Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Discrete duality finite volumes“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Discrete duality finite volumes" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Discrete duality finite volumes"
ANDREIANOV, B., M. BENDAHMANE und K. H. KARLSEN. „DISCRETE DUALITY FINITE VOLUME SCHEMES FOR DOUBLY NONLINEAR DEGENERATE HYPERBOLIC-PARABOLIC EQUATIONS“. Journal of Hyperbolic Differential Equations 07, Nr. 01 (März 2010): 1–67. http://dx.doi.org/10.1142/s0219891610002062.
Der volle Inhalt der QuelleCoudière, Yves, und Gianmarco Manzini. „The Discrete Duality Finite Volume Method for Convection-diffusion Problems“. SIAM Journal on Numerical Analysis 47, Nr. 6 (Januar 2010): 4163–92. http://dx.doi.org/10.1137/080731219.
Der volle Inhalt der QuelleHandlovicova, Angela. „Stability estimates for Discrete duality finite volume scheme of Heston model“. Computer Methods in Material Science 17, Nr. 2 (2017): 101–10. http://dx.doi.org/10.7494/cmms.2017.2.0596.
Der volle Inhalt der QuelleTomek, Lukáš, und Karol Mikula. „Discrete duality finite volume method with tangential redistribution of points for surfaces evolving by mean curvature“. ESAIM: Mathematical Modelling and Numerical Analysis 53, Nr. 6 (18.10.2019): 1797–840. http://dx.doi.org/10.1051/m2an/2019040.
Der volle Inhalt der QuelleChainais-Hillairet, C., S. Krell und A. Mouton. „Study of Discrete Duality Finite Volume Schemes for the Peaceman Model“. SIAM Journal on Scientific Computing 35, Nr. 6 (Januar 2013): A2928—A2952. http://dx.doi.org/10.1137/130910555.
Der volle Inhalt der QuelleCoudière, Yves, und Florence Hubert. „A 3D Discrete Duality Finite Volume Method for Nonlinear Elliptic Equations“. SIAM Journal on Scientific Computing 33, Nr. 4 (Januar 2011): 1739–64. http://dx.doi.org/10.1137/100786046.
Der volle Inhalt der QuelleHandlovičová, Angela, und Dana Kotorová. „Stability of the Semi-Implicit Discrete Duality Finite Volume Scheme for the Curvature Driven Level Set Equation in 2D“. Tatra Mountains Mathematical Publications 61, Nr. 1 (01.12.2014): 117–29. http://dx.doi.org/10.2478/tmmp-2014-0031.
Der volle Inhalt der QuelleAndreianov, Boris, Mostafa Bendahmane und Florence Hubert. „On 3D DDFV Discretization of Gradient and Divergence Operators: Discrete Functional Analysis Tools and Applications to Degenerate Parabolic Problems“. Computational Methods in Applied Mathematics 13, Nr. 4 (01.10.2013): 369–410. http://dx.doi.org/10.1515/cmam-2013-0011.
Der volle Inhalt der QuelleNjifenjou, Abdou, Abel Toudna Mansou und Moussa Sali. „A New Second-order Maximum-principle-preserving Finite-volume Method for Flow Problems Involving Discontinuous Coefficients“. American Journal of Applied Mathematics 12, Nr. 4 (26.08.2024): 91–110. http://dx.doi.org/10.11648/j.ajam.20241204.12.
Der volle Inhalt der QuelleAndreianov, Boris, Mostafa Bendahmane, Kenneth H. Karlsen und Charles Pierre. „Convergence of discrete duality finite volume schemes for the cardiac bidomain model“. Networks & Heterogeneous Media 6, Nr. 2 (2011): 195–240. http://dx.doi.org/10.3934/nhm.2011.6.195.
Der volle Inhalt der QuelleDissertationen zum Thema "Discrete duality finite volumes"
Paragot, Paul. „Analyse numérique du système d'équations Poisson-Nernst Planck pour étudier la propagation d'un signal transitoire dans les neurones“. Electronic Thesis or Diss., Université Côte d'Azur, 2024. http://www.theses.fr/2024COAZ5020.
Der volle Inhalt der QuelleNeuroscientific questions about dendrites include understanding their structural plasticityin response to learning and how they integrate signals. Researchers aim to unravel these aspects to enhance our understanding of neural function and its complexities. This thesis aims at offering numerical insights concerning voltage and ionic dynamics in dendrites. Our primary focus is on modeling neuronal excitation, particularly in dendritic small compartments. We address ionic dynamics following the influx of nerve signals from synapses, including dendritic spines. To accurately represent their small scale, we solve the well-known Poisson-Nernst-Planck (PNP) system of equations, within this real application. The PNP system is widely recognized as the standard model for characterizing the electrodiffusion phenomenon of ions in electrolytes, including dendritic structures. This non-linear system presents challenges in both modeling and computation due to the presence of stiff boundary layers (BL). We begin by proposing numerical schemes based on the Discrete Duality Finite Volumes method (DDFV) to solve the PNP system. This method enables local mesh refinement at the BL, using general meshes. This approach facilitates solving the system on a 2D domain that represents the geometry of dendritic arborization. Additionally, we employ numerical schemes that preserve the positivity of ionic concentrations. Chapters 1 and 2 present the PNP system and the DDFV method along with its discrete operators. Chapter 2 presents a "linear" coupling of equations and investigate its associated numerical scheme. This coupling poses convergence challenges, where we demonstrate its limitations through numerical results. Chapter 3 introduces a "nonlinear" coupling, which enables accurate numerical resolution of the PNP system. Both of couplings are performed using DDFV method. However, in Chapter 3, we demonstrate the accuracy of the DDFV scheme, achieving second-order accuracy in space. Furthermore, we simulate a test case involving the BL. Finally, we apply the DDFV scheme to the geometry of dendritic spines and discuss our numerical simulations by comparing them with 1D existing simulations in the literature. Our approach considers the complexities of 2D dendritic structures. We also introduce two original configurations of dendrites, providing insights into how dendritic spines influence each other, revealing the extent of their mutual influence. Our simulations show the propagation distance of ionic influx during synaptic connections. In Chapter 4, we solve the PNP system over a 2D multi-domain consisting of a membrane, an internal and external medium. This approach allows the modeling of voltage dynamics in a more realistic way, and further helps checking consistency of the results in Chapter 3. To achieve this, we employ the FreeFem++ software to solve the PNP system within this 2D context. We present simulations that correspond to the results obtained in Chapter 3, demonstrating linear summation in a dendrite bifurcation. Furthermore, we investigate signal summation by adding inputs to the membrane of a dendritic branch. We identify an excitability threshold where the voltage dynamics are significantly influenced by the number of inputs. Finally, we also offer numerical illustrations of the BL within the intracellular medium, observing small fluctuations. These results are preliminary, aiming to provide insights into understanding dendritic dynamics. Chapter 5 presents collaborative work conducted during the Cemracs 2022. We focus on a composite finite volume scheme where we aim to derive the Euler equations with source terms on unstructured meshes
Lakhlili, Jalal. „Modélisation et simulation numériques de l'érosion par méthode DDFV“. Thesis, Toulon, 2015. http://www.theses.fr/2015TOUL0013/document.
Der volle Inhalt der QuelleThis study focuses on the numerical modelling of the interfacial erosion occurring at a cohesive soil undergoing an incompressible flow process. The model assumes that the erosion velocity is driven by a fluid shear stress at the water/soil interface. The numerical modelling is based on the eulerian approach: a penalization procedure is used to compute Navier-Stokes equations around soil obstacle, with a fictitious domain method, in order to avoid body- fitted unstructured meshes. The water/soil interface’s evolution is described by a Level Set function coupled to a threshold erosion law.Because we use adaptive mesh refinement, we develop a Discrete Duality Finite Volume scheme (DDFV), which allows non-conforming and non-structured meshes. The penalization method, used to take into account a free velocity in the soil with non-body-fitted mesh, introduces an inaccurate shear stress at the interface. We propose two approaches to compute accurately the erosion velocity of this free boundary problem. The ability of the model to predict the interfacial erosion of soils is confirmed by presenting several simulations that provide better evaluation and comprehension of erosion phenomena
Delcourte, Sarah. „DEVELOPPEMENT DE METHODES DE VOLUMES FINIS POUR LA MECANIQUE DES FLUIDES“. Phd thesis, Université Paul Sabatier - Toulouse III, 2007. http://tel.archives-ouvertes.fr/tel-00200833.
Der volle Inhalt der QuelleDelcourte, Sarah. „Développement de méthodes de volumes finis pour la mécanique des fluides“. Toulouse 3, 2007. http://thesesups.ups-tlse.fr/124/.
Der volle Inhalt der QuelleWe aim to develop a finite volume method which applies to a greater class of meshes than other finite volume methods, restricted by orthogonality constraints. We build discrete differential operators over the three staggered tesselations needed for the construction of the method. These operators verify some analogous properties to those of the continuous operators. At first, the method is applied to the Div-Curl problem, which can be viewed as a building block of the Stokes problem. Then, the Stokes problem is dealt with various boundary conditions. It is well known that when the computational domain is polygonal and non-convex, the order of convergence of numerical methods is deteriored. Consequently, we have studied how an appropriate local refinement is able to restore the optimal order of convergence for the laplacian problem. At last, we have discretized the non-linear Navier-Stokes problem, using the rotational formulation of the convection term, associated to the Bernoulli pressure. With an iterative algorithm, we are led to solve a saddle--point problem at each iteration. We give a particular interest to this linear problem by testing some preconditioners issued from finite elements, which we adapt to our method. Each problem is illustrated by numerical results on arbitrary meshes, such as strongly non-conforming meshes
Omnes, Pascal. „Développement et analyse de méthodes de volumes finis“. Habilitation à diriger des recherches, Université Paris-Nord - Paris XIII, 2010. http://tel.archives-ouvertes.fr/tel-00613239.
Der volle Inhalt der QuelleMonasse, Laurent. „Analysis of a discrete element method and coupling with a compressible fluid flow method“. Phd thesis, Université Paris-Est, 2011. http://pastel.archives-ouvertes.fr/pastel-00672342.
Der volle Inhalt der QuelleKunhappan, Deepak. „Modélisation numérique de l’écoulement de suspensions de fibres souples en régime inertiel“. Thesis, Université Grenoble Alpes (ComUE), 2018. http://www.theses.fr/2018GREAI045/document.
Der volle Inhalt der QuelleA numerical model describing the behavior of flexible fibers under inertial flows was developed by coupling a discrete element solver with a finite volume solver.Each fiber is discretized into several beam segments, such that the fiber can bend, twist and rotate. The equations of the fiber motion were solved usinga second order accurate explicit scheme (space and time). The three dimensional Navier-Stokes equations describing the motion of the fluid phase was discretizedusing a fourth th order accurate (space and time) unstructured finite volume scheme. The coupling between the discrete fiber phase and the continuous fluid phasewas obtained by a pseudo immersed boundary method as the hydrodynamic force on the fiber segments were calculated based on analytical expressions.Several hydrodynamic force models were analyzed and their validity and short-comings were identified. For Reynolds numbers (Re) at the inertial regime(0.01 < Re < 100, Re defined at the fiber scale), non linear drag force formulations based on the flow past an infinite cylinder was used. For rigid fibers in creeping flow, the drag force formulation from the slender body theory was used. A per unit length hydrodynamic torque model for the fibers was derived from explicit numerical simulations of shear flow past a high aspect ratio cylinder. The developed model was validated against several experimental studies and analytical theories ranging from the creeping flow regime (for rigid fibers) to inertial regimes. In the creeping flow regime, numerical simulations of semi dilute rigid fiber suspensions in shear were performed.The developed model wasable to capture the fiber-fiber hydrodynamic and non-hydrodynamic interactions. The elasto-hydrodynamic interactions at finite Reynolds was validated with against two test cases. In the first test case, the deflection of the free end of a fiber in an uniform flow field was obtained numerically and the results were validated. In the second test case the conformation of long flexible fibers in homogeneous isotropic turbulence was obtained numerically and the results were compared with previous experiments. Two numerical studies were performed to verify the effects of the suspended fibers on carrier phase turbulence and the numerical model was able to reproduce the damping/enhancement phenomena of turbulence in channel and pipe flows as a consequence of the micro-structural evolution of the fibers
Catalano, Emanuele. „Modélisation physique et numérique de la micro-mécanique des milieux granulaires saturés. Application à la stabilité de substrats sédimentaires en génie cotier“. Thesis, Grenoble, 2012. http://www.theses.fr/2012GRENU012/document.
Der volle Inhalt der QuelleThe behaviour of multiphase materials covers a wide range of phenomena of interest to both scientists and engineers. The mechanical properties of these materials originate from all component phases, their distribution and interaction. A new coupled hydromechanical model is presented in this work, to be applied to the analysis of the hydrodynamics of saturated granular media. The model associates the discrete element method (DEM) for the solid phase, and a pore-scale finite volume (PFV) formulation of the flow problem. The emphasis of this model is, on one hand, the microscopic description of the interaction between phases, with the determination of the forces applied on solid particles by the fluid; on the other hand, the model involve affordable computational costs, that allow the simulation of thousands of particles in three dimensional models. The medium is assumed to be saturated of an incompressible fluid. Pore bodies and their connections are defined locally through a regular triangulation of the packings. The analogy of the DEM-PFV model and the classic Biot's theory of poroelasticity is discussed. The model is validated through comparison of the numerical result of a soil consolidation problem with the Terzaghi's analytical solution. An approach to analyze the hydrodynamic of a granular sediment is finally presented. The reproduction of the phenomenon of soil liquefaction is analysed and discussed
Bessemoulin-Chatard, Marianne. „Développement et analyse de schémas volumes finis motivés par la présentation de comportements asymptotiques. Application à des modèles issus de la physique et de la biologie“. Phd thesis, Université Blaise Pascal - Clermont-Ferrand II, 2012. http://tel.archives-ouvertes.fr/tel-00836514.
Der volle Inhalt der QuelleNguyen-Dinh, Maxime. „Qualification des simulations numériques par adaptation anisotropique de maillages“. Phd thesis, Université Nice Sophia Antipolis, 2014. http://tel.archives-ouvertes.fr/tel-00987202.
Der volle Inhalt der QuelleBuchteile zum Thema "Discrete duality finite volumes"
Martin, Benjamin, und Frédéric Pascal. „Discrete Duality Finite Volume Method Applied to Linear Elasticity“. In Finite Volumes for Complex Applications VI Problems & Perspectives, 663–71. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-20671-9_70.
Der volle Inhalt der QuelleBoyer, Franck, Stella Krell und Flore Nabet. „Benchmark Session: The 2D Discrete Duality Finite Volume Method“. In Springer Proceedings in Mathematics & Statistics, 163–80. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-57397-7_11.
Der volle Inhalt der QuelleCoudière, Yves, und Charles Pierre. „Benchmark 3D: CeVe-DDFV, a Discrete Duality Scheme with Cell/Vertex Unknowns“. In Finite Volumes for Complex Applications VI Problems & Perspectives, 1043–53. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-20671-9_102.
Der volle Inhalt der QuelleCoudière, Yves, Florence Hubert und Gianmarco Manzini. „Benchmark 3D: CeVeFE-DDFV, a discrete duality scheme with cell/vertex/face+edge unknowns“. In Finite Volumes for Complex Applications VI Problems & Perspectives, 977–84. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-20671-9_95.
Der volle Inhalt der QuelleHandlovičová, Angela, und Peter Frolkovič. „Semi-implicit Alternating Discrete Duality Finite Volume Scheme for Curvature Driven Level Set Equation“. In Finite Volumes for Complex Applications VII-Methods and Theoretical Aspects, 333–42. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-05684-5_32.
Der volle Inhalt der QuelleCancès, Clément, Claire Chainais-Hillairet und Stella Krell. „A Nonlinear Discrete Duality Finite Volume Scheme for Convection-Diffusion Equations“. In Springer Proceedings in Mathematics & Statistics, 439–47. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-57397-7_37.
Der volle Inhalt der QuelleDelcourte, Sarah, und Pascal Omnes. „Numerical Results for a Discrete Duality Finite Volume Discretization Applied to the Navier–Stokes Equations“. In Springer Proceedings in Mathematics & Statistics, 141–61. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-57397-7_10.
Der volle Inhalt der QuelleEnock, Michel, und Jean-Marie Schwartz. „Special Cases: Unimodular, Compact, Discrete and Finite-Dimensional Kac Algebras“. In Kac Algebras and Duality of Locally Compact Groups, 192–241. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-662-02813-1_7.
Der volle Inhalt der QuelleGlitzky, Annegret, und Jens A. Griepentrog. „On Discrete Sobolev–Poincaré Inequalitiesfor Voronoi Finite Volume Approximations“. In Finite Volumes for Complex Applications VI Problems & Perspectives, 533–41. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-20671-9_56.
Der volle Inhalt der QuelleGallouët, Thierry, David Maltese und Antonín Novotný. „Discrete Relative Entropy for the Compressible Stokes System“. In Finite Volumes for Complex Applications VII-Methods and Theoretical Aspects, 383–92. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-05684-5_37.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Discrete duality finite volumes"
Geng, Yanlin, und Fan Cheng. „Duality between finite numbers of discrete multiple access and broadcast channels“. In 2015 IEEE Information Theory Workshop - Fall (ITW). IEEE, 2015. http://dx.doi.org/10.1109/itwf.2015.7360755.
Der volle Inhalt der QuelleVoulgaris, Petros. „Multi-Objecitve Control of Dynamical Systems“. In ASME 1995 Design Engineering Technical Conferences collocated with the ASME 1995 15th International Computers in Engineering Conference and the ASME 1995 9th Annual Engineering Database Symposium. American Society of Mechanical Engineers, 1995. http://dx.doi.org/10.1115/detc1995-0345.
Der volle Inhalt der QuelleXie, Yawei, und Michael G. Edwards. „Higher Resolution Hybrid-Upwind Spectral Finite-Volume Methods, for Flow in Porous and Fractured Media on Unstructured Grids“. In SPE Reservoir Simulation Conference. SPE, 2021. http://dx.doi.org/10.2118/203957-ms.
Der volle Inhalt der QuelleWu, Dawei, Yuan Di, Zhijiang Kang und Yu-Shu Wu. „Coupled Geomechanics and Fluid Flow Modeling for Petroleum Reservoirs Accounting for Multi-Scale Fractures“. In SPE Reservoir Simulation Conference. SPE, 2023. http://dx.doi.org/10.2118/212247-ms.
Der volle Inhalt der QuelleChoi, Kwang Won, Dan Negrut und Darryl G. Thelen. „GPU-Based Algorithm for Fast Computation of Cartilage Contact Patterns During Simulations of Movement“. In ASME 2013 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/sbc2013-14095.
Der volle Inhalt der QuelleTong, Timothy W., Mohsen M. Abou-Ellail, Yuan Li und Karam R. Beshay. „Numerical Prediction of Nitrogen Oxides in Radiant Porous Burner Flows“. In ASME/JSME 2007 Thermal Engineering Heat Transfer Summer Conference collocated with the ASME 2007 InterPACK Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/ht2007-32064.
Der volle Inhalt der QuelleGradl, Christoph, Ivo Kovacic und Rudolf Scheidl. „Development of an Energy Saving Hydraulic Stepper Drive“. In 8th FPNI Ph.D Symposium on Fluid Power. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/fpni2014-7809.
Der volle Inhalt der QuelleTong, Timothy W., Mohsen M. Abou-Ellail, Yuan Li und Karam R. Beshay. „Computation of Nitrogen Oxides in Radiant Porous Burner Flows“. In ASME 2008 Heat Transfer Summer Conference collocated with the Fluids Engineering, Energy Sustainability, and 3rd Energy Nanotechnology Conferences. ASMEDC, 2008. http://dx.doi.org/10.1115/ht2008-56229.
Der volle Inhalt der QuelleCao, Wen, und Rami M. Younis. „Numerical Study of the Influences of Dynamic Loading and Unloading Rates on Fracturing“. In 57th U.S. Rock Mechanics/Geomechanics Symposium. ARMA, 2023. http://dx.doi.org/10.56952/arma-2023-0936.
Der volle Inhalt der Quelle