
L‟amélioration de la propreté de l'acier fondu et la réduction des problèmes liés au colmatage de la busette immergée (SEN) sont deux principaux critères pour un fonctionnement efficace d‟une coulée continue d‟acier. L'injection d'argon est utilisée pour atteindre ces objectifs. Cependant, l'argon peut causer des défauts de qualité liés à l'entraînement de laitier et / ou aux défauts de type "pencil pipe" et affecter les flux d'acier en fusion et les distributions de température dans le SEN et dans la région du moule.Le modèle bien connu de turbulence k-ω, ainsi que la continuité, la dynamique et les équations 3D de l'énergie, ont été employés afin de prédire et de quantifier les champs de vitesse monophasés et les distributions de température pour la région supérieure d'une brame de coulée continue. En outre, le Modèle de la Phase Discrète (DPM), qui comporte un couplage de moments bidirectionnel et l'équilibre des forces sur des bulles discrètes, a été utilisé pour simuler les flux du liquide à deux phases acier-argon. Les simulations 3D en régime transitoire ont été réalisées par ANSYS FLUENT-code (version 12) pour différents taux d'injection de bulles discrètes d'argon à partir d'un bouchon-tige poreux dans un modèle quart de SEN et de configuration du moule.L'influence des paramètres d'injection d'argon, comme le taux d'injection et la taille des bulles, pour des vitesses de coulée différentes d'un caster classique a été étudié à fond. Une comparaison entre les résultats prévus de vitesse de surface et les résultats expérimentaux de la littérature montre un accord acceptable. Des simulations indiquent que le niveau élevé des taux d'injection d'argon est préjudiciable au modèle des flux, ce qui est particulièrement vrai pour les faibles vitesses de coulée. Puisque, dans ces conditions, il y a une forte probabilité de scories d'émulsification et de piégeage de bulles. L'injection d'argon, en particulier avec des bulles de petite taille, forme habituellement deux pics de vitesse au niveau du ménisque. Ces pics ont des effets moins dominants sur les taux d'injection inférieurs et / ou les bulles de plus grande taille. Des vitesses de coulée élevées réduisent l'impact de l'injection de gaz près des murs SEN en raison de la fraction volumique de gaz inférieure dans cette région, mais améliorent le taux de dissipation de surchauffe dans la région supérieure du moule.Les résultats de cette modélisation montrent que les simulations DPM peuvent fournir des lignes directrices qualitatives raisonnables dans la caractérisation du flux gazeux fondu complexe acier-argon dans le moule. La présente étude numérique paramétrique suggère qu'un contrôle adéquat du taux d'injection d'argon, ce qui correspond à une vitesse de coulée spécifique, est essentiel dans l'obtention de modèles d'écoulement optimaux, pour réduire l'entraînement des scories et des points froids, et pour améliorer les taux de dissipation de la surchauffe.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Gersberg, Paul. „Confinement and driving effects on continuous and discrete model interfaces“. Thesis, Bordeaux, 2020. http://www.theses.fr/2020BORD0084.

Der volle Inhalt der Quelle
Annotation:
Cette thèse examine les propriétés de l’interface entre deux phases dans un système de phases séparées. Nous regardons comment les effets de taille finies modifient les propriétés statistiques de ces interfaces,en particulier comment la dépendance de l’énergie libre par rapport à la taille du système donne lieu à des interactions de Casimir critique à longue portée proche du point critique. Souvent, les interfaces sont décrites par des modèles simplifiés ou coarse-grained dont les seuls degrés de libertés ont les hauteurs de l’interface. Nous rappelons comment les propriétés statiques et dynamiques de ces interfaces sont retrouvées à partir de modèles microscopiques de spins et de la théorie statistique des champs. Nous étudions ensuite les effets de taille finie pour les interfaces continues comme le modèle Edwards-Wilkinson ou discrètes comme le modèle Solid-On-Solid,et discutons leur pertinence dans le cadre de l’effet Casimir critique. Dans la seconde partie de la thèse, nous examinons des modèles d’interfaces sous écoulement possédant des états stationnaires hors-équilibre. Nous développons ces équations dans le cadre du modèle C d’une interface,ayant un état stationnaire hors-équilibre lorsque soumis à un écoulement uniforme. L’état stationnaire hors-équilibre résultant exhibe des propriétés retrouvées dans les expériences sur des colloïdes sous cisaillement ,notamment la suppression des fluctuations de la hauteur de l’interface et une augmentation de la longueur de corrélation des fluctuations. Finalement,nous proposons un nouveau modèle pour des interfaces uni-dimensionnelles qui est une modification du modèle Solid-on-Solid contenant un terme supplémentaire d’entropie, dont la correspondance à des systèmes physiques reste à être trouvée
This thesis examines the properties of the interface between two phases in phase separated systems. We are interested in how finite size effects modify the statistical properties of these interfaces, in particular how the dependence of the free energy on the system size gives rise to long range critical Casimir forces close to thecritical point. Often the interfaces in phase separated systems are described by simplified or coarsegrained models whose only degrees of freedom are the interface height. We review how the statics and dynamics of these interface models can be derived from microscopic spin models and statistical field theories. We then examine finite size effects for continuous interface models such as the Edwards Wilkinson model and discrete models such as the Solid-On-Solid model and discuss their relevance to the critical Casimir effect. In the second part of the thesis we examine models of driven interfaces which have nonequilibrium steady states. We develop a model C type model of an interface which shows a nonequlibrium steady state even with constant driving. The resulting nonequlibrium steady state shows properties seen in experiments on sheared colloidal systems, notably the suppression of height fluctuations but an increase in the fluctuations’correlation length. Finally we propose a new model for one dimensional interfaces which is a modification of the solid on-solid model and containing an extra entropic term ,whose correspondance with physical systems is yet to be found
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

