Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Dirac and Weyl fermions“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Dirac and Weyl fermions" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Dirac and Weyl fermions"
Ma, Tian-Chi, Jing-Nan Hu, Yuan Chen, Lei Shao, Xian-Ru Hu und Jian-Bo Deng. „Coexistence of type-II and type-IV Dirac fermions in SrAgBi“. Modern Physics Letters B 35, Nr. 11 (09.02.2021): 2150181. http://dx.doi.org/10.1142/s0217984921501815.
Der volle Inhalt der QuellePal, Palash B. „Dirac, Majorana, and Weyl fermions“. American Journal of Physics 79, Nr. 5 (Mai 2011): 485–98. http://dx.doi.org/10.1119/1.3549729.
Der volle Inhalt der QuelleALONSO, J. L., J. L. CORTÉS und E. RIVAS. „WEYL FERMION FUNCTIONAL INTEGRAL AND TWO-DIMENSIONAL GAUGE THEORIES“. International Journal of Modern Physics A 05, Nr. 14 (20.07.1990): 2839–51. http://dx.doi.org/10.1142/s0217751x90001331.
Der volle Inhalt der QuelleHuang, Silu, Jisun Kim, W. A. Shelton, E. W. Plummer und Rongying Jin. „Nontrivial Berry phase in magnetic BaMnSb2 semimetal“. Proceedings of the National Academy of Sciences 114, Nr. 24 (24.05.2017): 6256–61. http://dx.doi.org/10.1073/pnas.1706657114.
Der volle Inhalt der QuelleBonora, Loriano, Roberto Soldati und Stav Zalel. „Dirac, Majorana, Weyl in 4D“. Universe 6, Nr. 8 (04.08.2020): 111. http://dx.doi.org/10.3390/universe6080111.
Der volle Inhalt der QuellePandey, Mahul, und Sachindeo Vaidya. „Yang–Mills matrix mechanics and quantum phases“. International Journal of Geometric Methods in Modern Physics 14, Nr. 08 (11.05.2017): 1740009. http://dx.doi.org/10.1142/s0219887817400096.
Der volle Inhalt der QuelleChen, Xiaomei, und Rui Zhu. „Quantum Pumping with Adiabatically Modulated Barriers in Three-Band Pseudospin-1 Dirac–Weyl Systems“. Entropy 21, Nr. 2 (22.02.2019): 209. http://dx.doi.org/10.3390/e21020209.
Der volle Inhalt der QuelleHARADA, KOJI. „EQUIVALENCE BETWEEN THE WESS-ZUMINO-WITTEN MODEL AND TWO CHIRAL BOSONS“. International Journal of Modern Physics A 06, Nr. 19 (10.08.1991): 3399–418. http://dx.doi.org/10.1142/s0217751x91001659.
Der volle Inhalt der QuelleReis, João Alfíeres Andrade de Simões dos, und Marco Schreck. „Formal Developments for Lorentz-Violating Dirac Fermions and Neutrinos“. Symmetry 11, Nr. 10 (24.09.2019): 1197. http://dx.doi.org/10.3390/sym11101197.
Der volle Inhalt der QuelleGao, Lan-Lan, und Xu-Guang Huang. „Chiral Anomaly in Non-Relativistic Systems: Berry Curvature and Chiral Kinetic Theory“. Chinese Physics Letters 39, Nr. 2 (01.02.2022): 021101. http://dx.doi.org/10.1088/0256-307x/39/2/021101.
Der volle Inhalt der QuelleDissertationen zum Thema "Dirac and Weyl fermions"
Krizman, Gauthier. „Étude magnéto-optique des transitions de phase topologique dans les alliages Pb₁₋ₓSnₓSe et leurs hétérostructures“. Electronic Thesis or Diss., Université Paris sciences et lettres, 2020. http://www.theses.fr/2020UPSLE019.
Der volle Inhalt der QuelleThis thesis deals with topological phases in Pb₁₋ₓSnₓSe alloys and their heterostructures. The topological and electronic properties of Pb₁₋ₓSnₓSe are characterized by using magneto-spectroscopy and numerous external and internal knobs like chemical composition, temperature, strain or magnetic field. The heterostructures are investigated to experimentally reach the topological interface states. A hybridization engineering of these topological interface states is demonstrated in both quantum wells and superlattices. The effect of a magnetic doping is also investigated. The great versatility of the Pb₁₋ₓSnₓSe-based system paves the way for the observation of numerous pseudo-relativistic phases such as quantum spin Hall effect, quantum anomalous Hall effect or Weyl fermions, …
Broccoli, Matteo. „On the trace anomaly of a Weyl fermion in a gauge background“. Master's thesis, Alma Mater Studiorum - Università di Bologna, 2018. http://amslaurea.unibo.it/16408/.
Der volle Inhalt der QuelleAmbrus, Victor E. „Dirac fermions on rotating space-times“. Thesis, University of Sheffield, 2014. http://etheses.whiterose.ac.uk/7527/.
Der volle Inhalt der QuelleFrenzel, Alex J. „Terahertz Electrodynamics of Dirac Fermions in Graphene“. Thesis, Harvard University, 2015. http://nrs.harvard.edu/urn-3:HUL.InstRepos:17467397.
Der volle Inhalt der QuellePhysics
Bhaseen, Miraculous Joseph. „Logarithmic conformal field theories of disordered Dirac fermions“. Thesis, University of Oxford, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.393358.
Der volle Inhalt der QuelleKhalil, Lama. „Ultrafast study of Dirac fermions in topological insulators“. Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLS344/document.
Der volle Inhalt der QuelleThis thesis presents an experimental study of the electronic properties of two topological materials, namely, the irradiated three-dimensional topological insulator Bi₂Te₃ and the natural topological superlattice phase Sb₂Te. Both systems were investigated by techniques based on photoemission spectroscopy. The Bi₂Te₃ compounds have been irradiated by high-energy electron beams. Irradiation with electron beams is a very promising approach to realize materials that are really insulating in the bulk, in order to emphasize the quantum transport in the protected surface states. By studying a series of samples of Bi₂Te₃ using time- and angle-resolved photoemission spectroscopy (trARPES) we show that, while the topological properties of the Dirac surface states are preserved after electron irradiation, their ultrafast relaxation dynamics are very sensitive to the related modifications of the bulk properties. Furthermore, we have studied the occupied and unoccupied electronic band structure of Sb₂Te. Using scanning photoemission microscopy (SPEM), we have consistently found various nonequivalent regions on the same surface after cleaving several Sb₂Te single crystals. We were able to identify three distinct terminations characterized by different Sb/Te surface stoichiometric ratios and with clear differences in their band structure. For the dominating Te-rich termination, we also provided a direct observation of the excited electronic states and of their relaxation dynamics by means of trARPES. Our results clearly indicate that the surface electronic structure is strongly affected by the bulk properties of the superlattice. Therefore, for both systems, we show that the surface electronic structure is absolutely connected to the bulk properties
Bocquet, Marc. „Chaînes de Spins, Fermions de Dirac, et Systèmes Désordonnés“. Phd thesis, Ecole Polytechnique X, 2000. http://tel.archives-ouvertes.fr/tel-00001560.
Der volle Inhalt der QuelleSteiner, Margit Susanne. „Random Dirac fermions and localisation phenomena in one dimension“. Thesis, Imperial College London, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.325365.
Der volle Inhalt der Quellede, Coster George. „Effective Soft-Mode Theory of Strongly Interacting Fermions in Dirac Semimetals“. Thesis, University of Oregon, 2019. http://hdl.handle.net/1794/24235.
Der volle Inhalt der Quelle2020-01-11
Mizobata, William Nobuhiro. „Interação entre impurezas enterradas em um semimetal de Weyl : caso magnético /“. Ilha Solteira, 2019. http://hdl.handle.net/11449/181343.
Der volle Inhalt der QuelleResumo: Investigamos teoricamente um sistema composto por duas impurezas afastadas e enterradas em um semimetal de Weyl. Analisamos a densidade de estados local para duas situações: com simetrias de reversão temporal e inversão preservadas e; simetria de reversão temporal quebrada e inversão preservada. Na situação em que as duas simetrias são preservadas, o Hamiltoniano descreve um semimetal de Dirac. Sendo assim, verificamos a densidade de estados local em dois pontos diferentes do semimetal de Dirac e os orbitais moleculares formado pelas impurezas. É possível observar que em alguns pontos, a densidade de estados total, que pode ser obtido experimentalmente via espectroscopia de varredura por tunelamento, há a presença de apenas dois picos, enquanto que em outro ponto há a presença de quatro picos. Sendo assim, a presença de dois picos nos leva a crer que não há interação entre as impurezas, entretanto, em outro ponto que contém quatro picos em sua densidade de estados, mostra que há interação entre as impurezas. Analisamos os orbitais moleculares realizando uma topografa espacial da densidade de estados e é possível observar estados ligante e antiligante entre as impurezas com orbitais s. A segunda situação, com a quebra de simetria de reversão temporal e simetria de inversão preservada, temos um semimetal de Weyl com as bandas de energias separadas no espaço dos momentos e com energias degeneradas. Verificamos na densidade de estados local, uma magnetização das impurezas devido ... (Resumo completo, clicar acesso eletrônico abaixo)
Abstract: We investigate theoretically the setup composed by two distant impurities and burried in Weyl semimetal. We analyze a local density of states for two situations: with time reversal symmetry and inversion symmetry preserved and; time reversal symmetry broken and inversion symmetry preserved. In the situation that the two symmetries are preserved, the Hamiltonian describes a Dirac semimetal. Therefore, we verified the local density of states in two different points of Dirac semimetal and the molecular orbital formed by the impurities. It is possible to observe that in some points, the total density of states, which can be obtained experimentally via scanning tunneling microscope, there is the presence of just two peaks, while that in another point there is the presence of four peaks. Therefore, the presence of two peaks leads us to belive that there is no interaction between impurities, however, in the another point that contain four peaks in the density of states, show that there is interaction between the impurities. We analyze the molecular orbital realizing a spacial topography of density of states and it is possible to observe bonding and antibonding states between impurities with s orbital. The second situation, with the time reversal symmetry broken and inversion symmetry preserved, we have a Weyl semimetal with separated energy bands in momentum space and degenerate energy. We verified in the local density of states, a magnetization of the impurities due to the time rev... (Complete abstract click electronic access below)
Mestre
Bücher zum Thema "Dirac and Weyl fermions"
Israelit, Mark. The Weyl-Dirac theory and our universe. Commack, N.Y: Nova Science Publishers, 1999.
Den vollen Inhalt der Quelle findenKachelriess, Michael. Fermions and the Dirac equation. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198802877.003.0008.
Der volle Inhalt der QuelleElectronic Properties of Dirac and Weyl Semimetals. World Scientific Publishing Co Pte Ltd, 2021.
Den vollen Inhalt der Quelle findenWurm, Jurgen. Dirac Fermions in Graphene Nanostructures: Edge Effects on Spectral Density and Quantum Transport. Universitatsverlag Regensburg, 2011.
Den vollen Inhalt der Quelle findenBaulieu, Laurent, John Iliopoulos und Roland Sénéor. Towards a Relativistic Quantum Mechanics. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198788393.003.0007.
Der volle Inhalt der QuelleZirnbauer, Martin R. Symmetry classes. Herausgegeben von Gernot Akemann, Jinho Baik und Philippe Di Francesco. Oxford University Press, 2018. http://dx.doi.org/10.1093/oxfordhb/9780198744191.013.3.
Der volle Inhalt der QuelleKübler, Jürgen. Theory of Itinerant Electron Magnetism, 2nd Edition. 2. Aufl. Oxford University Press, 2021. http://dx.doi.org/10.1093/oso/9780192895639.001.0001.
Der volle Inhalt der QuelleBuchteile zum Thema "Dirac and Weyl fermions"
Pronin, Artem V. „Dirac and Weyl Semimetals“. In Springer Series in Solid-State Sciences, 45–81. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-35637-7_3.
Der volle Inhalt der QuelleShen, Shun-Qing. „Topological Dirac and Weyl Semimetals“. In Springer Series in Solid-State Sciences, 207–29. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-4606-3_11.
Der volle Inhalt der QuelleWolschin, Georg. „Dirac-Neutrinos: Die Weyl-Gleichung“. In Relativistische Quantenmechanik, 101–9. Berlin, Heidelberg: Springer Berlin Heidelberg, 2021. http://dx.doi.org/10.1007/978-3-662-64387-7_8.
Der volle Inhalt der QuelleWolschin, Georg. „Dirac-Neutrinos: Die Weyl-Gleichung“. In Relativistische Quantenmechanik, 97–105. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-47108-1_8.
Der volle Inhalt der QuelleKobayashi, Takayoshi. „Dirac Fermions Near the Dirac Point in Topological Insulators“. In Ultrashort Pulse Lasers and Ultrafast Phenomena, 487–94. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9780429196577-69.
Der volle Inhalt der QuelleJohnson, P. D. „Dirac cones and topological states: Dirac and Weyl semimetals“. In Physics of Solid Surfaces, 535–45. Berlin, Heidelberg: Springer Berlin Heidelberg, 2018. http://dx.doi.org/10.1007/978-3-662-53908-8_128.
Der volle Inhalt der QuelleBhaseen, M. J., J. S. Caux, I. I. Kogan und A. M. Tsvelik. „Disordered Dirac Fermions: Three Different Approaches“. In New Theoretical Approaches to Strongly Correlated Systems, 173–203. Dordrecht: Springer Netherlands, 2001. http://dx.doi.org/10.1007/978-94-010-0838-9_8.
Der volle Inhalt der QuelleLitvinov, Vladimir. „Indirect Exchange Interaction Mediated by Dirac Fermions“. In Magnetism in Topological Insulators, 117–42. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-12053-5_7.
Der volle Inhalt der QuelleSerban, Didina. „2D Random Dirac Fermions: Large N Approach“. In Statistical Field Theories, 263–75. Dordrecht: Springer Netherlands, 2002. http://dx.doi.org/10.1007/978-94-010-0514-2_24.
Der volle Inhalt der QuelleIsobe, Hiroki. „Interacting Dirac Fermions in (3+1) Dimensions“. In Theoretical Study on Correlation Effects in Topological Matter, 33–62. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-3743-6_2.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Dirac and Weyl fermions"
Buividovich, P. V. „Surface states of massive Dirac fermions with separated Weyl nodes“. In XITH CONFERENCE ON QUARK CONFINEMENT AND HADRON SPECTRUM. AIP Publishing LLC, 2016. http://dx.doi.org/10.1063/1.4938609.
Der volle Inhalt der QuelleBelyanin, Alexey. „Magnetooptics of materials with Dirac and Weyl fermions (Conference Presentation)“. In Spintronics XV, herausgegeben von Henri-Jean M. Drouhin, Jean-Eric Wegrowe und Manijeh Razeghi. SPIE, 2022. http://dx.doi.org/10.1117/12.2634322.
Der volle Inhalt der QuelleKumar, Upendra, Vipin Kumar, Enamullah und Girish S. Setlur. „Bloch-Siegert shift in Dirac-Weyl fermionic systems“. In DAE SOLID STATE PHYSICS SYMPOSIUM 2017. Author(s), 2018. http://dx.doi.org/10.1063/1.5029045.
Der volle Inhalt der QuelleMatos, Tonatiuh, Omar Gallegos und Pierre-Henri Chavanis. „Hydrodynamic representation and energy balance for the Dirac and Weyl fermions in curved space-times“. In Proceedings of the MG16 Meeting on General Relativity. WORLD SCIENTIFIC, 2023. http://dx.doi.org/10.1142/9789811269776_0201.
Der volle Inhalt der QuelleNagaosa, Naoto. „Correlated Weyl Fermions in Oxides“. In Proceedings of the International Conference on Strongly Correlated Electron Systems (SCES2019). Journal of the Physical Society of Japan, 2020. http://dx.doi.org/10.7566/jpscp.30.011007.
Der volle Inhalt der QuelleAkrap, Ana. „Magneto-optics of Dirac and Weyl semimetals“. In Terahertz Emitters, Receivers, and Applications XI, herausgegeben von Manijeh Razeghi und Alexei N. Baranov. SPIE, 2020. http://dx.doi.org/10.1117/12.2569451.
Der volle Inhalt der QuelleLeClair, Andre. „Renormalization Group for disordered Dirac Fermions“. In Workshop on Integrable Theories, Solitons and Duality. Trieste, Italy: Sissa Medialab, 2002. http://dx.doi.org/10.22323/1.008.0022.
Der volle Inhalt der QuelleOng, N. Phuan. „The Chiral Anomaly in Dirac and Weyl Semimetals“. In Nobel Symposium 167: Chiral Matter. WORLD SCIENTIFIC, 2023. http://dx.doi.org/10.1142/9789811265068_0008.
Der volle Inhalt der QuelleLuo, C. W., H. J. Wang, S. A. Ku, H. J. Chen, T. T. Yeh, J. Y. Lin, K. H. Wu et al. „Snapshots of Dirac Fermions near the Dirac Point in Topological Insulators“. In International Conference on Ultrafast Phenomena. Washington, D.C.: OSA, 2014. http://dx.doi.org/10.1364/up.2014.08.tue.p2.31.
Der volle Inhalt der QuelleCatterall, Simon. „Dirac-Kahler fermions and exact lattice supersymmetry“. In XXIIIrd International Symposium on Lattice Field Theory. Trieste, Italy: Sissa Medialab, 2005. http://dx.doi.org/10.22323/1.020.0006.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Dirac and Weyl fermions"
Huang, Lunan. Studies of Dirac and Weyl fermions by angle resolved photoemission spectroscopy. Office of Scientific and Technical Information (OSTI), Januar 2016. http://dx.doi.org/10.2172/1342554.
Der volle Inhalt der QuelleHorng, Jason, Chi-Fan Chen, Baisong Geng, Caglar Girit, Yuanbo Zhang, Zhao Hao, Hans A. Bechtel, Michael Martin, Alex Zettl und Michael F. Crommie. Drude Conductivity of Dirac Fermions in Graphene. Fort Belvoir, VA: Defense Technical Information Center, Januar 2010. http://dx.doi.org/10.21236/ada526672.
Der volle Inhalt der QuelleVekhter, Ilya. Inhomogeneous disorder Dirac Fermions: from heavy fermion superconductors to graphene. Final report. Office of Scientific and Technical Information (OSTI), August 2013. http://dx.doi.org/10.2172/1089679.
Der volle Inhalt der QuelleMishchenko, Eugene. Disorder, interactions, and their interplay in novel narrow-gap Dirac materials and Weyl semimetals. Office of Scientific and Technical Information (OSTI), März 2022. http://dx.doi.org/10.2172/1856847.
Der volle Inhalt der Quelle