Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Digital laser“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Digital laser" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Digital laser"
Guang Zheng, B. Wang, T. Fang, H. Cheng, Y. Qi, Y. W. Wang, B. X. Yan et al. „Laser Digital Cinema Projector“. Journal of Display Technology 4, Nr. 3 (September 2008): 314–18. http://dx.doi.org/10.1109/jdt.2008.924163.
Der volle Inhalt der QuelleShimura, Mikihiko, Koichi Imanaka, Hiroshi Sekii, Akira Fujimoto und Takeshi Takagi. „Semiconductor laser digital scanner“. Optical Engineering 29, Nr. 3 (1990): 230. http://dx.doi.org/10.1117/12.55582.
Der volle Inhalt der QuelleIchioka, Y., T. Kobayashi, H. Kitagawa und T. Suzuki. „Digital scanning laser microscope“. Applied Optics 24, Nr. 5 (01.03.1985): 691. http://dx.doi.org/10.1364/ao.24.000691.
Der volle Inhalt der QuellePiqué, Alberto, Heungsoo Kim, Ray Auyeung, Jiwen Wang, Andrew Birnbaum und Scott Mathews. „Laser-Based Digital Microfabrication“. NIP & Digital Fabrication Conference 25, Nr. 1 (01.01.2009): 394–97. http://dx.doi.org/10.2352/issn.2169-4451.2009.25.1.art00108_1.
Der volle Inhalt der QuelleLi, Qingfeng, David Grojo, Anne-Patricia Alloncle, Boris Chichkov und Philippe Delaporte. „Digital laser micro- and nanoprinting“. Nanophotonics 8, Nr. 1 (16.10.2018): 27–44. http://dx.doi.org/10.1515/nanoph-2018-0103.
Der volle Inhalt der QuelleHuang, Cing-Yi, Kuo-Chih Chang und Shu-Chun Chu. „Experimental Investigation of Generating Laser Beams of on-Demand Lateral Field Distribution from Digital Lasers“. Materials 12, Nr. 14 (10.07.2019): 2226. http://dx.doi.org/10.3390/ma12142226.
Der volle Inhalt der QuellePlesch, A., U. Klingbeil und J. Bille. „Digital laser scanning fundus camera“. Applied Optics 26, Nr. 8 (15.04.1987): 1480. http://dx.doi.org/10.1364/ao.26.001480.
Der volle Inhalt der QuelleNgcobo, Sandile, Igor Litvin, Liesl Burger und Andrew Forbes. „Demonstrating a Rewritable Digital Laser“. Optics and Photonics News 24, Nr. 12 (01.12.2013): 28. http://dx.doi.org/10.1364/opn.24.12.000028.
Der volle Inhalt der QuelleLang, Marion, Rudolf Neuhaus und Jürgen Stuhler. „Digital Revolution in Laser Control“. Optik & Photonik 10, Nr. 1 (Februar 2015): 38–41. http://dx.doi.org/10.1002/opph.201500005.
Der volle Inhalt der QuelleKowalik, John, John J. Rosinski und Bradford R. Siepman. „Digital business telephones-project laser“. Bell Labs Technical Journal 3, Nr. 1 (14.08.2002): 122–33. http://dx.doi.org/10.1002/bltj.2097.
Der volle Inhalt der QuelleDissertationen zum Thema "Digital laser"
Crossingham, Grant James. „A digital laser slopemeter“. Thesis, University of Southampton, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.481690.
Der volle Inhalt der QuelleRanély-Vergé-Dépré, Claude-Alban. „Digital laser and Coherent Beam combination“. Electronic Thesis or Diss., Institut polytechnique de Paris, 2024. http://www.theses.fr/2024IPPAX131.
Der volle Inhalt der QuelleCoherent Beam Combining (CBC) is an innovative architectural approach to designing efficient laser sources combining high average power and high peak power (kW/GW), while offering great flexibility in the spatial shaping of the resulting beam. Ytterbium (Yb)-doped fiber amplifiers offer excellent thermal management thanks to the fiber's high surface-to-volume ratio (facilitating cooling) and high efficiency made possible by the long interaction lengths accessible and the low quantum defect of the Yb dopant. Moreover, these fibers feature a gain spectral width that supports pulse durations of down to a few hundred femtoseconds. This makes it possible to amplify femtosecond pulse trains at high repetition rates. The two prototypes studied in this thesis use the combination of this technology with CBC architecture. The first is based on a composite pupil with 61 tiled beams, offering individual control of its channels and introducing the concept of digital laser. Its pulse duration is reduced by a non-linear "post-compression" technique, enabling it to retain its digital properties. The second prototype, with its superposition of 7 pupils, is being studied and developed for its greater theoretical efficiency
Mosayebi, Mahshad. „Digital Laser Speckle Image Correlation“. OpenSIUC, 2017. https://opensiuc.lib.siu.edu/theses/2131.
Der volle Inhalt der QuelleHeath, Daniel. „Digital micromirror devices and femtosecond laser pulses for rapid laser micromachining“. Thesis, University of Southampton, 2017. https://eprints.soton.ac.uk/417275/.
Der volle Inhalt der QuelleNewberry, Shawn. „Laser Speckle Patterns with Digital Image Correlation“. OpenSIUC, 2021. https://opensiuc.lib.siu.edu/theses/2885.
Der volle Inhalt der QuelleAmer, Eynas. „Pulsed laser ablation studied using digital holography“. Doctoral thesis, Luleå tekniska universitet, Strömningslära och experimentell mekanik, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-18194.
Der volle Inhalt der QuelleGodkänd; 2009; 20091018 (eyname); DISPUTATION Ämnesområde: Experimentell mekanik/Experimental Mechanics Opponent: Reader in Laser Engineering Bill O’Neill, University of Cambridge, UK Ordförande: Professor Mikael Sjödahl, Luleå tekniska universitet Tid: Fredag den 20 november 2009, kl 10.00 Plats: E 231, Luleå tekniska universitet
Cronin, Christopher Joseph. „Digital frequency demodulation for a laser vibrometer“. Thesis, This resource online, 1994. http://scholar.lib.vt.edu/theses/available/etd-11102009-020344/.
Der volle Inhalt der QuelleAmer, Mohamed Eynas. „Pulsed laser ablation studied using digital holography /“. Luleå : Department of Applied Physics and Mechanical Engineering, Luleå University of Technology, 2009. http://pure.ltu.se/ws/fbspretrieve/3315450.
Der volle Inhalt der QuelleLarsson, Ola. „Digital Implementation of a Laser Doppler Perfusion Monitor“. Thesis, Linköping University, Department of Electrical Engineering, 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-7091.
Der volle Inhalt der QuelleUnder 20 års tid har Perimed AB utvecklat och tillverkat LDPM- och LDPI-instrument som är baserade på en analog filterkonstruktion. De analoga komponenterna i konstruktionen är komplexa och icke-linjära med hänsyn till frekvens och de driver även med temperaturen. Funktionen hos konstruktionen beror också kraftigt av att de analoga komponenterna trimmas in under produktionen.
Det här examensarbetet syftar till att ta fram en alternativ design baserad kring en digital signal processor. Den digitala signalbehandlingsmetod som beskrivs baseras på väl förankrade laser-Doppler perfusionsteorier. Den implementerade signalbehandlingsalgoritmen beräknar perfusionen ur en samplad fotodetektorström, som har filtrerats till AC- och DC-komponenter med hjälp av ett analogt detektorkort. Algoritmen producerar en råperfusionssignal genom att beräkna en frekvensviktad summa av fotodetektorströmmens effektspektrum. Kompensation för detektorns brus och normalisering med ljusintensitet har också implementerats.
Den presenterade implementationen har verifierats mot ett exemplar av LDPM-enheten PF 5010 som har använts som referensinstrument vid alla mätningar. Mätningar in vitro har påvisat liknande mätresultat som referensinstrumentet för en referensvätska med hög perfusion och även för ett statiskt mätobjekt. Vidare har implementationen verifierats med mätningar in vivo på hud, vilket har påvisat nära nog identiska signalnivåer och gensvar på värmeprovokationer som referensinstrumentet.
Den demonstrerade uppfinningen förenklar tillverkningen av instrumenten eftersom antalet komponenter reduceras avsevärt och därmed antalet produktionstester. Användandet av en DSP reducerar dessutom instrumentets temperaturkänslighet eftersom den ersätter flera temperaturkänsliga komponenter.
For 20 years Perimed AB have been developing and manufacturing LDPM and LDPI instruments based on an analog filter construction. The analog components in the construction are complex and suffer from non-linear frequency dependency and temperature drifts. The functionality of the design is also heavily depending on analog components which need to be trimmed in the production.
In this thesis, an alternative design employing a digital signal processor is presented. The signal processing method used is based on well established laser Doppler perfusion theories. The implemented signal processing algorithm calculates the perfusion from a sampled photodetector current, pre-filtered into AC and DC components by an analog detector card. The algorithm produces a raw perfusion signal by calculating a frequency weighted sum of the power spectral density, PSD, of the photocurrent. Detector noise compensation and light intensity normalization of the signal has also been implemented.
The presented digital implementation has been verified using the PF 5010 LDPM unit as a reference. In vitro measurements have shown similar behaviour as the reference in a highly perfused reference fluid as well as for a static scatterer. Furthermore, the DSP implementation has been verified on in vivo measurements of skin, showing nearly identical signal levels and response to heat provocation as the reference.
The demonstrated invention improves the manufacturability of the instruments since it reduces the number of electronic components significantly and thus, the amount of manufacturing tests. The DSP also reduces the temperature sensitivity of the instrument since it replaces several analog components sensitive to temperature changes.
Erk, Patrick P. (Patrick Peter). „Digital signal processing techniques for laser-doppler anemometry“. Thesis, Massachusetts Institute of Technology, 1990. http://hdl.handle.net/1721.1/43026.
Der volle Inhalt der QuelleBücher zum Thema "Digital laser"
S, Dongare A., und Bhabha Atomic Research Centre, Hrsg. Digital beam profiler for infrared lasers. Mumbai: Bhabha Atomic Research Centre, 2003.
Den vollen Inhalt der Quelle findenBlutinger, Jonathan David. Digital Cuisine: Food Printing and Laser Cooking. [New York, N.Y.?]: [publisher not identified], 2022.
Den vollen Inhalt der Quelle findenHunter, David Mackenzie. Digital radiography by laser scanned readout of amorphous selenium. Ottawa: National Library of Canada, 1996.
Den vollen Inhalt der Quelle findenMontes, Felix G. Digital data acquisition for laser radar for vibration analysis. Monterey, Calif: Naval Postgraduate School, 1998.
Den vollen Inhalt der Quelle findenBowen, M. F. Ultimate ocean depth packaging for a digital ring laser gyroscope. Woods Hole, Mass: Woods Hole Oceanographic Institution, 1998.
Den vollen Inhalt der Quelle findenF, Marshall Gerald, Hrsg. Handbook of optical and laser scanning. New York: Marcel Dekker, 2004.
Den vollen Inhalt der Quelle findenGauthier, V. Application of PIDV to complex flows: Velocity field measurements in the front of a heavy gas cloud. Rhode Saint Genese, Belgium: Von Karman Institute for Fluid Dynamics, 1988.
Den vollen Inhalt der Quelle findenShi Weiming yan jiu shi. Mac ying yin da hang: Xia zai, bo fang, fen xiang, dui kao DVD, zhuan dang. Taibei Shi: Qi biao chu ban gu fen you xian gong si, 2008.
Den vollen Inhalt der Quelle findenChambers, Mark L. Hewlett-Packard official recordable CD handbook. Foster City, CA: IDG Books Worldwide, 2000.
Den vollen Inhalt der Quelle findenWei-Jei, Yang, Yamamoto Fujio, Mayinger F. 1931-, American Society of Mechanical Engineers. Fluids Engineering Division. und ASME/JSME Fluids Engineering and Laser Anemometry Conference and Exhibition (1995 : Hilton Head, S.C.), Hrsg. Flow visualization and image processing of multiphase systems: Presented at the 1995 ASME/JSME Fluids Engineering and Laser Anemometry Conference and Exhibition, August 13-18, 1995, Hilton Head, South Carolina. New York: American Society of Mechanical Engineers, 1995.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Digital laser"
Rinkevichyus, B. S., O. A. Evtikhieva und I. L. Raskovskaya. „Digital Refractogram Recording and Processing“. In Laser Refractography, 135–67. New York, NY: Springer New York, 2010. http://dx.doi.org/10.1007/978-1-4419-7397-9_7.
Der volle Inhalt der QuellePiqué, Alberto. „Laser Transfer Techniques for Digital Microfabrication“. In Laser Precision Microfabrication, 259–91. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-10523-4_11.
Der volle Inhalt der QuelleBreda, Alberto, Salvatore Micali, Angelo Territo, Mino Rizzo, Giulio Bevilacqua, Iacopo Meneghetti, Maria Chiara Sighinolfi, Bernardo Rocco und Giampaolo Bianchi. „Confocal Laser Endomicroscopy“. In Urologic Surgery in the Digital Era, 187–202. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-63948-8_11.
Der volle Inhalt der QuelleBrettel, Hans. „Pseudocolour Displays in Digital Image Processing“. In Laser/Optoelektronik in der Technik / Laser/Optoelectronics in Engineering, 349–53. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-48372-1_73.
Der volle Inhalt der QuelleTooley, F. A. P. „Digital Logic Elements for Optical Computing“. In Laser Science and Technology, 403–22. Boston, MA: Springer US, 1988. http://dx.doi.org/10.1007/978-1-4757-0378-8_25.
Der volle Inhalt der QuelleSchlüter, P. „Positional Correction During Laser Cutting by Means of Digital Image Processing“. In Laser in der Technik / Laser in Engineering, 234–37. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-84736-3_40.
Der volle Inhalt der QuelleHutzler, P. J. S., S. Berber und W. Waidelich. „An Interactive System for Digital Optical Image Processing“. In Laser/Optoelektronik in der Technik / Laser/Optoelectronics in Engineering, 218–21. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-642-82638-2_43.
Der volle Inhalt der QuelleHutzler, P. „Opto-Electronic Sensor Systems for Digital Image Processing“. In Laser/Optoelektronik in der Technik / Laser/Optoelectronics in Engineering, 106–16. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/978-3-642-83174-4_26.
Der volle Inhalt der QuellePedrini, G., Y. Zou und H. J. Tiziani. „Speckle- and Digital Holographic Interferometry (A Comparison)“. In Laser in Forschung und Technik / Laser in Research and Engineering, 485–88. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/978-3-642-80263-8_104.
Der volle Inhalt der QuelleLi, Xiaojie, Bao-zhen Ge, Dan Zhao, Qing-guo Tian und K. David Young. „Auto-calibration of a Laser 3D Color Digitization System“. In Digital Human Modeling, 691–99. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-02809-0_73.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Digital laser"
Tani, Shuntaro. „Digital Twins for Laser Microprocessing Based on Large-Scale Experimental Data“. In Laser Applications Conference, LM1B.3. Washington, D.C.: Optica Publishing Group, 2024. https://doi.org/10.1364/lac.2024.lm1b.3.
Der volle Inhalt der QuelleSementin, V. V., A. P. Pogoda und A. S. Boreysho. „Filtering methods for reconstructed digital holograms“. In 2024 International Conference Laser Optics (ICLO), 240. IEEE, 2024. http://dx.doi.org/10.1109/iclo59702.2024.10624570.
Der volle Inhalt der QuelleSoman, Pranav. „Addressing key challenges in multimaterial and multiscale digital projection stereolithography“. In Laser 3D Manufacturing XII, herausgegeben von Henry Helvajian, Bo Gu und Hongqiang Chen, 11. SPIE, 2025. https://doi.org/10.1117/12.3040820.
Der volle Inhalt der QuellePetrov, V. M., D. V. Masygin, A. A. Sevryugin, E. V. Shalymov, E. K. Iurieva, D. V. Venediktov und V. Yu Venediktov. „Holographic Interferometers for Optical Digital Medical Tomography“. In 2024 International Conference Laser Optics (ICLO), 176. IEEE, 2024. http://dx.doi.org/10.1109/iclo59702.2024.10624127.
Der volle Inhalt der QuelleNumazawa, Keisuke, Kota Kumagai und Yoshio Hayasaki. „Volumetric micro clouds drawn with femtosecond laser pulses“. In Digital Holography and Three-Dimensional Imaging, W5B.4. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/dh.2024.w5b.4.
Der volle Inhalt der QuelleDu, Qiu-shuang, Wan-cheng Liu, Yu-hai Li, Song Guan und Yi-ning Yang. „A high dynamic range imaging method based on the digital micromirror device“. In Laser Technology and Applications, herausgegeben von Pu Zhou, 48. SPIE, 2024. https://doi.org/10.1117/12.3047822.
Der volle Inhalt der QuelleStevens, Rock, Josiah Dykstra, Wendy Knox Everette und Michelle L. Mazurek. „How to Hack Compliance: Using Lessons Learned to Repeatably Audit Compliance Programs for Digital Security Concerns“. In Learning from Authoritative Security Experiment Results. Reston, VA: Internet Society, 2020. http://dx.doi.org/10.14722/laser.2020.23003.
Der volle Inhalt der QuelleTakeuchi, Eric B., Graham W. Flint, Robert Bergstedt, Paul J. Solone, Dicky Lee und Peter F. Moulton. „Laser Digital Cinema“. In Photonics West 2001 - Electronic Imaging, herausgegeben von Ming H. Wu. SPIE, 2001. http://dx.doi.org/10.1117/12.420785.
Der volle Inhalt der QuelleSmeu, Emil, Niculae N. Puscas und Ion M. Popescu. „Digital laser powermeter“. In ROMOPTO '97: Fifth Conference on Optics, herausgegeben von Valentin I. Vlad und Dan C. Dumitras. SPIE, 1998. http://dx.doi.org/10.1117/12.312715.
Der volle Inhalt der QuelleAptowicz, Kevin B., Ahmed M. Alsayed, Yilong L. Han und Arjun G. Yodh. „Optical Artifacts in Digital Video Microscopy“. In Laser Science. Washington, D.C.: OSA, 2006. http://dx.doi.org/10.1364/ls.2006.lmh4.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Digital laser"
Shamey, Renzo, Traci A. M. Lamar und Uikyung Jung. Digital Textile Printing with Laser Engraving: Surface Contour Modification and Color Properties. Ames (Iowa): Iowa State University. Library, Januar 2019. http://dx.doi.org/10.31274/itaa.9459.
Der volle Inhalt der QuelleKomerath, N. M., O. D. Wong und R. Mahalingam. Tunable Solid-State Laser and High Resolution Digital Cameras for Lagrangian Vortex Imaging. Fort Belvoir, VA: Defense Technical Information Center, Dezember 2000. http://dx.doi.org/10.21236/ada391255.
Der volle Inhalt der QuelleMiles, Richard B. Development of Pulse-Burst Laser Source and Digital Image Processing for Measurements of High-Speed, Time-Evolving Flow. Fort Belvoir, VA: Defense Technical Information Center, August 2000. http://dx.doi.org/10.21236/ada381328.
Der volle Inhalt der QuelleMiles, Richard B. AASERT: Development of Pulse-Burst Laser Source and Digital Image Processing for Measurements of High-Speed, Time-Evolving Flow. Fort Belvoir, VA: Defense Technical Information Center, August 2000. http://dx.doi.org/10.21236/ada383154.
Der volle Inhalt der QuelleRandell. L51857 Evaluation of Digital Image Acquisition and Processing Technologies for Ground Movement Monitoring. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), Januar 2008. http://dx.doi.org/10.55274/r0011244.
Der volle Inhalt der QuelleKubica, Stefan, Tobias Peuschke-Bischof, Belinda Müller und Robin Avci. Fahrmanöver für Geradeausfahrt. Technische Hochschule Wildau, 2019. http://dx.doi.org/10.15771/1264.
Der volle Inhalt der QuelleLeón, Carlos. Digital Operational Resilience Act (DORA). FNA, Juli 2023. http://dx.doi.org/10.69701/deff9232.
Der volle Inhalt der QuelleBaral, Aniruddha, Jeffery Roesler und Junryu Fu. Early-age Properties of High-volume Fly Ash Concrete Mixes for Pavement: Volume 2. Illinois Center for Transportation, September 2021. http://dx.doi.org/10.36501/0197-9191/21-031.
Der volle Inhalt der QuelleMorneault, K., S. Rengasami, M. Kalla und G. Sidebottom. Integrated Services Digital Network (ISDN) Q.921-User Adaptation Layer. RFC Editor, Januar 2006. http://dx.doi.org/10.17487/rfc4233.
Der volle Inhalt der QuelleGreen, Malcolm. Diamond-Shaped Semiconductor Ring Lasers for Analog to Digital Photonic Converters. Fort Belvoir, VA: Defense Technical Information Center, Januar 2004. http://dx.doi.org/10.21236/ada421293.
Der volle Inhalt der Quelle