Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Directional metasurfaces“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Directional metasurfaces" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Directional metasurfaces"
Zhang, Ranran, Qiuling Zhao, Xia Wang, Kai Ming Lau, Tsz Kit Yung, Jensen Li und Wing Yim Tam. „Controlling asymmetric transmission phase in planar chiral metasurfaces“. Nanophotonics 11, Nr. 3 (22.12.2021): 495–505. http://dx.doi.org/10.1515/nanoph-2021-0558.
Der volle Inhalt der QuelleAigner, Andreas, Stefan Maier und Haoran Ren. „Topological-Insulator-Based Gap-Surface Plasmon Metasurfaces“. Photonics 8, Nr. 2 (04.02.2021): 40. http://dx.doi.org/10.3390/photonics8020040.
Der volle Inhalt der QuelleLi, Panyi, Jiwei Zhao, Caofei Luo, Zhicheng Pei, Hui Jin, Yitian Huang, Wei Zhou und Bin Zheng. „Self-Adaptive Intelligent Metasurface Cloak System with Integrated Sensing Units“. Materials 17, Nr. 19 (02.10.2024): 4863. http://dx.doi.org/10.3390/ma17194863.
Der volle Inhalt der QuelleWu, Dong, Yang Meng und Chang Liu. „Design of Transparent Metasurfaces Based on Asymmetric Nanostructures for Directional and Selective Absorption“. Materials 13, Nr. 17 (25.08.2020): 3751. http://dx.doi.org/10.3390/ma13173751.
Der volle Inhalt der QuelleZhang, Song, Yilin Wang, Pengcheng Huo und Ting Xu. „Plasmonic spin-multiplexing metasurface for controlling the generation and in-plane propagation of surface plasmon polaritons“. Journal of Applied Physics 133, Nr. 13 (07.04.2023): 133101. http://dx.doi.org/10.1063/5.0144421.
Der volle Inhalt der QuelleAKRAM, Md Tausif, und Kyungjun SONG. „Advanced directional beam control via holographic acoustic metasurfaces for multibeam scanning“. INTER-NOISE and NOISE-CON Congress and Conference Proceedings 270, Nr. 11 (04.10.2024): 736–42. http://dx.doi.org/10.3397/in_2024_2642.
Der volle Inhalt der QuelleCheng, Yang, Yongfeng Li, He Wang, Jiafu Wang, Zhe Qin und Shaobo Qu. „Circular dichroism assisted bi-directional absorbers“. Journal of Physics D: Applied Physics 55, Nr. 9 (17.11.2021): 095101. http://dx.doi.org/10.1088/1361-6463/ac3301.
Der volle Inhalt der QuelleSantos, Gonzalo, Maria Losurdo, Fernando Moreno und Yael Gutiérrez. „Directional Scattering Switching from an All-Dielectric Phase Change Metasurface“. Nanomaterials 13, Nr. 3 (26.01.2023): 496. http://dx.doi.org/10.3390/nano13030496.
Der volle Inhalt der QuellePark, Yeonsang, Hyochul Kim, Jeong-Yub Lee, Woong Ko, Kideock Bae und Kyung-Sang Cho. „Direction control of colloidal quantum dot emission using dielectric metasurfaces“. Nanophotonics 9, Nr. 5 (02.06.2020): 1023–30. http://dx.doi.org/10.1515/nanoph-2020-0158.
Der volle Inhalt der QuelleLiu, Zhaoyong, Kailin Ren, Gaoyu Dai und Jianhua Zhang. „A Review on Micro-LED Display Integrating Metasurface Structures“. Micromachines 14, Nr. 7 (30.06.2023): 1354. http://dx.doi.org/10.3390/mi14071354.
Der volle Inhalt der QuelleDissertationen zum Thema "Directional metasurfaces"
Wang, Dongxing. „Directional Optical Antennas, Wafer-Scale Metasurfaces, and Single Molecule Surface-Enhanced Raman Scattering“. Thesis, Harvard University, 2013. http://dissertations.umi.com/gsas.harvard:11159.
Der volle Inhalt der QuelleEngineering and Applied Sciences
Nikitskiy, Nikita. „Propriétés d'émetteurs ultra-violets à base d'hétérostructures quantiques et de métasurfaces (Al,Ga)N“. Electronic Thesis or Diss., Université Côte d'Azur, 2024. http://www.theses.fr/2024COAZ5081.
Der volle Inhalt der QuelleLight-emitting diodes (LEDs) are essential in modern technology, enabling a wide range of applications from general lighting to specialized uses in medical and environmental fields. Ultraviolet (UV) LEDs, based on heterostructures of aluminum gallium nitride alloys ((Al,Ga)N) with quantum emitters, hold significant promise for applications in sterilization, water purification, and medical diagnostics due to their energy efficiency, compact form, and longer lifespan compared to conventional mercury lamps.The(Al,Ga)N-based systems have a wide and tunable direct band gap ranging from 3.4 eV to 6.2 eV, which is equivalent to emission wavelengths of 365 nm and 200 nm, respectively. This makes them particularly suitable for light emission over a broad wavelength spectrum in the UV range, while the material doping capability supports both n-type and p-type doping regions, which is necessary for LED fabrication. Despite these advantages, UV LEDs based on (Al,Ga)N currently suffer from lower quantum efficiency compared to their visible-light counterparts, particularly due to high defect densities, emission polarization effects, and overall low light extraction.This work explores these challenges in more detail and also considers the possibility of improving the radiative characteristics of (Al,Ga)N heterostructures by embedding them into a metasurface. Chapter 1 introduces the state of the art in this topic and the motivation for this work. Chapter 2 presents a comprehensive overview of the fundamental properties of (Al,Ga)N materials, including their crystallographic and optical characteristics. It also describes the Molecular Beam Epitaxy growth of (Al,Ga)N quantum dots (QDs) used in this work. In Chapter 3, we experimentally investigate the influence of the mechanical relaxation of the heterostructures and the crystalline quality on the optical properties of the QDs emitting in the UV range. Chapter 4 delves into the photonic response of (Al,Ga)N materials, offering a theoretical and experimental analysis of light interaction mechanisms and emission polarization. Finally, Chapter 5 discusses the integration of metasurfaces with (Al,Ga)N-based UV emitters for improving emission control and overall device performance. The use of metasurfaces, which can manipulate light at the subwavelength scale, is explored as a promising strategy to increase light extraction efficiency by directing and controlling emission in the UV range
Buchteile zum Thema "Directional metasurfaces"
Minin, I. V., G. V. Shuvalov und O. V. Minin. „All-dielectric asymmetrical metasurfaces based on mesoscale dielectric particles with different optical transmissions in opposite directions through full internal reflection“. In Frontier Research and Innovation in Optoelectronics Technology and Industry, 437–40. London, UK : CRC Press/Balkema, an imprint of the Taylor & Francis Group, [2019]: CRC Press, 2018. http://dx.doi.org/10.1201/9780429447082-64.
Der volle Inhalt der QuelleMatsui, Tatsunosuke. „Electron Beam-Induced Directional Terahertz Radiation from Metamaterials“. In Metamaterials and Metasurfaces. IntechOpen, 2019. http://dx.doi.org/10.5772/intechopen.80648.
Der volle Inhalt der QuelleWang, Yinpeng. „A Comprehensive Review for Beam Steering Technology“. In Electromagnetic Wave Control Techniques of Metasurfaces and Metamaterials, 1–31. IGI Global, 2024. http://dx.doi.org/10.4018/979-8-3693-2599-5.ch001.
Der volle Inhalt der QuelleSharma, Anuj Kumar, und Vipul Sharma. „Active and Passive Metamaterials and Metasurfaces“. In Advances in Wireless Technologies and Telecommunication, 297–319. IGI Global, 2023. http://dx.doi.org/10.4018/978-1-6684-8287-2.ch012.
Der volle Inhalt der QuelleUlomi, George Shilela, und Hassan Kilavo. „A Dual Band Frequency Reconfigurable Metasurface Antenna“. In Advances in Electronic Government, Digital Divide, and Regional Development, 246–54. IGI Global, 2021. http://dx.doi.org/10.4018/978-1-7998-6471-4.ch013.
Der volle Inhalt der QuelleIffat Naqvi, Syeda, und Niamat Hussain. „Antennas for 5G and 6G Communications“. In 5G and 6G Enhanced Broadband Communications [Working Title]. IntechOpen, 2022. http://dx.doi.org/10.5772/intechopen.105497.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Directional metasurfaces"
Desai, Saaketh, Sadhvikas Addamane, Remi Dingreville, Igal Brener und Prasad P. Iyer. „Self-driving lab discovers high-efficiency directional incoherent emission from reconfigurable semiconductor metasurfaces“. In CLEO: Fundamental Science, FF1J.5. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/cleo_fs.2024.ff1j.5.
Der volle Inhalt der QuelleLiu, Jianing, und Roberto Paiella. „Integrated plasmonic gradient metasurfaces for directional photodetection“. In CLEO: Fundamental Science, FM4O.2. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/cleo_fs.2024.fm4o.2.
Der volle Inhalt der QuelleAudhkhasi, Romil, Maksym Zhelyeznyakov, Anna Wirth-Singh und Arka Majumdar. „Disordered Metasurface Doublets for Asymmetric Visibility and Synergistic Imaging in the Mid-infrared“. In CLEO: Fundamental Science, FTu4G.3. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/cleo_fs.2024.ftu4g.3.
Der volle Inhalt der QuelleChatzichristodoulou, David, Photos Vryonides, Dimitra Psychogiou und Symeon Nikolaou. „Directional Metasurface with Selective Polarization Using Antenna Elements“. In 2024 IEEE International Symposium on Antennas and Propagation and INC/USNC‐URSI Radio Science Meeting (AP-S/INC-USNC-URSI), 1561–62. IEEE, 2024. http://dx.doi.org/10.1109/ap-s/inc-usnc-ursi52054.2024.10686943.
Der volle Inhalt der QuelleMunley, Christopher, Arnab Manna, Johannes Froech, Minho Choi und Arka Majumdar. „All-Dielectric Metasurface with a Locally Flat Photonic Band in All Directions“. In CLEO: Applications and Technology, JTu2A.168. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/cleo_at.2024.jtu2a.168.
Der volle Inhalt der QuelleBashiri, Ayesheh, Aleksandr Vaskin, Katsuya Tanaka, Michael Steinert, Marijn Rikers, Maximilian A. Weissflog, Bayarjargal N. Tugchin, Thomas Pertsch und Isabelle Staude. „Normal-direction Yellow Laser Emission by Quasi-BIC TiO2 Metasurface“. In CLEO: Science and Innovations, SF3G.6. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/cleo_si.2024.sf3g.6.
Der volle Inhalt der QuelleWang, Chaohui, He-Xiu Xu, Tong Liu, Fan Zhang, Zhengjie Wang und Hui Wang. „Spin-Encoded Wavelength-Direction Multitasking Full-space metasurface“. In 2024 International Applied Computational Electromagnetics Society Symposium (ACES-China), 1–3. IEEE, 2024. http://dx.doi.org/10.1109/aces-china62474.2024.10699970.
Der volle Inhalt der QuellePang, Cheng, Qiming Wang und Jiaran Qi. „Bi-Directional Compact Radiation-Type Metasurface Allowing for Full-Space Customized Beamforming“. In 2024 International Conference on Microwave and Millimeter Wave Technology (ICMMT), 1–3. IEEE, 2024. http://dx.doi.org/10.1109/icmmt61774.2024.10672021.
Der volle Inhalt der QuelleSalama, Norhan Ahmed, Salah S. A. Obayya und Mohamed A. Swillam. „Tailoring directional scattering in double Fano resonances based on coupled resonators metasurface“. In Photonic and Phononic Properties of Engineered Nanostructures XV, herausgegeben von Ali Adibi, Shawn-Yu Lin und Axel Scherer, 59. SPIE, 2025. https://doi.org/10.1117/12.3043764.
Der volle Inhalt der QuelleZhuang, Yi, Jin Cheng Zhong, Yi Nan Zhao, Kun Wang und Zi Qian Yu. „ANN-enabled Direction Finding with Space-Time-Coding Metasurface“. In 2024 IEEE 12th Asia-Pacific Conference on Antennas and Propagation (APCAP), 1–2. IEEE, 2024. https://doi.org/10.1109/apcap62011.2024.10881721.
Der volle Inhalt der Quelle