土井, 克則, Katsunori DOI, Igor MEN'SHOV, 佳朗 中村 und Yoshiaki NAKAMURA. „衝撃波流れによって形成される粉塵雲の数値シミュレーション“. 日本機械学会, 2005. http://hdl.handle.net/2237/9089.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Pekel, Yusuf Okan. „Trajectory Computation Of Small Solid Particles Released And Carried By Flowfields Of Helicopters In Forward Flight“. Master's thesis, METU, 1995. http://etd.lib.metu.edu.tr/upload/12611535/index.pdf.

Der volle Inhalt der Quelle
Annotation:
In this thesis, trajectory computations of chaff particles ejected from a medium weight utility helicopter are performed using computational fluid dynamics. Since these chaff particles are ejected from a helicopter and carried by its flow field, it is necessary to compute and include the effects of the helicopter flow field in general and engine hot gases, main and tail rotor wakes in particular. The commercial code FLUENT is used for flow field and trajectory computations. Both main rotor and tail rotor are simulated by the so-called Virtual Blade Model in a transient fashion. Flows through the engine inlets and exhausts are treated via appropriate boundary conditions in the analysis. The generic ROBIN geometry is studied first in order to assess the accuracy of the Virtual Blade Model and various turbulence models. The computational solutions related to the ROBIN geometry are validated against the available experimental data. Flowfield and trajectory computations of chaff particles are done at a forward flight condition at which certain flight data and chaff trajectory data were acquired by ASELSAN, Inc. In the flight test, three successive chaff decoy ejections were conducted, and the chaff cloud distributions were recorded by two high-speed cameras positioned on two different locations on the helicopter. Numerical calculations employ the post-processed camera recordings for setting the initial distributions of the chaff particles. Then, the computational results related to the chaff particle trajectories are validated by comparing to the recorded transient chaff cloud distributions from the ASELSAN flight test. For post-processing of the recorded chaff distributions, an experimental analysis commercial code called TrackEye is used. It is found that the numerical simulations capture the trends of chaff particle distributions reasonably well.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Björnberg, Jakob Erik. „Graphical representations of Ising and Potts models : Stochastic geometry of the quantum Ising model and the space-time Potts model“. Doctoral thesis, KTH, Matematik (Inst.), 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-11267.

Der volle Inhalt der Quelle
Annotation:
HTML clipboard Statistical physics seeks to explain macroscopic properties of matter in terms of microscopic interactions. Of particular interest is the phenomenon of phase transition: the sudden changes in macroscopic properties as external conditions are varied. Two models in particular are of great interest to mathematicians, namely the Ising model of a magnet and the percolation model of a porous solid. These models in turn are part of the unifying framework of the random-cluster representation, a model for random graphs which was first studied by Fortuin and Kasteleyn in the 1970’s. The random-cluster representation has proved extremely useful in proving important facts about the Ising model and similar models. In this work we study the corresponding graphical framework for two related models. The first model is the transverse field quantum Ising model, an extension of the original Ising model which was introduced by Lieb, Schultz and Mattis in the 1960’s. The second model is the space–time percolation process, which is closely related to the contact model for the spread of disease. In Chapter 2 we define the appropriate space–time random-cluster model and explore a range of useful probabilistic techniques for studying it. The space– time Potts model emerges as a natural generalization of the quantum Ising model. The basic properties of the phase transitions in these models are treated in this chapter, such as the fact that there is at most one unbounded fk-cluster, and the resulting lower bound on the critical value in . In Chapter 3 we develop an alternative graphical representation of the quantum Ising model, called the random-parity representation. This representation is based on the random-current representation of the classical Ising model, and allows us to study in much greater detail the phase transition and critical behaviour. A major aim of this chapter is to prove sharpness of the phase transition in the quantum Ising model—a central issue in the theory— and to establish bounds on some critical exponents. We address these issues by using the random-parity representation to establish certain differential inequalities, integration of which gives the results. In Chapter 4 we explore some consequences and possible extensions of the results established in Chapters 2 and 3. For example, we determine the critical point for the quantum Ising model in and in ‘star-like’ geometries.
HTML clipboard Statistisk fysik syftar till att förklara ett materials makroskopiska egenskaper i termer av dess mikroskopiska struktur. En särskilt intressant egenskap är är fenomenet fasövergång, det vill säga en plötslig förändring i de makroskopiska egenskaperna när externa förutsättningar varieras. Två modeller är särskilt intressanta för en matematiker, nämligen Ising-modellen av en magnet och perkolationsmodellen av ett poröst material. Dessa två modeller sammanförs av den så-kallade fk-modellen, en slumpgrafsmodell som först studerades av Fortuin och Kasteleyn på 1970-talet. fk-modellen har sedermera visat sig vara extremt användbar för att bevisa viktiga resultat om Ising-modellen och liknande modeller. I den här avhandlingen studeras den motsvarande grafiska strukturen hos två näraliggande modeller. Den första av dessa är den kvantteoretiska Isingmodellen med transverst fält, vilken är en utveckling av den klassiska Isingmodellen och först studerades av Lieb, Schultz och Mattis på 1960-talet. Den andra modellen är rumtid-perkolation, som är nära besläktad med kontaktmodellen av infektionsspridning. I Kapitel 2 definieras rumtid-fk-modellen, och flera probabilistiska verktyg utforskas för att studera dess grundläggande egenskaper. Vi möter rumtid-Potts-modellen, som uppenbarar sig som en naturlig generalisering av den kvantteoretiska Ising-modellen. De viktigaste egenskaperna hos fasövergången i dessa modeller behandlas i detta kapitel, exempelvis det faktum att det i fk-modellen finns högst en obegränsad komponent, samt den undre gräns för det kritiska värdet som detta innebär. I Kapitel 3 utvecklas en alternativ grafisk framställning av den kvantteoretiska Ising-modellen, den så-kallade slumpparitetsframställningen. Denna är baserad på slumpflödesframställningen av den klassiska Ising-modellen, och är ett verktyg som låter oss studera fasövergången och gränsbeteendet mycket närmare. Huvudsyftet med detta kapitel är att bevisa att fasövergången är skarp—en central egenskap—samt att fastslå olikheter för vissa kritiska exponenter. Metoden består i att använda slumpparitetsframställningen för att härleda vissa differentialolikheter, vilka sedan kan integreras för att lägga fast att gränsen är skarp. I Kapitel 4 utforskas några konsekvenser, samt möjliga vidareutvecklingar, av resultaten i de tidigare kapitlen. Exempelvis bestäms det kritiska värdet hos den kvantteoretiska Ising-modellen på , samt i ‘stjärnliknankde’ geometrier.
QC 20100705
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Hennicker, Julian. „Discrétisation gradient de modèles d’écoulements à dimensions hybrides dans les milieux poreux fracturés“. Thesis, Université Côte d'Azur (ComUE), 2017. http://www.theses.fr/2017AZUR4057/document.

Der volle Inhalt der Quelle
Annotation:
Cette thèse porte sur la modélisation et la discrétisation d’écoulements Darcy dans les milieux poreux fracturés. Nous suivons l’approche des modèles, dits à dimensions hybrides, qui représentent les réseaux de fractures comme des surfaces de codimension 1 immergées dans la matrice. Les modèles considérés prennent en compte les interactions entre matrice et fractures et permettent de traiter des fractures agissant comme conduites ou comme barrières, ce que nécessite de prendre en compte les sauts de pression aux interfaces matrice-fracture. Dans le cas des écoulements diphasiques, nous proposons des modèles, qui prennent en compte les sauts de saturations aux interfaces matrice-fracture, dû à la capillarité. L’analyse numérique est menée dans le cadre général de la méthode de discrétisations gradients, qui est étendue aux modèles considérés. Deux familles de schémas numériques, le schéma Vertex Approximate Gradient et le schéma Volumes Finis Hybrides sont adaptées aux modèles à dimensions hybrides. On prouve via des résultats de densité que ce sont des schémas gradients, pour lesquels la convergence est établie. En diphasique, l’existence d’une solution est obtenue en passant. Plusieurs cas tests sont présentés. En monophasique, on observe la convergence sur des différents types de mailles pour une famille de solutions dans un milieux fracturé hétérogène et anisotrope. En diphasique, nous présentons une série de cas tests afin de comparer les modèles à dimensions hybrides au modèle de référence, dans lequel les fractures ont la même dimension que la matrice. A part quantifier le gain en performance de calcul, ces tests montrent la qualité des différents modèles réduits
This thesis investigates the modelling of Darcy flow through fractured porous media and its discretization on general polyhedral meshes. We follow the approach of hybrid dimensional models, invoking a complex network of planar fractures. The models account for matrix-fracture interactions and fractures acting either as drains or as barriers, i.e. we have to deal with pressure discontinuities at matrix-fracture interfaces. In the case of two phase flow, we present two models, which permit to treat gravity dominated flow as well as discontinuous capillary pressure at the material interfaces. The numerical analysis is performed in the general framework of the Gradient Discretisation Method, which is extended to the models under consideration. Two families of schemes namely the Vertex Approximate Gradient scheme (VAG) and the Hybrid Finite Volume scheme (HFV) are detailed and shown to fit in the gradient scheme framework, which yields, in particular, convergence. For single phase flow, we obtain convergence of order 1 via density results. For two phase flow, the existence of a solution is obtained as a byproduct of the convergence analysis. Several test cases are presented. For single phase flow, we study the convergence on different types of meshes for a family of solutions. For two phase flow, we compare the hybrid-dimensional models to the reference equidimensional model, in which fractures have the same dimension as the matrix. This does not only provide quantitative evidence about computational gain, but also leads to deep insight about the quality of the proposed reduced models
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Khosrow, Ebrahimi. „Numerical simulation of turbulent airflow, tracer gas diffusion, and particle dispersion in a mockup aircraft cabin“. Diss., Kansas State University, 2012. http://hdl.handle.net/2097/13609.

