Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Dioxins Metabolism“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Dioxins Metabolism" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Dioxins Metabolism"
Dobrzyński, Maciej, Jan P. Madej, Anna Leśków, Małgorzata Tarnowska, Jacek Majda, Monika Szopa, Andrzej Gamian und Piotr Kuropka. „The Improvement of the Adaptation Process of Tocopherol and Acetylsalicylic Acid in Offspring of Mothers Exposed to TCDD“. Animals 11, Nr. 12 (01.12.2021): 3430. http://dx.doi.org/10.3390/ani11123430.
Der volle Inhalt der QuelleKeke Hu, Nigel J. Bunce. „METABOLISM OF POLYCHLORINATED DIBENZO-p-DIOXINS AND RELATED DIOXIN-LIKE COMPOUNDS“. Journal of Toxicology and Environmental Health, Part B 2, Nr. 2 (März 1999): 183–210. http://dx.doi.org/10.1080/109374099281214.
Der volle Inhalt der QuellePatrizi, Barbara, und Mario Siciliani de Cumis. „TCDD Toxicity Mediated by Epigenetic Mechanisms“. International Journal of Molecular Sciences 19, Nr. 12 (18.12.2018): 4101. http://dx.doi.org/10.3390/ijms19124101.
Der volle Inhalt der QuelleColquhoun, David R., Erica M. Hartmann und Rolf U. Halden. „Proteomic Profiling of the Dioxin-Degrading BacteriumSphingomonas wittichiiRW1“. Journal of Biomedicine and Biotechnology 2012 (2012): 1–9. http://dx.doi.org/10.1155/2012/408690.
Der volle Inhalt der QuelleChernyak, Yury I., Alla P. Merinova, Andrey A. Shelepchikov, Sergey I. Kolesnikov und Jean A. Grassman. „Impact of dioxins on antipyrine metabolism in firefighters“. Toxicology Letters 250-251 (Mai 2016): 35–41. http://dx.doi.org/10.1016/j.toxlet.2016.04.006.
Der volle Inhalt der QuelleSwigonska, Sylwia, Tomasz Molcan, Anna Nynca und Renata E. Ciereszko. „The involvement of CYP1A2 in biodegradation of dioxins in pigs“. PLOS ONE 17, Nr. 5 (26.05.2022): e0267162. http://dx.doi.org/10.1371/journal.pone.0267162.
Der volle Inhalt der QuelleGalimov, Sh N., A. Z. Abdullina, R. S. Kidrasova und E. F. Galimova. „Level of dioxins and glutathione system status in semen of male patients with infertility“. Kazan medical journal 94, Nr. 5 (15.10.2013): 658–61. http://dx.doi.org/10.17816/kmj1913.
Der volle Inhalt der QuelleHu, Keke, und Nigel J. Bunce. „Metabolism of polychlorinated dibenzo-p-dioxins by rat liver microsomes“. Journal of Biochemical and Molecular Toxicology 13, Nr. 6 (1999): 307–15. http://dx.doi.org/10.1002/(sici)1099-0461(1999)13:6<307::aid-jbt4>3.0.co;2-p.
Der volle Inhalt der QuelleBock, Karl Walter. „Human and rodent aryl hydrocarbon receptor (AHR): from mediator of dioxin toxicity to physiologic AHR functions and therapeutic options“. Biological Chemistry 398, Nr. 4 (01.04.2017): 455–64. http://dx.doi.org/10.1515/hsz-2016-0303.
Der volle Inhalt der QuelleMolcan, Tomasz, Sylwia Swigonska, Anna Nynca, Agnieszka Sadowska, Monika Ruszkowska, Karina Orlowska und Renata E. Ciereszko. „Is CYP1B1 involved in the metabolism of dioxins in the pig?“ Biochimica et Biophysica Acta (BBA) - General Subjects 1863, Nr. 2 (Februar 2019): 291–303. http://dx.doi.org/10.1016/j.bbagen.2018.09.024.
Der volle Inhalt der QuelleDissertationen zum Thema "Dioxins Metabolism"
Furness, Sebastian George Barton. „Novel mechanisms for activation of the dioxin (Aryl-hydrocarbon) receptor /“. Title page, table of contents and summary only, 2003. http://web4.library.adelaide.edu.au/theses/09PH/09phf988.pdf.
Der volle Inhalt der QuelleHögberg, Pi. „Disruption of vitamin A metabolism by dioxin /“. Stockholm, 2003. http://diss.kib.ki.se/2003/91-7349-608-1/.
Der volle Inhalt der QuelleShinkyo, Raku. „Structure-function analysis of mammalian cytochromes P450 involved in metabolism of dioxins“. Kyoto University, 2006. http://hdl.handle.net/2433/144094.
Der volle Inhalt der Quelle0048
新制・課程博士
博士(農学)
甲第12357号
農博第1538号
新制||農||923(附属図書館)
学位論文||H18||N4115(農学部図書室)
24193
UT51-2006-J349
京都大学大学院農学研究科食品生物科学専攻
(主査)教授 井上 國世, 教授 吉川 正明, 教授 村田 幸作
学位規則第4条第1項該当
Hu, Keke. „Structure-activity relationships for the metabolism of polychlorinated dibenzo-p-dioxins and related compounds“. Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp03/NQ35799.pdf.
Der volle Inhalt der QuelleMurtomaa-Hautala, M. (Mari). „Species-specific effects of dioxin exposure on xenobiotic metabolism and hard tissue in voles“. Doctoral thesis, Oulun yliopisto, 2012. http://urn.fi/urn:isbn:9789514297830.
Der volle Inhalt der QuelleTiivistelmä Haitallisten kemikaalien tason ja vaikutusten arviointi ympäristössä on olennainen osa kemikaalien riskin arviointia. Vaikka laboratoriossa olosuhteita kontrolloidaan ja tutkimukseen vaikuttava variaatio on paremmin hallittavissa, luonnonvaraisten lajien tutkiminen luo kokonaisvaltaisen ja todenmukaisen kuvan ympäristön kemikaalialtistuksesta kaikkine todellisine vaihteluineen. Tässä väitöskirjassa tarkastellaan kahden luonnonvaraisen pikkunisäkkään, metsämyyrän (Myodes glareolus) ja peltomyyrän (Microtus agrestis), käyttöä ympäristön kemikaalitason arvioinnissa. Pääpaino on dioksiinien kaltaisissa yhdisteissä. Työssä tutkitaan yhdisteiden kertymistä myyriin kahdessa ympäristössä: voimakkaasti dioksiineilla saastuneella maa-alueella sekä kaukana ihmistoiminnasta sijaitsevassa erämaassa. Herkiksi tiedettyjä vasteita – hampaiden ja luiden kehitystä – käytetään dioksiinialtistuksen indikaattoreina. Vierasainemetaboliasta vastaavien entsyymien (sytokromi P450 eli CYP) aktiivisuutta kartoitetaan molemmilla myyrälajeilla, jotta saadaan tietoa entsyymien indusoinnista luonnonvaraisilla myyrillä yleensä ja selvitetään havaittuja lajien välisiä eroja dioksiinivasteissa. Tulokset vahvistavat, että dioksiinit ovat laajalle levinneitä yhdisteitä, joita löytyy paitsi läheltä päästölähdettä myös kaukana ihmistoiminnasta olevilta alueilta. Metsämyyrällä kolmannen poskihampaan kehitys osoittautuu herkäksi dioksiinialtistuksen biomarkkeriksi. Samasta elinympäristöstä huolimatta tutkituista myyrälajeista mitatut dioksiinipitoisuudet eroavat huomattavasti toisistaan, samoin kuin vierasainemetaboliasta vastaavien entsyymien aktiivisuus ja niiden induktio TCDD-altistuksen jälkeen
Labaronne, Emmanuel. „Impacts métaboliques d'un mélange faiblement dosé de polluants alimentaires dans un modèle murin : effets dépendants de l'âge, du sexe et du contexte nutritionnel“. Thesis, Lyon, 2016. http://www.theses.fr/2016LYSE1204/document.
Der volle Inhalt der QuellePollutants are suspected to contribute to the etiology of obesity and related metabolic disorders but the current risk assessment does not take into account the cocktail effect resulting from the large amount of chemicals to which humans are exposed.We fed mice with high fat or standard diet with or without a mixture of food pollutants, either persistent pollutants (TCDD, PCB153) or short-lived pollutants (DEHP, BPA). Doses are adjusted resulting in mice exposure at the Tolerable Daily Intake dose range for each pollutant. Mice are chronically exposed from preconception to adult life.We demonstrated that a mixture of 4 pollutants triggers in the adult male offspring (12 weeks) an alteration of hepatic cholesterol metabolism. In females, there was a marked deterioration of glucose tolerance, which may be related to decreased hepatic estrogen signaling. The analyze of 7 week-old female mice, when they exhibit early signs of obesity and immature estrogen levels, shown that pollutant exposure alleviated HFSD-induced glucose intolerance, suggesting apparent biphasic effects of pollutants along with hormonal context. Then we compared hepatic signature of gene expressions from exposed non-obese or non exposed obese females and we highlight 4 main pathways that were targeted by both treatments and appeared to be affected by different but overlapping mechanisms. Plus, we showed that pollutants can markedly alter the circadian clock in the liver.Altogether, we emphasize that, pollutants presented in a mixture, have adverse metabolic effects at doses where they are supposed to be without any individual effect, and these effects depend on the gender, age and dietary context
Arnoldsson, Kristina. „Polybrominated dibenzo-p-dioxins : Natural formation mechanisms and biota retention, maternal transfer, and effects“. Doctoral thesis, Umeå universitet, Kemiska institutionen, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-50887.
Der volle Inhalt der QuelleRosenzweig, Ella. „Exploring the role and the function of Aryl Hydrocarbon Receptor (AhR) and Aryl Hydrocarbon Nuclear Translocator (ARNT) in T cells“. Thesis, University of Dundee, 2012. https://discovery.dundee.ac.uk/en/studentTheses/1d8657f4-b7b1-4508-a93f-76f21fa8d605.
Der volle Inhalt der QuelleLeblanc, Alix. „Effets d’un mélange de polluants organiques persistants sur le métabolisme hépatique“. Thesis, Paris 5, 2014. http://www.theses.fr/2014PA05P629/document.
Der volle Inhalt der QuelleEpidemiological studies have shown that exposure to certain xenobiotics is associated with an increased prevalence of metabolic diseases. Humans are exposed to mixtures of xenobiotics in a chronic and inevitable way. We studied the effects of the interaction of two xenobiotics on metabolism in the liver, the major organ for detoxification in the body. We chose two endocrine disruptors and persistent organic pollutants which activate different signaling pathways: 2,3,7,8 tetrachlorodibenzo-p-dioxin (TCDD), which uses the AhR (Aryl hydrocarbon receptor) pathway, and α-endosulfan, an organochlorine pesticide, which acts via the PXR (pregnane X receptor) and/or the ER (estrogen receptor) pathway. Our aim was to determine the effects of this pollutant mixture, as compared to each pollutant alone, on the regulation in vitro of some hepatic metabolism pathways in the human hepatic cell line, HepaRG. In the first publication, a transcriptomic study of differentiated HepaRG cells was performed. The cells were exposed for 30h to 25nM TCDD, to 10 µM α-endosulfan or to the mixture. We observed that the mixture strongly inhibited the expression of some genes involved in the metabolism of glucose and alcohol. In the second study, we studied the mechanism of action of the mixture of pollutants on the metabolism of glucose. The expression of two genes involved in hepatic gluconeogenesis, glucose transporter 2 (GLUT2) and glucose-6-phosphatase (G6Pc), were reduced 80% by the mixture. The expression of other glucose metabolism genes (pyruvate kinase, glycogen synthase, glycogen phosphorylase, pyruvate dehydrogenase 2) also was decreased suggesting that the mixture might impact markedly carbohydrate metabolism. Furthermore, glucose production decreased 40% with the mixture under gluconeogenic conditions. Under glycolytic conditions, the oxidation of glucose into CO2 decreased 30% after 72h of exposure of the cells to the mixture. Long-term treatment (8 days) with lower doses (0.2 to 5 nM TCDD, 3 µM α-endosulfan) similarly decreased G6Pc and GLUT2 expression. We showed that TCDD activated the AhR pathway, and that ER was partly involved in the α-endosulfan effect. In the third part of this thesis, we studied the regulation of several enzymes involved in the metabolism of alcohol (alcohol dehydrogenase, ADH, cytochrome P450 2E1, CYP2E1) after activation of AhR. AhR agonists led to a decrease in the amounts of mRNAs for ADH1, 4, 6 and CYP2E1 and the corresponding proteins. We showed that this regulation uses the AhR genomic pathway. Furthermore, this effect was also observed after 8 days of treatment with lower doses of TCDD. Chronic exposure of individuals to low doses of xenobiotics in mixtures might significantly affect hepatic carbohydrate metabolism and be a contributing factor for the development of the metabolic syndrome
Gadupudi, Gopi Srinivas. „PCB126-induced metabolic disruption: effects on liver metabolism and adipocyte development“. Diss., University of Iowa, 2016. https://ir.uiowa.edu/etd/2208.
Der volle Inhalt der QuelleBücher zum Thema "Dioxins Metabolism"
Pohjanvirta, Raimo. The AH receptor in biology and toxicology. Hoboken, N.J: Wiley, 2011.
Den vollen Inhalt der Quelle findenNATO Advanced Study Institute on Carbon Dioxide: Chemical and Biochemical Uses as a Source of Carbon (1986 Pugnochiuso, Italy). Carbon dioxide as a source of carbon: Biochemical and chemical uses. Dordrecht: D. Reidel Pub. Co., 1987.
Den vollen Inhalt der Quelle findenThe slender thread: Web of life, the story of carbon dioxide. Corpus Christi: Helix Press, 1985.
Den vollen Inhalt der Quelle findenMcKinney, Aubrey R. The slender thread: Web of life, the story of carbon dioxide. Corpus Christi, Tex: Helix Press, 1995.
Den vollen Inhalt der Quelle findenThoene, Barbara. Untersuchungen zur Aufnahme und Metabolisierung atmosphärischen Stickstoffdioxyds in oberindischen Organen der Fichte (Picea abies (L.) Karst.). Frankfurt/M: Wissenschafts-Verlag W. Maraun, 1991.
Den vollen Inhalt der Quelle findenW, Ludden Paul, Burris John E und Burris Robert H. 1914-, Hrsg. Nitrogen fixation and CO₂ metabolism: Proceedings of the Fourteenth Steenbock Symposium held 17-22 June 1984 at the University of Wisconsin--Madison, Madison, Wisconsin, U.S.A. New York: Elsevier, 1985.
Den vollen Inhalt der Quelle findenLudden, P. W., und J. E. Burris. Nitrogen Fixation and Carbon Dioxide Metabolism. Elsevier, 1985.
Den vollen Inhalt der Quelle findenNahas, G. Carbon Dioxide and Metabolic Regulations. Springer, 2011.
Den vollen Inhalt der Quelle findenPohjanvirta, Raimo. AH Receptor in Biology and Toxicology. Wiley & Sons, Incorporated, John, 2011.
Den vollen Inhalt der Quelle findenPohjanvirta, Raimo. AH Receptor in Biology and Toxicology. Wiley & Sons, Incorporated, John, 2011.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Dioxins Metabolism"
Jaiswal, Prashant Kumar, und Jyotsana Gupta. „Metabolism of Dioxins and Dioxins-Like Compound, Its Regulation and Toxicological Pathways“. In Environmental Microbiology and Biotechnology, 293–308. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-7493-1_14.
Der volle Inhalt der QuelleMiller, Alexander L. „Carbon Dioxide Narcosis“. In Cerebral Energy Metabolism and Metabolic Encephalopathy, 143–62. Boston, MA: Springer US, 1985. http://dx.doi.org/10.1007/978-1-4684-1209-3_6.
Der volle Inhalt der QuelleRanimol, G., C. B. Devipriya und Swetha Sunkar. „Docking and Molecular Dynamics Simulation Studies for the Evaluation of Laccase Mediated Biodegradation of Triclosan“. In Proceedings of the Conference BioSangam 2022: Emerging Trends in Biotechnology (BIOSANGAM 2022), 205–13. Dordrecht: Atlantis Press International BV, 2022. http://dx.doi.org/10.2991/978-94-6463-020-6_20.
Der volle Inhalt der QuelleKarol, Paul J. „Respiration and Metabolism“. In The Legacy of Carbon Dioxide, 153–64. Boca Raton : CRC Press, Taylor & Francis Group, 2019.: CRC Press, 2019. http://dx.doi.org/10.1201/9780429200649-15.
Der volle Inhalt der QuelleAlscher, Ruth, Michael Franz und C. W. Jeske. „Sulfur Dioxide and Chloroplast Metabolism“. In Phytochemical Effects of Environmental Compounds, 1–28. Boston, MA: Springer US, 1987. http://dx.doi.org/10.1007/978-1-4613-1931-3_1.
Der volle Inhalt der QuelleSheoran, I. S., und Randhir Singh. „Carbon Dioxide Metabolism in Photosynthesis“. In Concepts in Photobiology, 430–73. Dordrecht: Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-011-4832-0_14.
Der volle Inhalt der QuelleKondo, Noriaki. „Uptake, Metabolism, and Detoxification of Sulfur Dioxide“. In Air Pollution and Plant Biotechnology, 179–99. Tokyo: Springer Japan, 2002. http://dx.doi.org/10.1007/978-4-431-68388-9_9.
Der volle Inhalt der QuelleFuchs, Georg. „One-Carbon Metabolism of Anaerobic Bacteria: Challenge for Chemistry“. In Enzymatic and Model Carboxylation and Reduction Reactions for Carbon Dioxide Utilization, 293–300. Dordrecht: Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-009-0663-1_17.
Der volle Inhalt der QuelleYoneyama, Tadakatsu, Hak Y. Kim, Hiromichi Morikawa und Hari S. Srivastava. „Metabolism and Detoxification of Nitrogen Dioxide and Ammonia in Plants“. In Air Pollution and Plant Biotechnology, 221–34. Tokyo: Springer Japan, 2002. http://dx.doi.org/10.1007/978-4-431-68388-9_11.
Der volle Inhalt der QuelleLi, Xin, Golam Jalal Ahammed, Lan Zhang, Peng Yan, Liping Zhang und Wen-Yan Han. „Elevated Carbon Dioxide-Induced Perturbations in Metabolism of Tea Plants“. In Stress Physiology of Tea in the Face of Climate Change, 135–55. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-2140-5_7.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Dioxins Metabolism"
Gogol, Elina V., Guzel I. Gumerova und Olga S. Egrova. „Approaches to Assessment and Hazard Identification of Dioxins“. In Environmental Engineering. VGTU Technika, 2017. http://dx.doi.org/10.3846/enviro.2017.021.
Der volle Inhalt der QuelleHabran, S., Th Desaive, Ph Morimont, B. Lambermont und P. C. Dauby. „Importance of metabolism variations in a model of extracorporeal carbon dioxide removal“. In 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE, 2016. http://dx.doi.org/10.1109/embc.2016.7591669.
Der volle Inhalt der QuelleAlbuquerque-Neto, Cyro, und Jurandir Itizo Yanagihara. „A Passive Model of the Heat, Oxygen and Carbon Dioxide Transport in the Human Body“. In ASME 2009 International Mechanical Engineering Congress and Exposition. ASMEDC, 2009. http://dx.doi.org/10.1115/imece2009-11104.
Der volle Inhalt der QuelleXia, Chunguang, und Nicholas Fang. „Enhanced Mass Transport Through Permeable Polymer Microcirculatory Networks“. In ASME 2006 International Mechanical Engineering Congress and Exposition. ASMEDC, 2006. http://dx.doi.org/10.1115/imece2006-15408.
Der volle Inhalt der QuelleLey, Obdulia, und Yildiz Bayazitoglu. „Effect of Physiological Parameters on the Temperature Distribution of a Layered Head Model“. In ASME 2002 International Mechanical Engineering Congress and Exposition. ASMEDC, 2002. http://dx.doi.org/10.1115/imece2002-32044.
Der volle Inhalt der QuelleIto, Miu, und Yuichi Sugai. „Study on Enhanced Oil Recovery Using Microorganism Generating Foam in Presence of Nanobubbles“. In SPE/IATMI Asia Pacific Oil & Gas Conference and Exhibition. SPE, 2021. http://dx.doi.org/10.2118/205671-ms.
Der volle Inhalt der QuelleZarin, A. S., Arup Lal Chakraborty und Abhishek Upadhyay. „Detecting metabolic carbon dioxide using a tunable laser for non-invasive monitoring of growth of bacterial pathogens“. In 2017 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC). IEEE, 2017. http://dx.doi.org/10.1109/cleoe-eqec.2017.8087202.
Der volle Inhalt der QuelleJacobs, A., und W. Everett. „A Fully Operational Pilot Plant for Eliminating Radioactive Oils Mixed With Chlorinated Solvents“. In ASME 2011 14th International Conference on Environmental Remediation and Radioactive Waste Management. ASMEDC, 2011. http://dx.doi.org/10.1115/icem2011-59044.
Der volle Inhalt der QuellePickering, Karen D., Eugene K. Ungar, Leticia M. Vega und Melissa L. Campbell. „Fluid Mechanics and Biological Interaction in a Tubular Nitrifier Designed for Use in Space“. In ASME 2000 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2000. http://dx.doi.org/10.1115/imece2000-1420.
Der volle Inhalt der QuelleHossain, Md Shahadat, Shriram B. Pillapakkam, Bhavin Dalal, Ian S. Fischer, Nadine Aubry und Pushpendra Singh. „Modeling of Blood Flow in the Human Brain“. In ASME 2011 International Mechanical Engineering Congress and Exposition. ASMEDC, 2011. http://dx.doi.org/10.1115/imece2011-64525.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Dioxins Metabolism"
Eck, William S. Studies on Metabolism of 1,4-Dioxane. Fort Belvoir, VA: Defense Technical Information Center, März 2010. http://dx.doi.org/10.21236/ada528633.
Der volle Inhalt der QuelleJohnson, K. M. Single-operator multiparameter metabolic analyzer (SOMMA) for total carbon dioxide (C{sub T}) with coulometric detection. Operator`s manual. Office of Scientific and Technical Information (OSTI), Januar 1992. http://dx.doi.org/10.2172/10194787.
Der volle Inhalt der QuelleWackett, Lawrence, Raphi Mandelbaum und Michael Sadowsky. Bacterial Mineralization of Atrazine as a Model for Herbicide Biodegradation: Molecular and Applied Aspects. United States Department of Agriculture, Januar 1999. http://dx.doi.org/10.32747/1999.7695835.bard.
Der volle Inhalt der Quelle