Zeitschriftenartikel zum Thema „Dihydroxypyrimidines“

Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Dihydroxypyrimidines.

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Dihydroxypyrimidines" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

Powdrill, Megan H., Jerome Deval, Frank Narjes, Raffaele De Francesco und Matthias Götte. „Mechanism of Hepatitis C Virus RNA Polymerase Inhibition with Dihydroxypyrimidines“. Antimicrobial Agents and Chemotherapy 54, Nr. 3 (22.12.2009): 977–83. http://dx.doi.org/10.1128/aac.01216-09.

Der volle Inhalt der Quelle
Annotation:
ABSTRACT We studied the biochemical mechanisms associated with inhibition and resistance to a 4,5-dihydroxypyrimidine carboxylate that inhibits the hepatitis C virus (HCV) RNA-dependent RNA polymerase NS5B. On the basis of the structure of the pharmacophore, it has been suggested that these compounds may act as pyrophosphate (PPi) mimics. We monitored nucleotide incorporation events during the elongation phase and showed that the polymerase activity of wild-type NS5B was inhibited by the dihydroxypyrimidine at a 50% inhibitory concentration (IC50) of 0.73 μM. Enzymes with the G152E or P156L mutation, either of which confers resistance to this compound, showed four- to fivefold increases in IC50s. The inhibitor was competitive with respect to nucleotide incorporation. It was likewise effective at preventing the PPi-mediated excision of an incorporated chain terminator in a competitive fashion. In the absence of the dihydroxypyrimidine, the reaction was not significantly affected by the G152E or P156L mutation. These data suggest that the resistance associated with these two mutations is unlikely due to an altered interaction with the pyrophosphate-mimicking domain of the compound but, rather, is due to altered interactions with its specificity domain at a region distant from the active site. Together, our findings provide strong experimental evidence that supports the notion that the members of this class of compounds can act as PPi mimics that have the potential to mechanistically complement established nucleoside and nonnucleoside analogue inhibitors.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Guo, Di-Liang, Xing-Jie Zhang, Rui-Rui Wang, Yu Zhou, Zeng Li, Jin-Yi Xu, Kai-Xian Chen, Yong-Tang Zheng und Hong Liu. „Structural modifications of 5,6-dihydroxypyrimidines with anti-HIV activity“. Bioorganic & Medicinal Chemistry Letters 22, Nr. 23 (Dezember 2012): 7114–18. http://dx.doi.org/10.1016/j.bmcl.2012.09.070.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Novais, H. M., und S. Steenken. „Reactions of oxidizing radicals with 4,6-dihydroxypyrimidines as model compounds for uracil, thymine, and cytosine“. Journal of Physical Chemistry 91, Nr. 2 (Januar 1987): 426–33. http://dx.doi.org/10.1021/j100286a034.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Telvekar, Vikas N., und Kavitkumar N. Patel. „Pharmacophore Development and Docking Studies of the HIV-1 Integrase Inhibitors Derived from N-methylpyrimidones, Dihydroxypyrimidines, and Bicyclic Pyrimidinones“. Chemical Biology & Drug Design 78, Nr. 1 (25.05.2011): 150–60. http://dx.doi.org/10.1111/j.1747-0285.2011.01130.x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Astrat'ev, A. A., D. V. Dashko, A. Yu Mershin, A. I. Stepanov und N. A. Urazgil'deev. „ChemInform Abstract: Some Specific Features of Acid Nitration of 2-Substituted 4,6-Dihydroxypyrimidines. Nucleophilic Cleavage of the Nitration Products.“ ChemInform 32, Nr. 51 (23.05.2010): no. http://dx.doi.org/10.1002/chin.200151070.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Winterbourn, Christine C., und Rex Munday. „Concerted Action Of Reduced Glutathione And Superoxide Dismutase In Preventing Redox Cycling Of Dihydroxypyrimidines, And Their Role In Antioxidant Defence“. Free Radical Research Communications 8, Nr. 4-6 (Januar 1990): 287–93. http://dx.doi.org/10.3109/10715769009053361.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Jansa, Petr, Antonín Holý, Martin Dračínský, Viktor Kolman, Zlatko Janeba, Petra Kostecká, Eva Kmoníčková und Zdeněk Zídek. „5-Substituted 2-amino-4,6-dihydroxypyrimidines and 2-amino-4,6-dichloropyrimidines: synthesis and inhibitory effects on immune-activated nitric oxide production“. Medicinal Chemistry Research 23, Nr. 10 (09.05.2014): 4482–90. http://dx.doi.org/10.1007/s00044-014-1018-9.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Shi, Daqing, Lihui Niu und Qiya Zhuang. „Clean synthesis of pyrido[2,3-d]pyrimidines in aqueous media“. Journal of Chemical Research 2005, Nr. 10 (Oktober 2005): 648–50. http://dx.doi.org/10.3184/030823405774663048.

Der volle Inhalt der Quelle
Annotation:
The reaction of substituted cinnamonitriles and 4-amino-2,6-dihydroxypyrimidine or 2,4-diamino-6-hydroxypyrimidine in water in the presence of triethylbenzylammonium chloride (TEBA) as catalyst affords a clean synthesis of pyrido[2,3-d]pyrimidine derivatives.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Kufelnicki, Aleksander, Jan Jaszczak, Urszula Kalinowska-Lis, Cecylia Wardak und Justyn Ochocki. „Complexes of Uracil (2,4-Dihydroxypyrimidine) Derivatives“. Journal of Solution Chemistry 35, Nr. 5 (Mai 2006): 739–51. http://dx.doi.org/10.1007/s10953-006-9017-1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Novais, H. M., und S. Steenken. „ESR studies of electron and hydrogen adducts of thymine and uracil and their derivatives and of 4,6-dihydroxypyrimidines in aqueous solution. Comparison with data from solid state. The protonation at carbon of the electron adducts“. Journal of the American Chemical Society 108, Nr. 1 (Januar 1986): 1–6. http://dx.doi.org/10.1021/ja00261a001.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

Rostkowska, Hanna, Anna Luchowska, Leszek Lapinski und Maciej J. Nowak. „Photochemical transformations of 4,6-dihydroxypyrimidine and 2-methyl-4,6-dihydroxypyrimidine isolated in low-temperature Ar, Ne and H2 matrices“. Chemical Physics Letters 745 (April 2020): 137263. http://dx.doi.org/10.1016/j.cplett.2020.137263.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

Keerthi Kumar, Chinnagiri T., Jathi Keshavayya, Tantry N. Rajesh, Sanehalli K. Peethambar und Angadi R. Shoukat Ali. „Synthesis, Characterization, and Biological Activity of 5-Phenyl-1,3,4-thiadiazole-2-amine Incorporated Azo Dye Derivatives“. Organic Chemistry International 2013 (18.08.2013): 1–7. http://dx.doi.org/10.1155/2013/370626.

Der volle Inhalt der Quelle
Annotation:
5-Phenyl-1,3,4-thiadiazole-2-amine has been synthesized by single step reaction. A series of heterocyclic azodyes were synthesized by diazotisation of 5-phenyl-1,3,4-thiadiazole-2-amine by nitrosyl sulphuric acid followed by coupling with different coupling compounds such as 8-hydroxyquinoline, 2,6-diaminopyridine, 2-naphthol, N,N-dimethyl aniline, resorcinol, and 4,6-dihydroxypyrimidine. The dyes were characterized by UV-Vis, IR, 1H-NMR, 13C NMR, and elemental analysis. The synthesized compounds were also screened for biological activity.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Vu, Tuan Q., Nikolai V. Yudin, Alexander A. Kushtaev, Thanh X. Nguyen und Sergey A. Maltsev. „Spectroscopic Study of the Basicity of 4,6-Dihydroxypyrimidine Derivatives“. ACS Omega 6, Nr. 22 (24.05.2021): 14154–63. http://dx.doi.org/10.1021/acsomega.1c00671.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

Kapoor, Bharat, EzzedinA Luhishi, AndrewKK Chung und JakobusC Pauw. „Neurotrophic keratitis in a patient with dihydroxypyrimidine dehydrogenase deficiency“. Indian Journal of Ophthalmology 56, Nr. 4 (2008): 336. http://dx.doi.org/10.4103/0301-4738.41422.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

Malancona, Savina, Mattia Mori, Paola Fezzardi, Marisabella Santoriello, Andreina Basta, Martina Nibbio, Lesia Kovalenko et al. „5,6-Dihydroxypyrimidine Scaffold to Target HIV-1 Nucleocapsid Protein“. ACS Medicinal Chemistry Letters 11, Nr. 5 (19.03.2020): 766–72. http://dx.doi.org/10.1021/acsmedchemlett.9b00608.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

Boyd, Vincent A., John Mason, Parimala Hanumesh, Jeanine Price, Charles J. Russell und Thomas R. Webb. „2-Substituted-4,5-Dihydroxypyrimidine-6-Carboxamide Antiviral Targeted Libraries“. Journal of Combinatorial Chemistry 11, Nr. 6 (09.11.2009): 1100–1104. http://dx.doi.org/10.1021/cc900111u.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

Shennara, Khaled A., Ray J. Butcher und Frederick T. Greenaway. „Crystal structure of tetraaquabis(pyrimidin-1-ium-4,6-diolato-κO4)manganese(II)“. Acta Crystallographica Section E Crystallographic Communications 73, Nr. 4 (31.03.2017): 620–22. http://dx.doi.org/10.1107/s2056989017004649.

Der volle Inhalt der Quelle
Annotation:
The MnIIion in the structure of the mononuclear title compound, [Mn(C4H3N2O2)2(H2O)4], is situated on an inversion center and is coordinated by two O atoms from two deprotonated 4,6-dihydroxypyrimidine ligands and by four O atoms from water molecules giving rise to a slightly distorted octahedral coordination sphere. The complex includes an intramolecular hydrogen bond between an aqua ligand and the non-protonated N ring atom. The extended structure is stabilized by intermolecular hydrogen bonds between aqua ligands, by hydrogen bonds between N and O atoms of the ligands of adjacent molecules, and by hydrogen bonds between aqua ligands and the non-coordinating O atom of an adjacent molecule.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

Zhang, Xiao-Min, Hui-Liang Zhou und Qi-Lin Hu. „N-(2-Amino-4,6-dihydroxypyrimidin-5-yl)acetamide dihydrate“. Acta Crystallographica Section E Structure Reports Online 67, Nr. 9 (31.08.2011): o2526. http://dx.doi.org/10.1107/s1600536811034441.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

Metwally, Mohamed Abbas, und Hassan Ali Etman. „The Synthesis of Indeno[l,2:4,5]pyrimido[l,2-a]benzimidazole-13-ones, Indeno[l,2-b]pyrazolo[4,3-e]pyridine-3,5-dione and Related Compounds*“. Zeitschrift für Naturforschung B 41, Nr. 4 (01.04.1986): 486–88. http://dx.doi.org/10.1515/znb-1986-0413.

Der volle Inhalt der Quelle
Annotation:
2-A rylidene-l,3-indaniones (1a and 2b ) reacts with 2-aminobenzimidazole in absolute ethanol, to yield 12,12a-dihydro-12-aryl-13H̱-indeno[1̄,2̄̄̄:4,5]pyrim ido[1,2-a̱]benzimidazole-13-one (2a and 2b). Treatm ent of 2a with PPA gave 15aH̱ -dibenzo[2̄,3̄:4̄,5̄]pentaleno[1̄,6̄:4,5,6]pyrimido- [1,2-a̱]benzimidazole (5). While the condensation of 1c with 3-amino-1-phenyl-2-pyrazolin-5-one in benzene in the presence of PTSA afforded 4-(2-hydroxyphenyl)-2,3a,4,4a-tetrahydro-2-phenylindeno[ 1,2-ḇ]pyrazolo[4,3-e̱]pyridine-3,5-dione (6a). However, the condensation of la with 2-amino-4,6-dihydroxypyrimidine gave the dimeric structure 7. The structures of the hitherto unknown ring systems have been confirmed by PMR, IR and mass spectral data
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

Otutu, O. J., und A. K. Asiagwu. „Synthesis and Application to Polyester and Nylon 6 Fabrics of Hetaryl Bis-Azo Disperse Dyes Based on 6-Amino-2,4-Dihydroxypyrimidine and 4-Methoxy-2-Nitroaniline Moieties“. Journal of Scientific Research 11, Nr. 2 (01.05.2019): 215–24. http://dx.doi.org/10.3329/jsr.v11i2.38734.

Der volle Inhalt der Quelle
Annotation:
Six new bis-azo disperse dyes were synthesized by linking various aryl amino and hydroxyl derivatives to 4-methoxy-2-nitroaniline and 6-amino-2,4-dihydroxypyrimidine moieties through diazo coupling reactions. The structures of the bis-azo dyes were identified by Fourier transform infrared, proton and carbon 13 nuclear magnetic resonance data. The prepared dyestuffs were applied onto polyester and nylon 6 fabrics and subsequently their fastness properties in terms of light, washing, sublimation and rubbing were determined. Compared with the light fastness of polyester fabrics, the light fastness of the dyed nylon 6 fabrics were slightly lower. The technical performance of the dyes on the two textile substrates used for the study, demonstrated their useful applications in the dyeing of synthetic fibres.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

Tang, Jing, Kasthuraiah Maddali, Yves Pommier, Yuk Y. Sham und Zhengqiang Wang. „Scaffold rearrangement of dihydroxypyrimidine inhibitors of HIV integrase: Docking model revisited“. Bioorganic & Medicinal Chemistry Letters 20, Nr. 11 (Juni 2010): 3275–79. http://dx.doi.org/10.1016/j.bmcl.2010.04.048.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

Pace, Paola, M. Emilia Di Francesco, Cristina Gardelli, Steven Harper, Ester Muraglia, Emanuela Nizi, Federica Orvieto et al. „Dihydroxypyrimidine-4-carboxamides as Novel Potent and Selective HIV Integrase Inhibitors“. Journal of Medicinal Chemistry 50, Nr. 9 (Mai 2007): 2225–39. http://dx.doi.org/10.1021/jm070027u.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

Xu, Xue-Jiao, Peng Zheng, Gao-Ping Ren, Mei-Ling Liu, Jun Mu, Jing Guo, Du Cao, Zhao Liu, Hua-Qing Meng und Peng Xie. „2,4-Dihydroxypyrimidine is a potential urinary metabolite biomarker for diagnosing bipolar disorder“. Molecular BioSystems 10, Nr. 4 (2014): 813. http://dx.doi.org/10.1039/c3mb70614a.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

de Melo, Eduardo Borges, und Márcia Miguel Castro Ferreira. „Multivariate QSAR study of 4,5-dihydroxypyrimidine carboxamides as HIV-1 integrase inhibitors“. European Journal of Medicinal Chemistry 44, Nr. 9 (September 2009): 3577–83. http://dx.doi.org/10.1016/j.ejmech.2009.03.001.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

Ofitserova, E. S., A. A. Shklyarenko, I. P. Yakovlev und E. V. Fedorova. „Vilsmeier–Haack formylation of ethyl [(4,6-dihydroxypyrimidin-2-yl)sulfanyl]acetate“. Russian Journal of Organic Chemistry 52, Nr. 9 (September 2016): 1374–76. http://dx.doi.org/10.1134/s1070428016090256.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

Boyle, Timothy J., Mark A. Rodriguez und Todd M. Alam. „4,6-Dihydroxypyrimidine: a selective bridging ligand for controlled Group IV metal alkoxide structures“. Dalton Transactions, Nr. 24 (2003): 4598. http://dx.doi.org/10.1039/b310087a.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

Pacini, Barbara, Salvatore Avolio, Caterina Ercolani, Uwe Koch, Giovanni Migliaccio, Frank Narjes, Laura Pacini, Licia Tomei und Steven Harper. „2-(3-Thienyl)-5,6-dihydroxypyrimidine-4-carboxylic acids as inhibitors of HCV NS5B RdRp“. Bioorganic & Medicinal Chemistry Letters 19, Nr. 21 (November 2009): 6245–49. http://dx.doi.org/10.1016/j.bmcl.2009.06.106.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

MOSKVIN, A. V., N. M. PETROVA, E. A. SEMENOVA, M. SHOPOVA, V. A. GINDIN und B. A. IVIN. „ChemInform Abstract: Azines and Azoles. Part 88. Condensation of 4,6-Dihydroxypyrimidine with Aromatic Aldehydes.“ ChemInform 25, Nr. 27 (19.08.2010): no. http://dx.doi.org/10.1002/chin.199427164.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

Karen, Pavel, Richard L. Harlow, Zhigang Li, Paul Meenan, Patti A. Parziale, Kirsi Ranta und Teófilo Rojo. „The Crystal Structure of 2-Amino-4,6-dihydroxypyrimidine Determined from Powder X-Ray Synchrotron Diffraction.“ Acta Chemica Scandinavica 52 (1998): 1051–55. http://dx.doi.org/10.3891/acta.chem.scand.52-1051.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
30

He, Tianyu, Tiffany C. Edwards, Jiashu Xie, Hideki Aihara, Robert J. Geraghty und Zhengqiang Wang. „4,5-Dihydroxypyrimidine Methyl Carboxylates, Carboxylic Acids, and Carboxamides as Inhibitors of Human Cytomegalovirus pUL89 Endonuclease“. Journal of Medicinal Chemistry 65, Nr. 7 (04.04.2022): 5830–49. http://dx.doi.org/10.1021/acs.jmedchem.2c00203.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
31

Yazdanbakhsh, M. R., H. Yousefi, M. Mamaghani, E. O. Moradi, M. Rassa, H. Pouramir und M. Bagheri. „Synthesis, spectral characterization and antimicrobial activity of some new azo dyes derived from 4,6-dihydroxypyrimidine“. Journal of Molecular Liquids 169 (Mai 2012): 21–26. http://dx.doi.org/10.1016/j.molliq.2012.03.003.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
32

Petrocchi, Alessia, Uwe Koch, Victor G. Matassa, Barbara Pacini, Kara A. Stillmock und Vincenzo Summa. „From dihydroxypyrimidine carboxylic acids to carboxamide HIV-1 integrase inhibitors: SAR around the amide moiety“. Bioorganic & Medicinal Chemistry Letters 17, Nr. 2 (Januar 2007): 350–53. http://dx.doi.org/10.1016/j.bmcl.2006.10.054.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
33

Muhammad, Munira Taj, Khalid Mohammed Khan, Arshia, Ajmal Khan, Fiza Arshad, Bibi Fatima, M. Iqbal Choudhary, Naima Syed und Syed Tarique Moin. „Syntheses of 4,6-dihydroxypyrimidine diones, their urease inhibition, in vitro, in silico, and kinetic studies“. Bioorganic Chemistry 75 (Dezember 2017): 317–31. http://dx.doi.org/10.1016/j.bioorg.2017.08.018.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
34

Wang, Kuan, Jian-Gang Chen, Bozhou Wang, Yueping Ji, Fengyi Liu, Zhao-Tie Liu, Wenliang Wang, Zhong-Wen Liu, Zhengping Hao und Jian Lu. „Insight into the acidic group-induced nitration mechanism of 2-methyl-4,6-dihydroxypyrimidine (MDP) with nitronium“. RSC Advances 6, Nr. 83 (2016): 80145–57. http://dx.doi.org/10.1039/c6ra18842g.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
35

Krishnakumar, V., und N. Prabavathi. „DFT simulations and vibrational analysis of FTIR and FT-Raman spectra of 2-amino-4,6-dihydroxypyrimidine“. Journal of Raman Spectroscopy 39, Nr. 5 (13.02.2008): 679–84. http://dx.doi.org/10.1002/jrs.1916.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
36

Hoti, Ramiz, Hamit Ismaili, Veprim Thaçi, Gjyle Mulliqi-Osmani, Malësore Pllana-Zeqiri und Agon Bytyqi. „An Efficient Synthesis of Novel 3-[(Heteroaryl-2-ylimino)-methyl]-4-hydroxy-chromen-2-ones and Analogue of Tetrazole Derivatives and Their Antibacterial Activity“. Molbank 2021, Nr. 4 (02.12.2021): M1303. http://dx.doi.org/10.3390/m1303.

Der volle Inhalt der Quelle
Annotation:
Synthesis of a series of the substituted [(pyridinyl and pyrimidin-2-ylimino)-ethyl]-4-hydroxy-chromen-2-ones and their tetrazole derivates is presented in this study. By catalytic condensation of 4-hydroxy-3-acetylcoumarine 2 and 2-aminopyridines 3(a-d), 3-[(pyridin-2-ylimino)-ethyl]-4-hydroxy-chromen-2-ones 4(a-d) are synthesized in high yield. During the condensation reaction of 2 and 4-amino-2,6-dihydroxypyrimidine 3e, 3-[1-(2,6-Dihydroxy-pyrimidin-4-ylimino)-ethyl]-4-hydroxy-chromen-2-one 4e as condensation products is synthesized. In following series, by cyclization reactions of compounds 4 (a-e) with sodium azide, analogue 3-substituted pyridin-2-yl and pyrimidin-2-yl-5-methyl-2,5-dihydro-1H-tetrazol-5-yl]-4-hydroxy-chromen-2-one 5(a-e) are synthesized the products. Structural characterization of the synthesized products is done on the basis of spectrometric data. Antibacterial activity of the compounds 4(a-e) and 5(a-e) against S. aureus, E. coli and Klebsiella was examined by measuring the inhibition zones around the disks marked with the corresponding products solution. The impact of substitutions in antimicrobial is also explored. Compounds with polar groups have shown significant antibacterial activity against these microorganisms.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
37

Xiao, Bo, und et al. „Crystal structure of aqua-[(2,2’-bipyridine)]-[(2,4-dihydroxypyrimidine- 5-carboxylato)] perchloratocopper(II), Cu(H2O)(C10H8N2)(C5H3N2O4)(ClO4), C15H13ClCuN4O9“. Zeitschrift für Kristallographie - New Crystal Structures 227, Nr. 3 (September 2012): 365–66. http://dx.doi.org/10.1524/ncrs.2012.0176.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
38

Stansfield, Ian, Salvatore Avolio, Stefania Colarusso, Nadia Gennari, Frank Narjes, Barbara Pacini, Simona Ponzi und Steven Harper. „Active site inhibitors of HCV NS5B polymerase. The development and pharmacophore of 2-thienyl-5,6-dihydroxypyrimidine-4-carboxylic acid“. Bioorganic & Medicinal Chemistry Letters 14, Nr. 20 (Oktober 2004): 5085–88. http://dx.doi.org/10.1016/j.bmcl.2004.07.075.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
39

Summa, Vincenzo, Alessia Petrocchi, Victor G. Matassa, Cristina Gardelli, Ester Muraglia, Michael Rowley, Odalys Gonzalez Paz, Ralph Laufer, Edith Monteagudo und Paola Pace. „4,5-Dihydroxypyrimidine Carboxamides andN-Alkyl-5-hydroxypyrimidinone Carboxamides Are Potent, Selective HIV Integrase Inhibitors with Good Pharmacokinetic Profiles in Preclinical Species“. Journal of Medicinal Chemistry 49, Nr. 23 (November 2006): 6646–49. http://dx.doi.org/10.1021/jm060854f.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
40

Li, Xianghong, Shuduan Deng, Xiaoguang Xie und Guanben Du. „Synergistic inhibition effect of 5-aminotetrazole and 4,6-dihydroxypyrimidine on the corrosion of cold rolled steel in H 3 PO 4 solution“. Materials Chemistry and Physics 181 (September 2016): 33–46. http://dx.doi.org/10.1016/j.matchemphys.2016.06.031.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
41

Summa, Vincenzo, Alessia Petrocchi, Victor G. Matassa, Marina Taliani, Ralph Laufer, Raffaele De Francesco, Sergio Altamura und Paola Pace. „HCV NS5b RNA-Dependent RNA Polymerase Inhibitors: From α,γ-Diketoacids to 4,5-Dihydroxypyrimidine- or 3-Methyl-5- hydroxypyrimidinonecarboxylic Acids. Design and Synthesis“. Journal of Medicinal Chemistry 47, Nr. 22 (Oktober 2004): 5336–39. http://dx.doi.org/10.1021/jm0494669.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
42

Cushman, Mark, Jeffrey T. Mihalic, Klaus Kis und Adelbert Bacher. „Design and synthesis of 6-(6-D-ribitylamino-2,4-dihydroxypyrimidin-5-yl)-1-hexylphosphonic acid, a potent inhibitor of lumazine synthase“. Bioorganic & Medicinal Chemistry Letters 9, Nr. 1 (Januar 1999): 39–42. http://dx.doi.org/10.1016/s0960-894x(98)00687-8.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
43

Li, Xin-yang, Jing-wei Liang, Kamara Mohamed O, Ting-jian Zhang, Guo-Qing Lu und Fan-hao Meng. „Design, synthesis and biological evaluation of N-phenyl-(2,4-dihydroxypyrimidine-5-sulfonamido)benzoyl hydrazide derivatives as thymidylate synthase (TS) inhibitors and as potential antitumor drugs“. European Journal of Medicinal Chemistry 154 (Juni 2018): 267–79. http://dx.doi.org/10.1016/j.ejmech.2018.05.020.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
44

Cushman, Mark, Jeffrey T. Mihalic, Klaus Kis und Adelbert Bacher. „ChemInform Abstract: Design and Synthesis of 6-(6-D-Ribitylamino-2,4-dihydroxypyrimidin-5-yl)-1-hexylphosphonic Acid, a Potent Inhibitor of Lumazine Synthase.“ ChemInform 30, Nr. 19 (16.06.2010): no. http://dx.doi.org/10.1002/chin.199919169.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
45

Kobayashi, Satoshi, Makoto Ueno, Gakuto Ogawa, Akira Fukutomi, Masafumi Ikeda, Takuji Okusaka, Tosiya Sato et al. „Impact of renal function on the efficacy and safety of S-1 with concurrent radiotherapy for locally advanced pancreatic cancer.“ Journal of Clinical Oncology 37, Nr. 4_suppl (01.02.2019): 301. http://dx.doi.org/10.1200/jco.2019.37.4_suppl.301.

Der volle Inhalt der Quelle
Annotation:
301 Background: S-1 is an oral agent consisting of a mixture of tegafur which is a prodrug of 5-fluorouracil (5-FU), 5-chloro-2,4-dihydroxypyrimidine (DHP) and potassium oxonate. Serum concentration of 5-FU increases in case of renal dysfunction due to decrease of DHP excretion into urine. The aim of this study was to evaluate the influence of renal function to the efficacy and safety of S-1 with concurrent radiotherapy (RT) for locally advanced pancreatic cancer (LAPC). Methods: This study was an integrated exploratory analysis of JCOG1106 and LAPC- S1RT, in which pts with LAPC received RT (50.4Gy/28 fr over 5.5 weeks) and concurrent S-1 (40 mg/m2/dose, bid. on the day of irradiation). Eligibility criteria for this study were pts who received both irradiation and S-1 at least once without induction chemotherapy, and who had creatinine clearance (CCr) ≥ 50 ml/min at the time of registration. We assigned pts into high (≥ 80 ml/min) and low (< 80 ml/min) CCr groups. The primary endpoint was the incidence of ≥ Grade 3 adverse reactions (ARs). Secondary endpoints were the incidence of ≥ Grade 2 gastrointestinal ARs (GI-ARs) defined as anorexia, nausea, vomiting, diarrhea and mucositis oral, relative dose intensity of S-1, CA19-9 response, progression-free survival, and overall survival. Results: Fifty and 59 pts were included in this study from JCOG1106 and LAPC-S1RT, respectively. Median age was 65 years old (range: 31–80), and 57 pts were male. Median CCr was 80.4 ml/min. High CCr group included 57 pts and the median was 97.5 ml/min (range 80.0–194.6), and low CCr group included 52 pts and the median was 64.4 ml/min (range 50.0–78.3). Low CCr group tended to have more ≥ Grade 3 ARs and ≥ Grade 2 GI-ARs compared to high CCr group (30.8% vs. 15.8% and 51.9% vs. 36.8%). However, no evident tendencies were observed in other secondary endpoints. Multivariable analysis showed risk ratio of low CCr group for ≥ G3 ARs was 1.493 [95% CI: 0.710–3.145], although risk ratio of females was 2.486 [95% CI: 1.043–5.924]. Conclusions: Our study indicated that renal dysfunction may increase adverse reactions in the treatment of S-1 with concurrent RT for LAPC, and we should pay attention to renal function and consider for dose reduction.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
46

Festus, Chioma, Anthony C. Ekennia, Aderoju A. Osowole, Lukman O. Olasunkanmi, Damian C. Onwudiwe und Oguejiofo T. Ujam. „Synthesis, experimental and theoretical characterization, and antimicrobial studies of some Fe(II), Co(II), and Ni(II) complexes of 2-(4,6-dihydroxypyrimidin-2-ylamino)naphthalene-1,4-dione“. Research on Chemical Intermediates 44, Nr. 10 (13.06.2018): 5857–77. http://dx.doi.org/10.1007/s11164-018-3460-7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
47

NOVAIS, H. M., und S. STEENKEN. „ChemInform Abstract: Reactions of Oxidizing Radicals with 4,6-Dihydroxypyrimidines as Model Compounds for Uracil, Thymine, and Cytosine.“ ChemInform 18, Nr. 21 (26.05.1987). http://dx.doi.org/10.1002/chin.198721086.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
48

NOVAIS, H. M., und S. STEENKEN. „ChemInform Abstract: ESR Studies of Electron and Hydrogen Adducts of Thymine and Uracil and Their Derivatives and of 4,6-Dihydroxypyrimidines in Aqueous Solution.“ Chemischer Informationsdienst 17, Nr. 19 (13.05.1986). http://dx.doi.org/10.1002/chin.198619054.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
49

-, V. M. Sherekar, N. S. Padole - und K. P. Kakade -. „Synthesis, Characterization and Biological Evaluation of 6-(5-Chloro-8-Hydroxynapthalene-2-yl)-4(4-Hydroxyphenyl)-4-5-Dihydroxypyrimidin-2(1h)-One“. International Journal For Multidisciplinary Research 4, Nr. 6 (28.12.2022). http://dx.doi.org/10.36948/ijfmr.2022.v04i06.1240.

Der volle Inhalt der Quelle
Annotation:
1-(4- Chloro -1-hydroxynaphthalen-2-yl)-ethanone was prepared by refluxing 4-chloronaphthalen-1-ol with glacial acetic acid in presence of fused ZnCl2. From this synthesized compound we prepared 1-(4- Chloro -1- hydroxynaphthalen-2-yl)-3-(4-hydroxy phenyl)-prop-2-en-1-one from condensing 1-(4- Chloro -1-hydroxynaphthalen-2- yl)-ethenone, The final product 6-(5-chloro-8-hydroxynapthalene-2-yl)-4(4-hydroxyphenyl)-4-5-dihydroxypyrimidin-2(1h)-one, by condensation in presence of urea and concentrated HCl in DMF. The compounds thus synthesized have been characterized by physical and spectral data. This titled synthesized compound was screened for antimicrobial study and are found to possess excellent antimicrobial activities due to presence of chlorine as a substituent on main nucleus.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
50

Beylkin, Diane, Gyanendra Kumar, Wei Zhou, Jaehyeon Park, Trushar Jeevan, Chandraiah Lagisetti, Rhodri Harfoot, Richard J. Webby, Stephen W. White und Thomas R. Webb. „Protein-Structure Assisted Optimization of 4,5-Dihydroxypyrimidine-6-Carboxamide Inhibitors of Influenza Virus Endonuclease“. Scientific Reports 7, Nr. 1 (Dezember 2017). http://dx.doi.org/10.1038/s41598-017-17419-6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie