Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Direct and inverse-Problem solving“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Direct and inverse-Problem solving" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Direct and inverse-Problem solving"
Sorokin, S. B. „Direct method for solving the inverse coefficient problem“. Sibirskii zhurnal industrial'noi matematiki 24, Nr. 2 (18.06.2021): 134–47. http://dx.doi.org/10.33048/sibjim.2021.24.211.
Der volle Inhalt der QuelleNikitin, A. V., L. V. Mikhaylov, A. V. Mikhaylov, Yu L. Gobov, V. N. Kostin und Ya G. Smorodinskii. „Reconstruction of the shape of a flaw in ferromagnetic plate by solving inverse problem of magnetostatics and series of direct problems“. Defektoskopiâ, Nr. 9 (02.10.2024): 67–72. http://dx.doi.org/10.31857/s0130308224090086.
Der volle Inhalt der QuelleXue, Qi Wen, Xiu Yun Du und Ga Ping Wang. „Solving the Inverse Heat Conduction Problem with Multi-Variables“. Advanced Materials Research 168-170 (Dezember 2010): 195–99. http://dx.doi.org/10.4028/www.scientific.net/amr.168-170.195.
Der volle Inhalt der QuelleKravchenko, Vladislav V., und Lady Estefania Murcia-Lozano. „An Approach to Solving Direct and Inverse Scattering Problems for Non-Selfadjoint Schrödinger Operators on a Half-Line“. Mathematics 11, Nr. 16 (16.08.2023): 3544. http://dx.doi.org/10.3390/math11163544.
Der volle Inhalt der QuelleAskerbekova, J. A. „NUMERICAL ALGORITHM FOR SOLVING THE CONTINUATION PROBLEM FOR THE ACOUSTIC EQUATION“. BULLETIN Series of Physics & Mathematical Sciences 70, Nr. 2 (30.06.2020): 7–13. http://dx.doi.org/10.51889/2020-2.1728-7901.01.
Der volle Inhalt der QuelleOyama, Eimei, Taro Maeda und Susumu Tachi. „A human system learning model for solving the inverse kinematics problem by direct inverse modeling“. Systems and Computers in Japan 27, Nr. 8 (1996): 53–68. http://dx.doi.org/10.1002/scj.4690270805.
Der volle Inhalt der QuelleChmielowska, Agata, Rafał Brociek und Damian Słota. „Reconstructing the Heat Transfer Coefficient in the Inverse Fractional Stefan Problem“. Fractal and Fractional 9, Nr. 1 (16.01.2025): 43. https://doi.org/10.3390/fractalfract9010043.
Der volle Inhalt der QuelleTemirbekov, N. М., S. I. Kabanikhin, L. N. Тemirbekova und Zh E. Demeubayeva. „Gelfand-Levitan integral equation for solving coefficient inverse problem“. Bulletin of the National Engineering Academy of the Republic of Kazakhstan 85, Nr. 3 (15.09.2022): 158–67. http://dx.doi.org/10.47533/2020.1606-146x.184.
Der volle Inhalt der QuelleShishlenin, M. A., N. S. Novikov und D. V. Klyuchinskiy. „On the recovering of acoustic attenuation in 2D acoustic tomography“. Journal of Physics: Conference Series 2099, Nr. 1 (01.11.2021): 012046. http://dx.doi.org/10.1088/1742-6596/2099/1/012046.
Der volle Inhalt der QuelleDurdiev, D. K., und J. Z. Nuriddinov. „On investigation of the inverse problem for a parabolic integro-differential equation with a variable coefficient of thermal conductivity“. Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki 30, Nr. 4 (Dezember 2020): 572–84. http://dx.doi.org/10.35634/vm200403.
Der volle Inhalt der QuelleDissertationen zum Thema "Direct and inverse-Problem solving"
Abdelaziz, Batoul. „Direct algorithms for solving some inverse source problems“. Thesis, Compiègne, 2014. http://www.theses.fr/2014COMP1956/document.
Der volle Inhalt der QuelleThis thesis deals with inverse source problems in 2 cases : stationary sources in 2D and 3D elliptic equations and a non-stationary source in a diffusion equation. the main form of sources considered are pointwise sources (monopoles, dipoles and multipolar sources) having compact support within a finite number of small subdomains modeling EEG/MEG problems and Bioluminescence Tomography (BLT) problems. The purpose o this thesis is mainly to propose robust identification methods that enable us to reconstruct the number, the intensity and the location of the sources. Direct algebraic methods are used to identify the stationary siurces and a quasi-algebraic method mixed with an optimieation method is employed to recover sources with time-variable intensities. Numerical results are shown to prove the robustness of our identification algorithms
Christofori, Pamela. „The effect of direct instruction math curriculum on higher-order problem solving“. [Tampa, Fla.] : University of South Florida, 2005. http://purl.fcla.edu/fcla/etd/SFE0001287.
Der volle Inhalt der QuelleLesnic, Daniel. „Boundary element methods for solving steady potential flow problems and direct and inverse unsteady heat conduction problems“. Thesis, University of Leeds, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.404773.
Der volle Inhalt der QuelleManoochehrnia, Pooyan. „Characterisatiοn οf viscοelastic films οn substrate by acοustic micrοscοpy. Direct and inverse prοblems“. Electronic Thesis or Diss., Normandie, 2024. http://www.theses.fr/2024NORMLH38.
Der volle Inhalt der QuelleIn the framework of this PhD thesis, the characterisation of the thick and thin films deposited on asubstrate has been done using acoustic microscopy via direct and inverse problem-solving algorithms.Namely the Strohm’s method is used for direct problem-solving while a variety of mathematical modelsincluding Debye series model (DSM), transmission line model (TLM) and spectral method using ratiobetween multiple reflections model (MRM) have been used to solve inverse-problem. A specificapplication of acoustic microscopy has been used consisting of mounting the plane-wave high frequency(50 MHz and 200MHz) transducers instead of use of the traditional focus transducers used for acousticimaging as well as using full-wave A-scan which could be well extended to bulk analysis of consecutivescans. Models have been validated experimentally by a thick film made of epoxy-resin with thicknessof about 100μm and a thin film made of polish of about 8μm. The characterised parameters includemechanical parameters (e.g. density and thickness) as well as viscoelastic parameters (e.g. acousticlongitudinal velocity and acoustic attenuation) and occasionally transducer phase-shift
Lopez, Lurdes. „HELPING AT-RISK STUDENTS SOLVE MATHEMATICAL WORD PROBLEMS THROUGH THE USE OF DIRECT INSTRUCTION AND PROBLEM SOLVING STRATEGIES“. Master's thesis, University of Central Florida, 2008. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/3193.
Der volle Inhalt der QuelleM.Ed.
Other
Graduate Studies;
K-8 Math and Science MEd
Lee, Jeanette W. „The effectiveness of a novel direct instructional approach on math word problem solving skills of elementary students with learning disabilities“. The Ohio State University, 1992. http://rave.ohiolink.edu/etdc/view?acc_num=osu1298983286.
Der volle Inhalt der QuelleLi, Xiaobei. „Instrumentation and inverse problem solving for impedance imaging /“. Thesis, Connect to this title online; UW restricted, 2006. http://hdl.handle.net/1773/5973.
Der volle Inhalt der QuelleKang, Sangwoo. „Direct sampling method in inverse electromagnetic scattering problem“. Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLS417/document.
Der volle Inhalt der QuelleThe non-iterative imaging problem within the inverse electromagnetic scattering framework using the direct sampling method (DSM) is considered. Thanks to the combination of the asymptotic expression of the scattered near-field or far-field and of the small obstacle hypothesis the analytical expressions of the DSM indicator function are presented in various configurations such as 2D/3D configurations and/or mono-/multi-static configurations and/or limited-/full-view case and/or mono-/multi-frequency case. Once the analytical expression obtained, its structure is analyzed and improvements proposed. Our approach is validated using synthetic data and experimental ones when available. First, the mathematical structure of DSM at a fixed frequency in 2D various scattering problems is established allowing a theoretical analysis of its efficiency and limitations. To overcome the known limitations an alternative direct sampling method (DSMA) is proposed. Next, the multi-frequency case is investigated by introducing and analyzing the multi-frequency DSM (MDSM) and the multi-frequency DSMA (MDSMA).Finally, our approach is extended to 3D inverse electromagnetic scattering problems for which the choice of the polarization of the test dipole is a key parameter. Thanks to our analytical analysis it can be made based on the polarization of the incident field
MacNeil, Toinette. „An LP approach to solving the inverse problem of electrocardiography“. Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2000. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape3/PQDD_0021/MQ57220.pdf.
Der volle Inhalt der QuelleHilal, Mohammed Azeez. „Domain decomposition like methods for solving an electrocardiography inverse problem“. Thesis, Nantes, 2016. http://www.theses.fr/2016NANT4060.
Der volle Inhalt der QuelleThe aim of the this thesis is to study an electrocardiography (ECG) problem, modeling the cardiac electrical activity by using the stationary bidomain model. Tow types of modeling are considered :The modeling based on direct mathematical model and the modeling based on an inverse Cauchy problem. In the first case, the direct problem is solved by using domain decomposition methods and the approximation by finite elements method. For the inverse Cauchy problem of ECG, it was reformulated into a fixed point problem. In the second case, the existence and uniqueness of fixed point based on the topological degree of Leray-Schauder is showed. Then, some regularizing and stable iterative algorithms based on the techniques of domain decomposition method was developed. Finally, the efficiency and the accurate of the obtained results was discussed
Bücher zum Thema "Direct and inverse-Problem solving"
Taler, Jan, und Piotr Duda. Solving Direct and Inverse Heat Conduction Problems. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/978-3-540-33471-2.
Der volle Inhalt der QuelleNowożyński, Krzysztof. Methods of solving a one-dimensional magnetotelluric inverse problem. Warszawa: Państwowe Wydawn. Nauk., 1987.
Den vollen Inhalt der Quelle findenRobson, Mike. Problem-solving in groups. Wantage: MRA International, 1988.
Den vollen Inhalt der Quelle findenGilhooly, K. J. Thinking: Directed, undirected, and creative. 2. Aufl. London: Academic Press, 1988.
Den vollen Inhalt der Quelle findenVoronin, Evgeniy, Aleksandr Chibunichev und Yuriy Blohinov. Reliability of solving inverse problems of analytical photogrammetry. ru: INFRA-M Academic Publishing LLC., 2023. http://dx.doi.org/10.12737/2010462.
Der volle Inhalt der QuelleYi, Sŏk-chae. Saengae nŭngnyŏk chʻŭkchŏng togu kaebal yŏnʼgu: Ŭisa sotʻong nŭngnyŏk, munje haegyŏl nŭngnyŏk, chagi chudojŏk haksŭp nŭngnyŏk ŭl chungsim ŭro = A study on the development of life-skills : communication, problem solving, and self-directed learning. Sŏul-si: Hanʼguk Kyoyuk Kaebarwŏn, 2003.
Den vollen Inhalt der Quelle findenT, Herman Gabor, und Sabatier Pierre Célestin 1935-, Hrsg. Basic methods of tomography and inverse problems: A set of lectures. Bristol: A. Hilger, 1987.
Den vollen Inhalt der Quelle findenLasankin, Serey. Carbon neutralization of steelmaking, energy and cement industries. Silhouettes of the carbon-neutral industry. ru: INFRA-M Academic Publishing LLC., 2024. http://dx.doi.org/10.12737/2122427.
Der volle Inhalt der QuelleKolesnichenko, Ol'ga. Theoretical and legal foundations for assessing and compensating for harm to health in the physical sense: rejection of the formula “cannot be assessed, cannot be compensated” in domestic civil law. ru: Publishing Center RIOR, 2024. http://dx.doi.org/10.29039/02141-5.
Der volle Inhalt der QuelleFisher, Kimball. Leading self-directed work teams: A guide to developing new team leadership skills. New York: McGraw-Hill, 1993.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Direct and inverse-Problem solving"
Hauptman, Herbert A. „The Phase Problem: A Problem in Constrained Global Optimization“. In Direct Methods for Solving Macromolecular Structures, 381–88. Dordrecht: Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-015-9093-8_33.
Der volle Inhalt der QuelleWoolfson, Michael M. „Random Approaches to the Phase Problem“. In Direct Methods of Solving Crystal Structures, 203–13. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4899-3692-9_20.
Der volle Inhalt der QuelleHauptman, Herbert A. „The Phase Problem of X-Ray Crystallography: Overview“. In Direct Methods for Solving Macromolecular Structures, 3–10. Dordrecht: Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-015-9093-8_1.
Der volle Inhalt der QuelleSayre, David. „Note on “Superlarge” Structures and Their Phase Problem“. In Direct Methods of Solving Crystal Structures, 353–56. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4899-3692-9_33.
Der volle Inhalt der QuelleHeidrich-Meisner, Verena, und Christian Igel. „Evolution Strategies for Direct Policy Search“. In Parallel Problem Solving from Nature – PPSN X, 428–37. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-87700-4_43.
Der volle Inhalt der QuelleNovotny, Antonio André. „A New Non-Iterative Reconstruction Method for Solving a Class of Inverse Problems“. In Fundamental Concepts and Models for the Direct Problem, 1007–23. Brasilia, DF, Brazil: Biblioteca Central da Universidade de Brasilia, 2022. http://dx.doi.org/10.4322/978-65-86503-83-8.c25.
Der volle Inhalt der QuelleGiacovazzo, C., L. Manna und D. Siliqi. „Direct Methods and Molecular Replacement Techniques: The Translation Problem“. In Direct Methods for Solving Macromolecular Structures, 487–97. Dordrecht: Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-015-9093-8_46.
Der volle Inhalt der QuelleHughes, Evan J. „Many Objective Optimisation: Direct Objective Boundary Identification“. In Parallel Problem Solving from Nature – PPSN X, 733–42. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-87700-4_73.
Der volle Inhalt der QuelleLunin, V. Y. „The Likelihood Based Choice of Priors in Statistical Approaches to the Phase Problem“. In Direct Methods for Solving Macromolecular Structures, 451–54. Dordrecht: Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-015-9093-8_40.
Der volle Inhalt der QuelleTitarenko, Sofya S., Igor M. Kulikov, Igor G. Chernykh, Maxim A. Shishlenin, Olga I. Krivorot’ko, Dmitry A. Voronov und Mark Hildyard. „Multilevel Parallelization: Grid Methods for Solving Direct and Inverse Problems“. In Communications in Computer and Information Science, 118–31. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-55669-7_10.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Direct and inverse-Problem solving"
Vovk, Serhii, und Valentyn Borulko. „Solving Linear Inverse Problems via Criterion of Minimum Extent“. In 2024 IEEE 29th International Seminar/Workshop on Direct and Inverse Problems of Electromagnetic and Acoustic Wave Theory (DIPED), 61–66. IEEE, 2024. http://dx.doi.org/10.1109/diped63529.2024.10706177.
Der volle Inhalt der QuelleSavenko, Petro. „Cauchy’s Generalized Problem in Solving a Nonlinear Three-parameter Spectral Problem“. In 2020 IEEE XXVth International Seminar/Workshop Direct and Inverse Problems of Electromagnetic and Acoustic Wave Theory (DIPED). IEEE, 2020. http://dx.doi.org/10.1109/diped49797.2020.9273364.
Der volle Inhalt der QuelleAlexin, S. G., und O. O. Drobakhin. „Inverse problem solving for layered dielectric structure using Newton-Kantorovich iterative scheme with increased accuracy“. In 2009 International Seminar/Workshop on Direct and Inverse Problems of Electromagnetic and Acoustic Wave Theory (DIPED 2009). IEEE, 2009. http://dx.doi.org/10.1109/diped.2009.5307276.
Der volle Inhalt der QuelleXu, Kaida, Yonghong Zhang, Linli Xie und Yong Fan. „A broad W-band detector utilizing zero-bias direct detection circuitry“. In 2011 International Conference on Computational Problem-Solving (ICCP). IEEE, 2011. http://dx.doi.org/10.1109/iccps.2011.6092273.
Der volle Inhalt der QuelleSavenko, P., M. Tkach und L. Protsakh. „Implicit Function Method in Solving of Nonlinear Two-Dimensional Spectral Problem“. In XIth International Seminar/Workshop on Direct and Inverse Problems of Electromagnetic Acoustic Wave Theory. IEEE, 2006. http://dx.doi.org/10.1109/diped.2006.314317.
Der volle Inhalt der QuellePotapov, A. P. „Horizontal Well Electric Logging Data Interpretation on the Basis of Direct and Inverse Problem Solving“. In Saint Petersburg 2010. Netherlands: EAGE Publications BV, 2010. http://dx.doi.org/10.3997/2214-4609.20145460.
Der volle Inhalt der QuelleMarinenko, A. V. „DiInSo software package for solving direct and inverse problems of electrotomography in non-typical problem definition“. In Engineering and Mining Geophysics 2020. European Association of Geoscientists & Engineers, 2020. http://dx.doi.org/10.3997/2214-4609.202051125.
Der volle Inhalt der QuelleAbboudi, S., E. A. Artioukhine und H. Riad. „Estimation of Transient Boundary Conditions in a Multimaterial: Computational and Experimental Analysis“. In ASME 1998 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 1998. http://dx.doi.org/10.1115/imece1998-0735.
Der volle Inhalt der QuelleAndriychuk, M. I., und Y. F. Kuleshnyk. „Solving the electromagnetic wave scattering problem by integral equation method“. In 2017 XXIInd International Seminar/Workshop on Direct and Inverse Problems of Electromagnetic and Acoustic Wave Theory (DIPED). IEEE, 2017. http://dx.doi.org/10.1109/diped.2017.8100610.
Der volle Inhalt der QuelleKhardikov, Vyacheslav V., Ekaterina O. Yarko und Sergey L. Prosvirnin. „Fast Algorithm for Solving of the Light Diffraction Problem on Planar Periodic Structures“. In 2007 XIIth International Seminar/Workshop on Direct and Inverse Problems of Electromagnetic and Acoustic Wave Theory. IEEE, 2007. http://dx.doi.org/10.1109/diped.2007.4373578.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Direct and inverse-Problem solving"
Wald, Joseph K. Solving the 'Inverse' Problem in Terrain Modeling. Fort Belvoir, VA: Defense Technical Information Center, Oktober 1994. http://dx.doi.org/10.21236/ada285860.
Der volle Inhalt der QuelleOsipov, G. S. Methodological basis for solving the inverse problem for multi-stage fuzzy relational equations. Сахалинский Государственный Университет, 2018. http://dx.doi.org/10.18411/olimp-2018-10.
Der volle Inhalt der QuelleArmstrong, Jerawan C., und Jeffrey A. Favorite. Applications of Mesh Adaptive Direct Search Algorithms to Solve Inverse Transport Problem: Unknown Interface Location. Office of Scientific and Technical Information (OSTI), September 2013. http://dx.doi.org/10.2172/1095220.
Der volle Inhalt der QuelleGosnell, Greer, John List und Robert Metcalfe. A New Approach to an Age-Old Problem: Solving Externalities by Incenting Workers Directly. Cambridge, MA: National Bureau of Economic Research, Juni 2016. http://dx.doi.org/10.3386/w22316.
Der volle Inhalt der QuelleDopfer, Jaqui. Öffentlichkeitsbeteiligung bei diskursiven Konfliktlösungsverfahren auf regionaler Ebene. Potentielle Ansätze zur Nutzung von Risikokommunikation im Rahmen von e-Government. Sonderforschungsgruppe Institutionenanalyse, 2003. http://dx.doi.org/10.46850/sofia.3933795605.
Der volle Inhalt der QuelleShifrin, Kusiel S., und Ilin G. Zolotov. The Determination of Macro- and Microphysical Characteristics of Aerosol Spatial Inhomogeneities in the Lower Part of the Marine Atmospheric Boundary Layer from the Backscattered Lidar Signal (the Direct and Inverse Problem). Fort Belvoir, VA: Defense Technical Information Center, Januar 2001. http://dx.doi.org/10.21236/ada390607.
Der volle Inhalt der QuelleChang, Michael Alan, Alejandra Magana, Bedrich Benes, Dominic Kao und Judith Fusco. Driving Interdisciplinary Collaboration through Adapted Conjecture Mapping: A Case Study with the PECAS Mediator. Digital Promise, Mai 2022. http://dx.doi.org/10.51388/20.500.12265/156.
Der volle Inhalt der QuelleZacamy, Jenna, und Jeremy Roschelle. Navigating the Tensions: How Could Equity-relevant Research Also Be Agile, Open, and Scalable? Digital Promise, August 2022. http://dx.doi.org/10.51388/20.500.12265/159.
Der volle Inhalt der QuelleINVERSION METHOD OF UNCERTAIN PARAMETERS FOR TRUSS STRUCTURES BASED ON GRAPH NEURAL NETWORKS. The Hong Kong Institute of Steel Construction, Dezember 2023. http://dx.doi.org/10.18057/ijasc.2023.19.4.5.
Der volle Inhalt der Quelle