Der volle Inhalt der Quelle
Annotation:
Doctor of Philosophy
Department of Mechanical and Nuclear Engineering
M.H. Hosni
Z.C. Zheng
In order to study the capability of computational methods in investigating the mechanisms associated with disease and contaminants transmission in aircraft cabins, the Computational Fluid Dynamics (CFD) models are used for the simulation of turbulent airflow, tracer gas diffusion, and particle dispersion in a generic aircraft cabin mockup. The CFD models are validated through comparisons of the CFD predictions with the corresponding experimental measurements. It is found that using Large Eddy Simulation (LES) with the Werner-Wengle wall function, one can predict unsteady airflow velocity field with relatively high accuracy. However in the middle region of the cabin mockup, where the recirculation of airflow takes place, the accuracy is not as good as that in other locations. By examining different k-ε models, the current study recommends the use of the RNG k-ε model with the non-equilibrium wall function as a Reynolds Averaged Navier Stokes (RANS) model for predicting the steady-state airflow velocity data. It is also found that changing the cabin air-inlet nozzle height has a significant effect on the flow behavior in the middle and upper part of the cabin, while the flow pattern in the lower part is not affected as much. Through the use of LES and species transport model in simulating tracer gas diffusion, very good agreement between predicted and measured tracer gas concentration data is observed for some monitoring locations, but the agreement level is not uniform for all the sampling point locations. The reasons for the deviations between predictions and measurements for those locations are discussed. The Lagrange-Euler approach is invoked in the particle dispersion simulations. In this approach, the equation of motion for the discrete phase is coupled with the continuous phase governing equations through the calculation of drag and buoyancy forces acting on particles. The continuous phase flow is turbulent and RANS is employed in order to calculate the continuous phase velocity field. A complete study on grid dependence for RANS simulation is performed through a controllable regional mesh refinement scheme. The grid dependence study shows that using unstructured grid with tetrahedral and hybrid elements in the refinement region are more efficient than using structured grid with hexahedral elements. The effect of turbulence on the particle dispersion is taken into account by using a stochastic tracking method (Discrete Random Walk model). One of the significant features of this study is the investigation of the effect of the number of tries on the accuracy of particle concentration predictions when Discrete Random Walk is used to model turbulent distribution of particles. Subsequently, the optimum number of tries to obtain the most accurate predictions is determined. In accordance with the corresponding experimental data, the effect of particle size on particle distribution is also studied and discussed through the simulation of two different sizes of mono-disperse particles in the cabin with straight injection tube, i.e., 3µm and 10µm. Due to the low particle loading, neglecting the effect of particles motion on the continuous phase flow-field seems to be a reasonable, simplifying assumption in running the simulations. However, this assumption is verified through the comparison of the results from 1-way and 2-way coupling simulations. Eventually through the simulations for the particle injection using the cone diffuser, the effects of cabin pressure gradient as well as the particle density on particles dispersion behavior are studied and discussed. In the last part of this dissertation, the turbulent airflow in a full-scale Boeing 767 aircraft cabin mockup with eleven rows of seats and manikins is simulated using steady RANS method. The results of this simulation cannot only be used to study the airflow pattern, but also can be used as the initial condition for running the tracer gas diffusion and particle dispersion simulations in this cabin mockup.
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Bücher zum Thema "Discrete Phase Model DPM"

1

M, Samonds, Singhal Ashok Kumar und United States. National Aeronautics and Space Administration, Hrsg. Discrete element weld model, phase II: Final report. Huntsville, Ala: CHAM of North America, 1987.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Boudreau, Joseph F., und Eric S. Swanson. Quantum spin systems. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198708636.003.0022.

Der volle Inhalt der Quelle
Annotation:
The quantum mechanical underpinnings of magnetism are explored via the Heisenberg model of antiferromagnetism. The Lanczos algorithm is developed and applied to obtain ground state properties of the anisotropic antiferromagnetic Heisenberg spin chain. In particular, the phase diagram for the system magnetization is determined. A quantum Monte Carlo method that is appropriate for discrete systems is also presented. The method leverages the similarity between the Schrödinger equation and the diffusion equation to compute energy levels. The formalism necessary to compute ground state matrix elements is also developed. Finally, the method is tested with an application to the spin chain.
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Buchteile zum Thema "Discrete Phase Model DPM"

1

Buot, F. A. „Discrete Phase-Space Model for Quantum Mechanics“. In Bell’s Theorem, Quantum Theory and Conceptions of the Universe, 159–62. Dordrecht: Springer Netherlands, 1989. http://dx.doi.org/10.1007/978-94-017-0849-4_24.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Pyrz, R., und B. Bochenek. „Discrete Model of Fracture in Disordered Two-Phase Materials“. In IUTAM Symposium on Microstructure-Property Interactions in Composite Materials, 313–26. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-011-0059-5_26.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Morla, Ramakrishna, Shivakumar Karekal, Ajit Godbole, Mahesh Sriwas, Jan Jacobs, Purushotham Tukkaraja und Brian Chapula. „Optimizing secondary fan location and air quantity to control DPM recirculation in underground workings using Discrete phase modelling“. In Mine Ventilation, 124–32. London: CRC Press, 2021. http://dx.doi.org/10.1201/9781003188476-13.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Nikitin, Kirill D., und Ruslan M. Yanbarisov. „Monotone Embedded Discrete Fracture Method for the Two-Phase Flow Model“. In Finite Volumes for Complex Applications IX - Methods, Theoretical Aspects, Examples, 557–64. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-43651-3_52.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Droniou, J., J. Hennicker und R. Masson. „Uniform-in-Time Convergence of Numerical Schemes for a Two-Phase Discrete Fracture Model“. In Springer Proceedings in Mathematics & Statistics, 275–83. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-57397-7_20.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Martin-Doñate, Cristina, Sliman Shaikheleid, Abelardo Torres-Alba und Jorge Manuel Mercado-Colmenero. „A New Smart Web Platform for Plastic Injection Molds in Industry 4.0 Environments“. In Lecture Notes in Mechanical Engineering, 309–15. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-70566-4_49.

Der volle Inhalt der Quelle
Annotation:
AbstractThis paper presents a new smart web platform for plastic injection molds for use in industry 4.0 environments. The new platform requires as its only input the CAD model of the plastic part in a discrete format, the accuracy of the analysis, the thermoplastic material of which the part will be manufactured and the number of parts to manufacture per year. Using this information and through a fully automated process based on hybrid algorithms developed by the authors the smart platform generates an extended CAD model of the mold with additional expert information useful for industry 4.0 environments. In this way, it is possible to design a mold with uniform heat transfer, balanced ejection and a uniform filling phase of the mold cavity. The presented platform differ from other applications for mold designing in that the resulting mold meets all the geometric, functional and technological requirements of mold designing without needing CAE simulation software for its validation. The presented platform is considered as the first smart platform that does not require the interaction of the designer in the process of dimensioning and designing the different subsystems that compound the mold, being a tool to reduce time and costs in the initial phases of plastic part design and with the ability to integrate into a flexible manufacturing environment 4.0.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Calitoiu, Dragos, B. John und Doron Nussbaum. „Computing the Vulnerable Phase in a 2D Discrete Model of the Hodgkin-Huxley Neuron“. In Brain, Vision and AI. InTech, 2008. http://dx.doi.org/10.5772/6045.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Jensen, Lasse, und Piet Th. van Duijnen. „THE DISCRETE SOLVENT REACTION FIELD MODEL: A QUANTUM MECHANICS/MOLECULAR MECHANICS MODEL FOR CALCULATING NONLINEAR OPTICAL PROPERTIES OF MOLECULES IN CONDENSED PHASE“. In Atoms, Molecules and Clusters in Electric Fields, 283–325. PUBLISHED BY IMPERIAL COLLEGE PRESS AND DISTRIBUTED BY WORLD SCIENTIFIC PUBLISHING CO., 2006. http://dx.doi.org/10.1142/9781860948862_0008.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Epelle, Emmanuel I., und Dimitrios I. Gerogiorgis. „The Influence of Cuttings Polydispersity on Wellbore Cleaning Operations using the Kinetic Theory of Granular Flow and the Dense Discrete Phase Model“. In 31st European Symposium on Computer Aided Process Engineering, 247–52. Elsevier, 2021. http://dx.doi.org/10.1016/b978-0-323-88506-5.50040-1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Nikolaidou, Mara, und Nancy Alexopoulou. „Frameworks for Model-Based Design of Enterprise Information Systems“. In Handbook of Research on Modern Systems Analysis and Design Technologies and Applications, 326–56. IGI Global, 2009. http://dx.doi.org/10.4018/978-1-59904-887-1.ch021.

Der volle Inhalt der Quelle
Annotation:
System design is an important phase of system engineering, determining system architecture to satisfy specific requirements. System design focuses on analyzing performance requirements, system modeling and prototyping, defining and optimizing system architecture, and studying system design tradeoffs and risks. Modern enterprise information systems (EIS) are distributed systems usually built on multitiered client server architectures, which can be modeled using well-known frameworks, such as Zachman enterprise architecture or open distributed processing reference model (RM-ODP). Both frameworks identify different system models, named views, corresponding to discrete stakeholder’s perspectives, specific viewpoints, and could serve as a basis for model-based system design. The main focus of this chapter is to explore the potential of model-based design for enterprise information systems (EIS). To this end, the basic requirements for model-based EIS design are identified, while three alternative approaches are discussed based on the above requirements, namely, rational unified process for systems engineering (RUP SE), UML4ODP and EIS design framework.
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Konferenzberichte zum Thema "Discrete Phase Model DPM"

1

Khan, Jobaidur R. „Comparison Between Discrete Phase Model and Multiphase Model for Wet Compression“. In ASME Turbo Expo 2013: Turbine Technical Conference and Exposition. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/gt2013-96022.

Der volle Inhalt der Quelle
Annotation:
Gas turbine inlet fog / overspray cooling is considered as a simple and effective method to increase power output. To help understand the water mist transport in the compressor flow passage, this study conducts a computational simulation of wet compression in a single rotor-stator compressor stage using the commercial code, Fluent. A sliding mesh scheme is used to simulate the stator-rotor interaction in a rotating frame. Previous researchers have modeled wet compression using DPM (Discrete Phase Model), where spray amount is very small (1–2%). Compressor washing is also becoming a new interest in the wet compression technology, which involves much higher amount of water (10–15%), which is not easy to handle with DPM. It can be done by multiphase model. To start compressor washing it is important to validate wet compression (1–2% spray) using DPM and the same using multiphase. This study takes the initial step to compare these two models, however multiphase model needs further development to perform an apple to apple comparison with DPM.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Zahari, N. M., M. H. Zawawi, L. M. Sidek, Daud Mohamad, Zarina Itam, M. Z. Ramli, Agusril Syamsir, Aizat Abas und M. Rashid. „Introduction of discrete phase model (DPM) in fluid flow: A review“. In GREEN DESIGN AND MANUFACTURE: ADVANCED AND EMERGING APPLICATIONS: Proceedings of the 4th International Conference on Green Design and Manufacture 2018. Author(s), 2018. http://dx.doi.org/10.1063/1.5066875.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Yang, Hyunjin, Surya P. Vanka und Brian G. Thomas. „Hybrid Eulerian Eulerian Discrete Phase Model of Turbulent Bubbly Flow“. In ASME 2017 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/imece2017-70337.

Der volle Inhalt der Quelle
Annotation:
The Eulerian-Eulerian two-fluid model [1] (EE) is the most general model in multiphase flow computations. One limitation of the EE model is that it has no ability to estimate the local bubble sizes by itself. Thus, it must be complemented either by measurements of bubble size distribution or by additional models such as population balance theory or interfacial area concentration to get the local bubble size information. In this work, we have combined the Discrete Phase model (DPM) [2,8] to estimate the evolution of bubble sizes with the Eulerian-Eulerian model. The bubbles are tracked individually as point masses, and the change of bubble size distribution is estimated by additional coalescence and breakup modeling of the bubbles. The time varying bubble distribution is used to compute the local interface area between gas and liquid phase, which is used to estimate the momentum interactions such as drag, lift, wall lubrication and turbulent dispersion forces. This model is applied to compute an upward flowing bubbly flow in a vertical pipe and the results are compared with previous experimental work of Hibiki et al. [3]. The newly developed hybrid model (EEDPM) is able to reasonably predict the locally different bubble sizes and the velocity and void fraction fields. On the other hand, the standard EE model without the DPM shows good comparison with measurements only when the prescribed constant initial bubble size is accurate and does not change much.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Feng, Yu, und Clement Kleinstreuer. „DDPM-DEM Simulations of Particulate Flows in Human Tracheobronchial Airways“. In ASME 2013 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/imece2013-62307.

Der volle Inhalt der Quelle
Annotation:
Dense particle-suspension flows in which particle-particle interactions are a dominant feature encompass a diverse range of industrial and geophysical contexts, e.g., slurry pipeline, fluidized beds, debris flows, sediment transport, etc. The one-way dispersed phase model (DPM), i.e., the conventional one-way coupling Euler-Lagrange method is not suitable for dense fluid-particle flows [1]. The reason is that such commercial CFD-software does not consider the contact between the fluid, particles and wall surfaces with respect to particle inertia and material properties. Hence, two-way coupling of the Dense Dispersed Phase Model (DDPM) combined with the Discrete Element Method (DEM) has been introduced into the commercial CFD software via in-house codes. As a result, more comprehensive and robust computational models based on the DDPM-DEM method have been developed, which can accurately predict the dynamics of dense particle suspensions. Focusing on the interaction forces between particles and the combination of discrete and continuum phases, inhaled aerosol transport and deposition in the idealized tracheobronchial airways [2] was simulated and analyzed, generating more physical insight. In addition, it allows for comparisons between different numerical methods, i.e., the classical one-way Euler-Lagrange method, two-way Euler-Lagrange method, EL-ER method [3], and the present DDPM-DEM method, considering micron- and nano-particle transport and deposition in human lungs.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Qaroot, Y. F., N. Kharoua und L. Khezzar. „Discrete Phase Modeling of Oil Droplets in the Gas Compartment of a Production Separator“. In ASME 2014 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/imece2014-37999.

Der volle Inhalt der Quelle
Annotation:
Computational Fluid Dynamics (CFD) is a powerful engineering tool that has different applications in the Petroleum Industry. In recent years, CFD has been used to analyze the complex 3D multiphase flow inside production separators. Due to changing reservoir conditions oil companies replace old internals with upgraded ones. In this study, a numerical simulation of the turbulent multiphase flow using the Discrete Phase Model (DPM) is used to assess the effects of the oil droplet size distribution on the oil carry-over in a production separator. Liquid droplet size distributions, meant to represent fine and coarse populations of oil droplets, were generated at the inlet of the separator within the range of sizes recommended in the literature for design purposes. The DPM model accounts for the key phenomena of droplets coalescence and breakup. Although the real case includes three phases, the present DPM simulations do not account for the water phase due to its negligible volume fraction and its prevailing gravitational settling compared to the carry-over effect. The new internals included; an inlet device known as Schoepentoeter, agglomerator, parallel-plates coalescer, and cyclonic mist extractor. Unlike many of the CFD studies reported in the literature, usually representing the internals by numerical models for simplicity, the internals of the separator were replicated with the maximum of geometrical details in this study. The present work was compared with field tests and previous numerical simulations using the Population Balance Model PBM. The PBM simulations considered the whole separator volume and the presence of three phases (gas, oil, water). The mean residence time obtained from the simulations agreed reasonably with some of the results published in the literature using semi-empirical formulas and experiments. The new internals were seen to promote droplet coalescence with minimal breakup. The new inlet device (Schoepentoeter), in particular, was found to contribute considerably to the coalescence of droplets and, hence, to separation.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Al, Baydu C., Kathy Simmons und Hervé P. Morvan. „Two-Phase Computational Modelling of a Spiral Bevel Gear Using a Eulerian Multiphase Model“. In ASME Turbo Expo 2015: Turbine Technical Conference and Exposition. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/gt2015-43541.

Der volle Inhalt der Quelle
Annotation:
The efficiency of power transmission systems is increasingly targeted with a view to reducing parasitic losses and improving specific fuel consumption (SFC). One of the effects associated with such parasitic losses is gear windage power loss and this mechanism can be a significant contributor to overall heat-to-oil within large civil aeroengines. The University of Nottingham Technology Centre in Gas Turbine Transmission Systems has been conducting experimental and computational research into spiral bevel gear windage applicable to an aeroengine internal gearbox (IGB). The two-phase flows related to gear lubrication, shrouding and scavenging are complex. Good understanding of such flows can be used to balance lubrication needs with need to minimise oil volumes and parasitic losses. Previous computational investigations have primarily employed discrete phase modelling (DPM) to predict oil behaviour under the shroud [1, 2]. In this paper modelling capability has been investigated and extended through application of FLUENT’s Eulerian multiphase model. In addition, DPM modelling linked to FLUENT’s Lagrangian film model has been conducted. A control volume with periodic symmetry comprising a single tooth passage of the bevel gear has been modelled to keep the computational cost down.The results from both models are compared to each other and to available experimental visual data. Both models are found to perform acceptably with the Eulerian multiphase model yielding results closer to those observed experimentally. The use of DPM with a Eulerian film model is suggested for future work and extension to a full 360° model is recommended.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Zheng, Z. C., Z. Wei, J. S. Bennett und X. Yang. „Simulation and Comparison of Particle Injection in an Indoor Environment Using the Species Transport and Discrete Phase Models“. In ASME 2012 Fluids Engineering Division Summer Meeting collocated with the ASME 2012 Heat Transfer Summer Conference and the ASME 2012 10th International Conference on Nanochannels, Microchannels, and Minichannels. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/fedsm2012-72014.

Der volle Inhalt der Quelle
Annotation:
In simulating fluid/solid-particle multiphase -flows, various methods are available. One approach is the combined Euler-Lagrange method, which simulates the fluid phase flow in the Eulerian framework and the discrete phase (particle) motion in the Lagrangian framework simultaneously. The Lagrangian approach, where particle motion is determined by the current state of the fluid phase flow, is also called the discrete phase model (DPM), in the context of numerical flow simulation. In this method, the influence of the particle motions on the fluid flow can be included (two-way interactions) but are more commonly excluded (one-way interactions, when the discrete phase concentration is dilute. The other approach is to treat the particle number concentration as a continuous species, a necessarily passive quantity determined by the fluid flow, with no influences from the particles on the fluid flow (one-way interactions only), except to the extent the discrete phase “continuum” alters the overall fluid properties, such as density. In this paper, we compare these two methods with experimental data for an indoor environmental chamber. The effects of injection particle numbers and the related boundary conditions are investigated. In the Euler-Lagrange interaction or DPM model for incompressible flow, the Eulerian continuous phase is governed by the Reynolds-averaged N-S (RANS) equations. The motions of particles are governed by Newton’s second law. The effects of particle motions are communicated to the continuous phase through a force term in the RANS equations. The second formulation is a pure Eulerian type, where only the particle-number concentration is addressed, rather than the motion of each individual particle. The fluid flow is governed by the same RANS equations without the particle force term. The particle-number concentration is simulated by a species transport equation. Comparisons among the models and with experimental and literature data are presented. Particularly, results with different numbers of released particles in the DPM will be investigated.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Yang, Mo, Chunsun Guo, Yuwen Zhang und Zhangyang Kang. „Concentration Distribution Research of a Special DC Pulverized Coal Burner“. In ASME 2011 International Mechanical Engineering Congress and Exposition. ASMEDC, 2011. http://dx.doi.org/10.1115/imece2011-62988.

Der volle Inhalt der Quelle
Annotation:
There is a burner which bias block is located in different place compared with other pulverized coal burners. This special DC pulverized coal burner is used to achieve uniform distribution of the export concentration. By numerical method, this article has studied the concentration of this special distribution burner and analyzed internal characteristics. In order to research the effect of bias block in concentration distribution, this special distribution burner has been compared with the structure having no bias block. Euler-Lagrange method and discrete phase model (DPM) are employed to study the gas-solid two phase flow. Solid-phase is simulated in discrete phase model (DPM) and gas-phase in separation vortex (DES).
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Alihosseini, Maryam, und Paul Uwe Thamsen. „On Scouring Efficiency of Flush Waves in Sewers: A Numerical and Experimental Study“. In ASME-JSME-KSME 2019 8th Joint Fluids Engineering Conference. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/ajkfluids2019-4615.

Der volle Inhalt der Quelle
Annotation:
Abstract In sewer sediment management, the removal of depositions using hydraulic flushing gates has recently gotten great attention. Despite numerous investigations, the complex process of sediment transport under flushing waves is not yet well understood. The present work aims to calibrate and validate a coupled computational fluid dynamics and discrete element method (CFD-DEM) to study the fluid-sediment interaction in sewers. The CFD part of the simulation was carried out in the software Ansys Fluent which is two-way coupled to the DEM software EDEM. The multiphase model volume of fluid (VOF) was used to simulate the flushing wave, while the sediments were handled as DEM particles using the discrete phase model (DPM). To validate the 3D model, experimental work has been performed in a circular laboratory pipe with sand and gravel of different size distributions. A construction of a sluice gate was installed to realize the flushing event, which is similar to a dam-break wave. The evolution of the sediment bed and the scouring efficiency of the waves were examined under different flushing conditions. The results showed that the CFD-DEM method could be used to investigate the performance of flushing devices and various features of sediment transport which are not easy to obtain in the laboratory or field.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Dick, Jean-Sebastien, Vivek Kumar, Pravin Nakod und Federico Montanari. „Simulation of an Aero-Engine Bearing Compartment Using Two-Way Transition Between Lagrangian Droplets and a Three-Dimensional Eulerian Liquid Film“. In ASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/gt2019-90146.

Der volle Inhalt der Quelle
Annotation:
Abstract This paper presents a new hybrid two-phase flow numerical model. It uses the Discrete Phase Model (DPM) and the Volume of Fluid model (VoF) to study the interaction between air, oil droplets and films in a bearing compartment. It allows transition from a trackable Lagrangian particle, such as a droplet, into a continuous liquid structure in a Eulerian frame of reference. The transition can also be performed in the opposite direction, where a continuous liquid structure can be converted back into a trackable particle if specific requirements are met. The method is designated as DPM-VoF-DPM throughout this paper. Test cases capturing the impingement of a droplet in a liquid film are performed to assess its effectiveness. The simulation of a simplified bearing compartment is compared with measurements and results obtained using a standard VoF modeling approach. Mechanisms which are usually modeled such as droplet splashing, film separation, and droplet stripping, can now be physically captured with reduced computing resources by allowing transition from continuous liquid structures to discrete parcels. The employed modeling strategy allows for high resolution of the oil film at the walls and tracking of the droplets while minimizing mesh size and computing needs. Current results suggest that the proposed DPM-VoF-DPM method can be an efficient and accurate tool for locating air and oil in aero-engine transmission systems.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie