Zeitschriftenartikel zum Thema „Dioxide de niobium“

Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Dioxide de niobium.

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Dioxide de niobium" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

Sheppard, L. R., A. J. Atanacio, T. Bak, J. Nowotny, M. K. Nowotny und K. E. Prince. „Niobium diffusion in niobium-doped titanium dioxide“. Journal of Solid State Electrochemistry 13, Nr. 7 (06.11.2008): 1115–21. http://dx.doi.org/10.1007/s10008-008-0717-x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Atanacio, Armand J., Tadeusz Bak und Janusz Nowotny. „Niobium Segregation in Niobium-Doped Titanium Dioxide (Rutile)“. Journal of Physical Chemistry C 118, Nr. 21 (19.05.2014): 11174–85. http://dx.doi.org/10.1021/jp4110536.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Sheppard, L. R. „Niobium Surface Segregation in Polycrystalline Niobium-Doped Titanium Dioxide“. Journal of Physical Chemistry C 117, Nr. 7 (07.02.2013): 3407–13. http://dx.doi.org/10.1021/jp311392d.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Song, Li, Alexander Eychmueller, R. J. St. Pierre und M. A. El-Sayed. „Reaction of carbon dioxide with gaseous niobium and niobium oxide clusters“. Journal of Physical Chemistry 93, Nr. 6 (März 1989): 2485–90. http://dx.doi.org/10.1021/j100343a050.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Nico, C., M. R. N. Soares, M. Matos, R. Monteiro, M. P. F. Graça, T. Monteiro, F. M. Costa und M. A. Valente. „Exotic Manganese Dioxide Structures in Niobium Oxides Capacitors“. Microscopy and Microanalysis 18, S5 (August 2012): 99–100. http://dx.doi.org/10.1017/s1431927612013153.

Der volle Inhalt der Quelle
Annotation:
The production of a Tantalum solid electrolytic capacitor requires the impregnation of MnO2 by pyrolysis in one of the several manufacturing steps. It has been reported that niobium oxides are a good alternative, presenting potentially better dielectric properties and a better cost effectiveness. Thus, it is important to study the conditions and the effect of the MnO2 impregnation on niobium oxide in order to understand and optimize the parameters of this process. The morphology and microstructure of the anode is one of the most important aspects that interfere with the dielectric properties of the capacitor. In this work, it is presented a study of the morphology and microstructure of different niobium oxide anodes after electrochemical oxidation (NbO/Nb2O5 core-shell grain structure), and after MnO2 impregnation with different pyrolysis temperatures. This impregnation is made by dipping the anodes, with the NbO/Nb2O5 core-shell structure, in a slurry of Mn(NO3)2. Heating this slurry while the anode is dipped, will lead to a pyrolysis reaction where the liberation of NO2 occurs as a gas, and where the product MnO2 solidifies around the grains.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Sievers, M. R., und P. B. Armentrout. „Gas phase activation of carbon dioxide by niobium and niobium monoxide cations“. International Journal of Mass Spectrometry 179-180 (November 1998): 103–15. http://dx.doi.org/10.1016/s1387-3806(98)14064-2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Cho, Yong Hoon, Soon Ki Jeong und Yang Soo Kim. „Electrochemical Properties of Chemically Etched-NbO2 as a Negative Electrode Material for Lithium Ion Batteries“. Advanced Materials Research 1120-1121 (Juli 2015): 115–18. http://dx.doi.org/10.4028/www.scientific.net/amr.1120-1121.115.

Der volle Inhalt der Quelle
Annotation:
The electrochemical properties niobium dioxide (NbO2) was investigated as a negative electrode material for lithium ion batteries. The NbO2electrode showed a large irreversible capacity and small discharge capacity. The results of X-ray photoelectron spectroscopy indicate that the poor electrode performance of NbO2may be caused by niobium pentoxide (Nb2O5) formed on the surface of active material. The Nb2O5could be removed by chemical etching to some extent, thus improving the electrode performance.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Muhammad Hussian, Hasan Mahmood, Muhammad Abdullah, Sikandar Raza,. „Computing Topological Indices for Niobium Dioxide and Metal-Organic Frameworks via M-Polynomials“. Power System Technology 48, Nr. 1 (08.04.2024): 211–27. http://dx.doi.org/10.52783/pst.268.

Der volle Inhalt der Quelle
Annotation:
This paper investigates the topological properties of metal-organic frameworks and niobium dioxide using M-polynomials. The stability and wide range of bonding that the molecule exhibits make it a promising candidate for a number of uses, such as energy storage, gas detection, and catalysis. We use M-polynomials to calculate several degree-based topological indices for metal-organic frameworks and niobium dioxide. The M-polynomial is one such fundamental polynomial that provides a way to derive a multitude of degree-based topological indices. These indices are crucial for research in chemistry, biology, and physics and are derived from degree-based M-polynomials. This work develops a new M-polynomial algorithm for the computation and comparison of several degree-based molecular descriptors.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Gautam, Subodh K., Arkaprava Das, S. Ojha, D. K. Shukla, D. M. Phase und Fouran Singh. „Electronic structure modification and Fermi level shifting in niobium-doped anatase titanium dioxide thin films: a comparative study of NEXAFS, work function and stiffening of phonons“. Physical Chemistry Chemical Physics 18, Nr. 5 (2016): 3618–27. http://dx.doi.org/10.1039/c5cp07287e.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Alharthi, F. A., F. Cheng, E. Verrelli, N. T. Kemp, A. F. Lee, M. A. Isaacs, M. O’Neill und S. M. Kelly. „Solution-processable, niobium-doped titanium oxide nanorods for application in low-voltage, large-area electronic devices“. Journal of Materials Chemistry C 6, Nr. 5 (2018): 1038–47. http://dx.doi.org/10.1039/c7tc04197g.

Der volle Inhalt der Quelle
Annotation:
Synthesis and characterization of surface-stabilised, niobium-doped titanium dioxide (Ni-TiO2) nanorods in a simple one-step reaction using oleic acid as both a stabilizer and solubilizing agent.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

Kuanchaitrakul, Tanita, S. Chirachanchai und H. Manuspiya. „Niobium and Antimony-Modified Titanium Dioxide/Epoxy Thin Film for Proton Exchange Membrane Fuel Cell“. Advanced Materials Research 55-57 (August 2008): 621–24. http://dx.doi.org/10.4028/www.scientific.net/amr.55-57.621.

Der volle Inhalt der Quelle
Annotation:
Inorganic Mesoporous Membrane is a new alternative to improve high-temperature fuel cell performance in proton exchange membrane fuel cells (PEMFCs) to substitute for Nafion. It possess high porosity and high specific surface areas, resulting in high proton conductivity. In this study, niobium-modified titania and antimony/niobium-modified titania ceramic were prepared via the sol-gel technique. The various contents of antimony, 0 to 3 wt%, and 3% niobium are incorporated into titania to improve the porous surface condition of the ceramic particles. The xerogels were heated at about 500°C. Inorganic membranes were prepared by using the spin-coating technique using epoxy resin as a binder. The physical, chemical, and electrical properties of these membranes were investigated. The XRD and Raman results showed that pure TiO2 and doped TiO2 nanoparticles obtained possess an anatase structure with mesoporosity. The specific surface area of the doped TiO2 was higher than that of pure TiO2 and it is worth pointing out that the doping of antimony affected the surface areas more than the doping of niobium in TiO2. Moreover, these membranes were also tested to evaluate their potential use as an electrolyte in PEMFC by using impedance spectroscopy, TGA, mechanical properties and water uptake.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

Bobkov, B. N., L. F. Goryachkina, E. A. Lavrent'ev, D. Yu Lyubimov und A. S. Panov. „Oxygen transport in the system niobium-uranium dioxide“. Soviet Atomic Energy 71, Nr. 1 (Juli 1991): 586–88. http://dx.doi.org/10.1007/bf01138004.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Fu, Xin, Ruisong Li und Yucang Zhang. „High electrocatalytic activity of Pt on porous Nb-doped TiO2 nanoparticles prepared by aerosol-assisted self-assembly“. RSC Advances 12, Nr. 34 (2022): 22070–81. http://dx.doi.org/10.1039/d2ra03821h.

Der volle Inhalt der Quelle
Annotation:
A niobium-doped titanium dioxide electrocatalyst support for proton-exchange membrane fuel cells was prepared by an aerosol-assisted method and then loaded with platinum nanoparticles in the presence of ethylene glycol as a reducing agent.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

Sheppard, L. R., T. Dittrich und M. K. Nowotny. „The Impact of Niobium Surface Segregation on Charge Separation in Niobium-Doped Titanium Dioxide“. Journal of Physical Chemistry C 116, Nr. 39 (20.09.2012): 20923–29. http://dx.doi.org/10.1021/jp3065147.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

Li, Y., B. An, X. Xu, S. Fukuyama, K. Yokogawa und M. Yoshimura. „Surface structure of niobium-dioxide overlayer on niobium(100) identified by scanning tunneling microscopy“. Journal of Applied Physics 89, Nr. 9 (Mai 2001): 4772–76. http://dx.doi.org/10.1063/1.1364649.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

Archana, P. S., Arunava Gupta, Mashitah M. Yusoff und Rajan Jose. „Tungsten doped titanium dioxide nanowires for high efficiency dye-sensitized solar cells“. Phys. Chem. Chem. Phys. 16, Nr. 16 (2014): 7448–54. http://dx.doi.org/10.1039/c4cp00034j.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

Sevic, John F., und Nobuhiko P. Kobayashi. „Multi-physics transient simulation of monolithic niobium dioxide-tantalum dioxide memristor-selector structures“. Applied Physics Letters 111, Nr. 15 (09.10.2017): 153107. http://dx.doi.org/10.1063/1.5003168.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

Sheppard, Leigh R., Armand J. Atanacio, Tadeusz Bak, Janusz Nowotny und Kathryn E. Prince. „Bulk Diffusion of Niobium in Single-Crystal Titanium Dioxide“. Journal of Physical Chemistry B 111, Nr. 28 (Juli 2007): 8126–30. http://dx.doi.org/10.1021/jp0678709.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

Haines, J., J. M. Léger, A. S. Pereira, D. Häusermann und M. Hanfland. „High-pressure structural phase transitions in semiconducting niobium dioxide“. Physical Review B 59, Nr. 21 (01.06.1999): 13650–56. http://dx.doi.org/10.1103/physrevb.59.13650.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

Zhou, Mingfei, Zijian Zhou, Jia Zhuang, Zhen Hua Li, Kangnian Fan, Yanying Zhao und Xuming Zheng. „Carbon Dioxide Coordination and Activation by Niobium Oxide Molecules“. Journal of Physical Chemistry A 115, Nr. 50 (22.12.2011): 14361–69. http://dx.doi.org/10.1021/jp208291g.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

Marucco, Jean-Francis, Bertrand Poumellec, Jacques Gautron und Philippe Lemasson. „Thermodynamic properties of titanium dioxide, niobium dioxide and their solid solutions at high temperature“. Journal of Physics and Chemistry of Solids 46, Nr. 6 (Januar 1985): 709–17. http://dx.doi.org/10.1016/0022-3697(85)90160-x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

Creeden, Jason A., Scott E. Madaras, Douglas B. Beringer, Irina Novikova und Rosa A. Lukaszew. „Growth and Characterization of Vanadium Dioxide/Niobium Doped Titanium Dioxide Heterostructures for Ultraviolet Detection“. Advanced Optical Materials 7, Nr. 23 (18.09.2019): 1901143. http://dx.doi.org/10.1002/adom.201901143.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

Ngo, Hai Dang, Kai Chen, Ørjan S. Handegård, Anh Tung Doan, Thien Duc Ngo, Thang Duy Dao, Naoki Ikeda, Akihiko Ohi, Toshihide Nabatame und Tadaaki Nagao. „Nanoantenna Structure with Mid-Infrared Plasmonic Niobium-Doped Titanium Oxide“. Micromachines 11, Nr. 1 (24.12.2019): 23. http://dx.doi.org/10.3390/mi11010023.

Der volle Inhalt der Quelle
Annotation:
Among conductive oxide materials, niobium doped titanium dioxide has recently emerged as a stimulating and promising contestant for numerous applications. With carrier concentration tunability, high thermal stability, mechanical and environmental robustness, this is a material-of-choice for infrared plasmonics, which can substitute indium tin oxide (ITO). In this report, to illustrate great advantages of this material, we describe successful fabrication and characterization of niobium doped titanium oxide nanoantenna arrays aiming at surface-enhanced infrared absorption spectroscopy. The niobium doped titanium oxide film was deposited with co-sputtering method. Then the nanopatterned arrays were prepared by electron beam lithography combined with plasma etching and oxygen plasma ashing processes. The relative transmittance of the nanostrip and nanodisk antenna arrays was evaluated with Fourier transform infrared spectroscopy. Polarization dependence of surface plasmon resonances on incident light was examined confirming good agreements with calculations. Simulated spectra also present red-shift as length, width or diameter of the nanostructures increase, as predicted by classical antenna theory.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

Bilalodin, Bilalodin, und Mukhtar Effendi. „KARAKTERISTIK FILM TIPIS TiO2 DOPING NIOBIUM“. Molekul 5, Nr. 1 (01.05.2010): 10. http://dx.doi.org/10.20884/1.jm.2010.5.1.71.

Der volle Inhalt der Quelle
Annotation:
Niobium (Nb) doped Titanium dioxide (TiO2) thin films have been successfully grown using spin coating method. Characterizations of thin films was carried out using EDAX (Energy Dispersion Analysis for X-Ray), XRD (X-Ray Diffaction) and SEM (Scanning Electron Microscope) to determine the microstructure of thin films. Determination microstructure, particularly of crystal structure was examined using ICDD data, whereas porosity calculation was done using the toolbox application on Matlab 6.1 software. EDAX, XRD and SEM characterization show that the thin films grown well at the Si substrates with the (002) field orientation is dominant and the thin film has the rutile structure. The TiO2 : Nb thin films product have granules round, uniform grain size and porosity value of about 41%.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

Shibuya, Keisuke, und Akihito Sawa. „Epitaxial growth and polarized Raman scattering of niobium dioxide films“. AIP Advances 12, Nr. 5 (01.05.2022): 055103. http://dx.doi.org/10.1063/5.0087610.

Der volle Inhalt der Quelle
Annotation:
We report the structural, electrical, and optical characterization of epitaxial niobium dioxide (NbO2) films fabricated on MgF2(001) substrates. The films were almost stoichiometric, had an indirect bandgap of 0.7 eV, and exhibited a phase transition at ∼1080 K. A polarized Raman scattering study of the films was conducted to investigate the Raman symmetry in the low-temperature phase. Based on the angular-dependent polarized Raman spectra, we assigned 13 modes to Ag symmetry and 14 to Bg symmetry. We also evaluated the Raman tensor elements of the Bg modes and found that the off-diagonal elements were nearly zero in most of the Bg modes, except for a phonon mode at 267 cm−1. This study aids understanding of the lattice dynamics of NbO2, which plays a critical role in the phase transition.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

Hadamek, Tobias, Agham B. Posadas, Ajit Dhamdhere, David J. Smith und Alexander A. Demkov. „Spectral identification scheme for epitaxially grown single-phase niobium dioxide“. Journal of Applied Physics 119, Nr. 9 (07.03.2016): 095308. http://dx.doi.org/10.1063/1.4942834.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

Sheppard, L. R., T. Bak und J. Nowotny. „Electrical Properties of Niobium-Doped Titanium Dioxide. 1. Defect Disorder†“. Journal of Physical Chemistry B 110, Nr. 45 (November 2006): 22447–54. http://dx.doi.org/10.1021/jp0637025.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

Sheppard, L. R., T. Bak und J. Nowotny. „Electrical Properties of Niobium-Doped Titanium Dioxide. 2. Equilibration Kinetics†“. Journal of Physical Chemistry B 110, Nr. 45 (November 2006): 22455–61. http://dx.doi.org/10.1021/jp063703x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

Li, Junjie, Shilie Pan, Xuelin Tian, Fangfang Zhang und Wenwu Zhao. „Dipotassium sodium niobium dioxide tetrafluoride, K2NaNbO2F4, crystal structure and characterization“. Journal of Physics and Chemistry of Solids 73, Nr. 1 (Januar 2012): 136–38. http://dx.doi.org/10.1016/j.jpcs.2011.10.024.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
30

Sheppard, L. R., T. Bak und J. Nowotny. „Electrical Properties of Niobium-Doped Titanium Dioxide. 3. Thermoelectric Power“. Journal of Physical Chemistry C 112, Nr. 2 (Januar 2008): 611–17. http://dx.doi.org/10.1021/jp0730491.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
31

Yousuf, M., und B. Lalevic. „Effect of switching on trapping centers in polycrystalline niobium dioxide“. Solid-State Electronics 32, Nr. 6 (Juni 1989): 425–31. http://dx.doi.org/10.1016/0038-1101(89)90023-3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
32

Atanacio, Armand J., und Yasuro Ikuma. „Surface Segregation of Niobium and Tantalum in Titanium Dioxide. Overview“. Journal of the American Ceramic Society 99, Nr. 5 (15.02.2016): 1512–19. http://dx.doi.org/10.1111/jace.14122.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
33

Atanacio, Armand J., Mohammad A. Alim, Tadeusz Bak, Mihail Ionescu und Janusz Nowotny. „Segregation in Titanium Dioxide Co-Doped with Indium and Niobium“. Journal of the American Ceramic Society 100, Nr. 1 (06.10.2016): 419–28. http://dx.doi.org/10.1111/jace.14490.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
34

Beebe, Melissa R., J. Michael Klopf, Yuhan Wang, Salinporn Kittiwatanakul, Jiwei Lu, Stuart A. Wolf und R. Alejandra Lukaszew. „Time-resolved light-induced insulator-metal transition in niobium dioxide and vanadium dioxide thin films“. Optical Materials Express 7, Nr. 1 (20.12.2016): 213. http://dx.doi.org/10.1364/ome.7.000213.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
35

Balakirev, V. F., T. V. Osinkina, S. A. Krasikov, E. M. Zhilina, L. B. Vedmid’ und S. V. Zhidovinova. „Joint metallothermic reduction of titanium and rare refractory metals of V group“. Izvestiya Vuzov Tsvetnaya Metallurgiya (Universities Proceedings Non-Ferrous Metallurgy) 1, Nr. 1 (11.02.2021): 57–65. http://dx.doi.org/10.17073/0021-3438-2021-1-57-65.

Der volle Inhalt der Quelle
Annotation:
The features of phase formation during the joint aluminothermic reduction of titanium, niobium, tantalum, vanadium from their oxides using methods of thermodynamic modeling, differential thermal and X-ray phase analysis were studied. Computer thermodynamic modeling made it possible to predict the optimal temperature conditions in the metallothermic process, composition and ratio of reagents in the charge, behavior of elements and sequence of phase formation. Thermodynamic calculations were supplemented by differential thermal studies using the combined scanning calorimetry method to identify the kinetic and thermochemical components of the process. An analysis of theoretical and experimental data allowed us to establish that the interaction of aluminum with titanium dioxide proceeds through the stage of titanium monoxide formation and features by the formation of TixAly intermetallic compounds of various compositions (TiAl3, TiAl, Ti2Al) depending on the Al and TiO2 ratio in the charge. When titanium dioxide is partially replaced by niobium, tantalum and vanadium oxides, the metallothermic process during interactions in the Al–TiO2–Nb2O5, Al–TiO2–Ta2O5 and Al–TiO2–V2O5 systems has a similar nature, enters the active phase once liquid aluminum appears, is accompanied by exothermic effects and features by the priority formation of titanium aluminides and binary and ternary intermetallic aluminum compounds with Group 5 rare refractory metals – AlNb3, Al3Nb, Al3Ta, Al3(Ti1–х, Taх), Al3(Ti0,8V0,2). The joint conversion of titanium dioxide and rare refractory metal pentoxides during the reduction process is carried out through sequential and parallel stages of the formation of simple and complex element oxides with low oxidation states.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
36

Volkovich, Vladimir A., Denis E. Aleksandrov, Trevor R. Griffiths, Boris D. Vasin, Timur K. Khabibullin und Dmitri S. Maltsev. „On the formation of uranium(V) species in alkali chloride melts“. Pure and Applied Chemistry 82, Nr. 8 (04.06.2010): 1701–17. http://dx.doi.org/10.1351/pac-con-09-09-30.

Der volle Inhalt der Quelle
Annotation:
Uranyl(V) species are normally unstable in solutions but are here shown to be stable in high-temperature chloride melts. Reactions leading to the formation of UO2Cl43– ions were studied, including thermal decomposition and chemical reduction of uranyl(VI) chloro-species in various alkali chloride melts (LiCl, 3LiCl–2KCl, NaCl–KCl, and NaCl–2CsCl) at 550–850 °C. Decomposition of UO2Cl42– species under reduced pressure, with inert gas bubbling through the melt or using zirconium getter in the atmosphere results in the formation of UO2Cl43– and UO2. Elemental tellurium, palladium, silver, molybdenum, niobium, zirconium, and hydrogen, as well as niobium and zirconium ions were tested as the reducing agents. The outcome of the reaction depends on the reductant used and its electrochemical properties: uranyl(VI) species can be reduced to uranyl(V) and uranium(IV) ions, and to uranium dioxide.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
37

Sheppard, L., T. Bak, J. Nowotny, C. C. Sorrell, S. Kumar, A. R. Gerson, M. C. Barnes und C. Ball. „Effect of niobium on the structure of titanium dioxide thin films“. Thin Solid Films 510, Nr. 1-2 (Juli 2006): 119–24. http://dx.doi.org/10.1016/j.tsf.2005.12.272.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
38

Ahmad, A., J. Thiel und S. Ismat Shah. „Structural effects of niobium and silver doping on titanium dioxide nanoparticles“. Journal of Physics: Conference Series 61 (01.03.2007): 11–15. http://dx.doi.org/10.1088/1742-6596/61/1/003.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
39

Bolzan, Adrian A., Celesta Fong, Brendan J. Kennedy und Christopher J. Howard. „A Powder Neutron Diffraction Study of Semiconducting and Metallic Niobium Dioxide“. Journal of Solid State Chemistry 113, Nr. 1 (November 1994): 9–14. http://dx.doi.org/10.1006/jssc.1994.1334.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
40

Wen, Qin, Xuexin Yuan, Qiqi Zhou, Hai-Jian Yang, Qingqing Jiang, Juncheng Hu und Cun-Yue Guo. „Solvent- and Co-Catalyst-Free Cycloaddition of Carbon Dioxide and Epoxides Catalyzed by Recyclable Bifunctional Niobium Complexes“. Materials 16, Nr. 9 (04.05.2023): 3531. http://dx.doi.org/10.3390/ma16093531.

Der volle Inhalt der Quelle
Annotation:
CO2, as a cheap and abundant renewable C1 resource, can be used to synthesize high value-added chemicals. In this paper, a series of bifunctional metallic niobium complexes were synthesized and their structures were characterized by IR, NMR and elemental analysis. All of these complexes have been proved to be efficient catalysts for the coupling reaction of CO2 and epoxides to obtain cyclic carbonates under solvent- and co-catalyst-free conditions. By using CO2 and propylene oxide as a model reaction, the optimal reaction conditions were systematically screened as: 100 °C, 1 MPa, 2 h, ratio of catalyst to alkylene oxide 1:100. Under the optimal reaction conditions, the bifunctional niobium catalysts can efficiently catalyze the coupling reaction with high yield and excellent selectivity (maximum yield of >99% at high pressure and 96.8% at atmospheric pressure). Moreover, this series of catalysts can also catalyze the coupling reaction at atmospheric pressure and most of them showed high conversion of epoxide. The catalysts have good substrate suitability and are also applicable to a variety of epoxides including diepoxides and good catalytic performances were achieved for producing the corresponding cyclic carbonates in most cases. Furthermore, the catalysts can be easily recovered by simple filtration and reused for at least five times without obvious loss of catalytic activity and selectivity. Kinetic studies were carried out preliminarily for the bifunctional niobium complexes with different halogen ions (3a(Cl−), 3b(Br−), 3c(I−)) and the formation activation energies (Ea) of cyclic carbonates were obtained. The order of apparent activation energy Ea is 3a (96.2 kJ/mol) > 3b (68.2 kJ/mol) > 3c (37.4 kJ/mol). Finally, a possible reaction mechanism is proposed.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
41

Wilhelm, Michael E., Michael H. Anthofer, Robert M. Reich, Valerio D'Elia, Jean-Marie Basset, Wolfgang A. Herrmann, Mirza Cokoja und Fritz E. Kühn. „Niobium(v) chloride and imidazolium bromides as efficient dual catalyst systems for the cycloaddition of carbon dioxide and propylene oxide“. Catal. Sci. Technol. 4, Nr. 6 (2014): 1638–43. http://dx.doi.org/10.1039/c3cy01057k.

Der volle Inhalt der Quelle
Annotation:
Imidazolium bromides combined with niobium(v) choride were used as catalyst system for the reaction of CO2 with epoxides to cyclic carbonates. The variation of the cation structure strongly affects the properties of the imidazolium salt and therefore the catalytic activity.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
42

Wang, Yuhan, Ryan B. Comes, Salinporn Kittiwatanakul, Stuart A. Wolf und Jiwei Lu. „Epitaxial niobium dioxide thin films by reactive-biased target ion beam deposition“. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 33, Nr. 2 (März 2015): 021516. http://dx.doi.org/10.1116/1.4906143.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
43

Balagurov, L. A., I. V. Kulemanov, A. F. Orlov und E. A. Petrova. „Electrical conductivity of titanium dioxide layers doped with vanadium, cobalt, and niobium“. Russian Microelectronics 41, Nr. 8 (17.11.2012): 503–7. http://dx.doi.org/10.1134/s1063739712080045.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
44

Li, Zhenwei, Xuan Luo, Wenjuan Wu und Jiagang Wu. „Niobium and divalent-modified titanium dioxide ceramics: Colossal permittivity and composition design“. Journal of the American Ceramic Society 100, Nr. 7 (03.04.2017): 3004–12. http://dx.doi.org/10.1111/jace.14850.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
45

Takakusagi, Satoru, Takafumi Ogawa, Hiromitsu Uehara, Hiroko Ariga, Ken-ichi Shimizu und Kiyotaka Asakura. „Electrodeposition Study on a Single-crystal Titanium Dioxide Electrode: Platinum on a Niobium-doped Titanium Dioxide(110) Electrode“. Chemistry Letters 43, Nr. 11 (05.11.2014): 1797–99. http://dx.doi.org/10.1246/cl.140706.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
46

Basiaga, M., W. Walke, Z. Paszenda, A. Taratuta, B. Rynkus, J. Kolasa, T. Cichoń und E. Kompert‐Konieczna. „Properties of silicon dioxide coatings obtained by nano physical vapor deposition (PVD) method on the titanium 13‐niobium 13‐zirconium alloy“. Materialwissenschaft und Werkstofftechnik 55, Nr. 5 (Mai 2024): 622–27. http://dx.doi.org/10.1002/mawe.202400014.

Der volle Inhalt der Quelle
Annotation:
AbstractSurface modification techniques play an important role in adjusting the physicochemical properties of titanium and its alloys. To reduce the penetration of alloying element ions into the body, various types of oxide coatings are used to protect it from the corrosive environment. Another important issue related to the surface layer requirement is ensuring an appropriate set of mechanical properties. Accordingly, in this study, the mechanical and electrochemical properties of the silicon dioxide layers formed by the deposition of nano physical vapor deposition on the surface of titanium and titanium 13‐niobium 13‐zirconium alloy samples were investigated. To evaluate the mechanical properties of the layers produced by this method, hardness tests were carried out, as well as tests on the adhesion of these layers to the metal substrate. On the other hand, electrochemical properties were studied using potentiodynamic measurements to assess the resistance to pitting corrosion, followed by impedance measurements to interpret the processes and phenomena occurring at the silicon dioxide layer/electrolyte interface. The data obtained showed different mechanical and electrochemical properties of the silicon dioxide layers generated with varying process parameters.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
47

Meng, Lei. „Improving the Characteristics of Niobium-Doped Titanium Dioxide Nanofilm with Moderate Hydrogen Incorporation“. ECS Journal of Solid State Science and Technology 10, Nr. 2 (01.02.2021): 025005. http://dx.doi.org/10.1149/2162-8777/abe2ec.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
48

Matsui, Tsuneo, und Keiji Naito. „Electrical conductivity measurement and thermogravimetric study of pure and niobium-doped uranium dioxide“. Journal of Nuclear Materials 136, Nr. 1 (Oktober 1985): 59–68. http://dx.doi.org/10.1016/0022-3115(85)90030-3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
49

Orita, Nozomi. „Generalized Gradient Approximation +UStudy for Metallization Mechanism of Niobium-Doped Anatase Titanium Dioxide“. Japanese Journal of Applied Physics 49, Nr. 5 (20.05.2010): 055801. http://dx.doi.org/10.1143/jjap.49.055801.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
50

Alcalde, M. Isabel, M. Pilar Gómez-Sal und Pascual Royo. „Competitive Insertion of Isocyanide and Carbon Dioxide into Niobium− and Silicon−Amido Bonds“. Organometallics 20, Nr. 22 (Oktober 2001): 4623–31. http://dx.doi.org/10.1021/om0103963.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie