Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Diffusion Operator“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Diffusion Operator" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Diffusion Operator"
Franců, Jan. „Homogenization of diffusion equation with scalar hysteresis operator“. Mathematica Bohemica 126, Nr. 2 (2001): 363–77. http://dx.doi.org/10.21136/mb.2001.134031.
Der volle Inhalt der QuelleAntoniou, I., I. Prigogine, V. Sadovnichii und S. A. Shkarin. „Time operator for diffusion“. Chaos, Solitons & Fractals 11, Nr. 4 (März 2000): 465–77. http://dx.doi.org/10.1016/s0960-0779(99)00052-1.
Der volle Inhalt der QuelleIgbida, Noureddine, und Thi Nguyet Nga Ta. „Sub-gradient diffusion operator“. Journal of Differential Equations 262, Nr. 7 (April 2017): 3837–63. http://dx.doi.org/10.1016/j.jde.2016.11.034.
Der volle Inhalt der QuelleCantin, Pierre, und Alexandre Ern. „Vertex-Based Compatible Discrete Operator Schemes on Polyhedral Meshes for Advection-Diffusion Equations“. Computational Methods in Applied Mathematics 16, Nr. 2 (01.04.2016): 187–212. http://dx.doi.org/10.1515/cmam-2016-0007.
Der volle Inhalt der QuelleVizilter, Y. V., O. V. Vygolov und S. Y. Zheltov. „Comparison of statistical properties for various morphological filters based on mosaic image shape models“. Computer Optics 45, Nr. 3 (Juni 2021): 449–60. http://dx.doi.org/10.18287/2412-6179-co-842.
Der volle Inhalt der QuelleПененко, А. В., und A. V. Penenko. „Numerical Algorithms for Diffusion Coefficient Identification in Problems of Tissue Engineering“. Mathematical Biology and Bioinformatics 11, Nr. 2 (22.12.2016): 426–44. http://dx.doi.org/10.17537/2016.11.426.
Der volle Inhalt der QuelleAhmed, Nauman, Tahira S.S., M. Rafiq, M. A. Rehman, Mubasher Ali und M. O. Ahmad. „Positivity preserving operator splitting nonstandard finite difference methods for SEIR reaction diffusion model“. Open Mathematics 17, Nr. 1 (29.04.2019): 313–30. http://dx.doi.org/10.1515/math-2019-0027.
Der volle Inhalt der QuelleNATAF, F., und F. ROGIER. „FACTORIZATION OF THE CONVECTION-DIFFUSION OPERATOR AND THE SCHWARZ ALGORITHM“. Mathematical Models and Methods in Applied Sciences 05, Nr. 01 (Februar 1995): 67–93. http://dx.doi.org/10.1142/s021820259500005x.
Der volle Inhalt der QuelleSat, Murat, und Etibar S. Panakhov. „Spectral problem for diffusion operator“. Applicable Analysis 93, Nr. 6 (23.07.2013): 1178–86. http://dx.doi.org/10.1080/00036811.2013.821113.
Der volle Inhalt der QuelleDavies, E. B. „An Indefinite Convection-Diffusion Operator“. LMS Journal of Computation and Mathematics 10 (2007): 288–306. http://dx.doi.org/10.1112/s1461157000001418.
Der volle Inhalt der QuelleDissertationen zum Thema "Diffusion Operator"
Eberle, Andreas. „Uniqueness and non-uniqueness of semigroups generated by singular diffusion operators /“. Berlin [u.a.] : Springer, 1999. http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&doc_number=008710353&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA.
Der volle Inhalt der QuelleThangudu, Kedarnath. „Practicality of Discrete Laplace Operators“. The Ohio State University, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=osu1236615194.
Der volle Inhalt der QuelleBolelli, Maria Virginia. „Diffusion Maps for Dimensionality Reduction“. Master's thesis, Alma Mater Studiorum - Università di Bologna, 2019. http://amslaurea.unibo.it/18246/.
Der volle Inhalt der QuelleHandler, Matthew Dane. „Development of stable operator splitting numerical algorithms for phase-field modeling and surface diffusion applications“. Thesis, Massachusetts Institute of Technology, 2006. http://hdl.handle.net/1721.1/35068.
Der volle Inhalt der QuelleIncludes bibliographical references (leaves 35-37).
Implicit, explicit and spectral algorithms were used to create Allen-Cahn and Cahn-Hilliard phase field models. Individual terms of the conservation equations were approached by different methods using operator splitting techniques found in previous literature. In addition, dewetting of gold films due to surface diffusion was modeled to present the extendability and efficiency of the spectral methods derived. The simulations developed are relevant to many real systems and are relatively light in computational load because they take large time steps to drive the model into equilibrium. Results were analyzed by their relevancy to real world applications and further work in this field is outlined.
by Matthew Dane Handler.
S.B.
Tora, Veronica. „Laplace operator on finite graphs and a network diffusion model for the progression of the Alzheimer disease“. Master's thesis, Alma Mater Studiorum - Università di Bologna, 2014. http://amslaurea.unibo.it/7889/.
Der volle Inhalt der QuelleKhochman, Abdallah. „Résonances et diffusion pour les opérateurs de Dirac et de Schrödinger magnétique“. Thesis, Bordeaux 1, 2008. http://www.theses.fr/2008BOR13689/document.
Der volle Inhalt der QuelleIn this thesis, we consider equations of mathematical physics. First, we study the reso- nances and the spectral shift function for the semi-classical Dirac operator and the magnetic Schrö- dinger operator in three dimensions. We de?ne the resonances as the eigenvalues of a non-selfadjoint operator obtained by complex distortion. For the Dirac operator, we establish an upper bound O(h-3), as the semi-classical parameter h tends to 0, for the number of resonances. In the Schrödinger magne- tic case, the reference operator has in?nitely many eigenvalues of in?nite multiplicity embedded in its continuous spectrum. In a ring centered at one of this eigenvalues with radiuses (r, 2r), we establish an upper bound, as r tends to 0, of the number of the resonances. A Breit-Wigner approximation formula for the derivative of the spectral shift function related to the resonances and a local trace formula are obtained for the considered operators. Moreover, we prove a Weyl-type asymptotic of the SSF for the Dirac operator with an electro-magnetic potential. Secondly, we consider the semi-classical Dirac ope- rator on R with potential having constant limits, not necessarily the same at ±8. Using the complex WKB method, we construct analytic solutions for the Dirac operator. We study the scattering theory in terms of incoming and outgoing solutions. We obtain an asymptotic expansion, with respect to the semi-classical parameter h, of the scattering matrix in di?erent cases, in particular, in the case when the Klein paradox occurs. Quantization conditions for the resonances and for the eigenvalues of the one-dimensional Dirac operator are also obtained
Zhuang, Qiao. „Immersed Finite Elements for a Second Order Elliptic Operator and Their Applications“. Diss., Virginia Tech, 2020. http://hdl.handle.net/10919/99040.
Der volle Inhalt der QuelleDoctor of Philosophy
This dissertation studies immersed finite elements (IFE) for a second order elliptic operator and their applications to a few types of interface problems. We start with the immersed finite element methods for the second order elliptic operator with a discontinuous coefficient associated with the elliptic interface problem. We can show that the IFE methods for the elliptic interface problems converge optimally when the exact solution has lower regularity than that in the previous publications. Then we consider applications of IFEs developed for the second order elliptic operator to wave propagation and diffusion interface problems. For interface problems of the Helmholtz equation which models time-Harmonic wave propagations, we design IFE schemes, including higher degree schemes, and derive error estimates for a lower degree scheme. For interface problems of the second order hyperbolic equation which models time dependent wave propagations, we derive better error estimates for the IFE methods and provides numerical simulations for both the standing and traveling waves. For interface problems of the parabolic equation which models the time dependent diffusion, we also derive better error estimates for the IFE methods.
Hachem, Ghias. „Théorie spectrale de l'opérateur de Dirac avec un potentiel électromagnétique à croissance linéaire à l'infini“. Paris 13, 1988. http://www.theses.fr/1988PA132008.
Der volle Inhalt der QuelleTa, Thi nguyet nga. „Sub-gradient diffusion equations“. Thesis, Limoges, 2015. http://www.theses.fr/2015LIMO0137/document.
Der volle Inhalt der QuelleThis thesis is devoted to the study of evolution problems where the dynamic is governed by sub-gradient diffusion operator. We are interest in two kind of evolution problems. The first problem is governed by local operator of Leray-Lions type with a bounded domain. In this problem, the operator is maximal monotone and does not satisfied the standard polynomial growth control condition. Typical examples appears in the study of non-Neutonian fluid and also in the description of sub-gradient flows dynamics. To study the problem we handle the equation in the context of nonlinear PDE with singular flux. We use the theory of tangential gradient to characterize the state equation that gives the connection between the flux and the gradient of the solution. In the stationary problem, we have the existence of solution, we also get the equivalence between the initial minimization problem, the dual problem and the PDE. In the evolution one, we provide the existence, uniqueness of solution and the contractions. The second problem is governed by a discrete operator. We study the discrete evolution equation which describe the process of collapsing sandpile. This is a typical example of Self-organized critical phenomena exhibited by a critical slop. We consider the discrete evolution equation where the dynamic is governed by sub-gradient of indicator function of the unit ball. We begin by establish the model, we prove existence and uniqueness of the solution. Then by using dual arguments we study the numerical computation of the solution and we present some numerical simulations
Rieux, Frédéric. „Processus de diffusion discret : opérateur laplacien appliqué à l'étude de surfaces“. Thesis, Montpellier 2, 2012. http://www.theses.fr/2012MON20201/document.
Der volle Inhalt der QuelleThe context of discrete geometry is in Zn. We propose to discribe discrete curves and surfaces composed of voxels: how to compute classical notions of analysis as tangent and normals ? Computation of data on discrete curves use average mask. A large amount of works proposed to study the pertinence of those masks. We propose to compute an average mask based on random walk. A random walk starting from a point of a curve or a surface, allow to give a weight, the time passed on each point. This kernel allow us to compute average and derivative. The studied of this digital process allow us to recover classical notions of geometry on meshes surfaces, and give accuracy estimator of tangent and curvature. We propose a large field of applications of this approach recovering classical tools using in transversal communauty of discrete geometry, with a same theorical base
Bücher zum Thema "Diffusion Operator"
Reddy, Satish C. Pseudospectra of the convection-diffusion operator. Ithaca, N.Y: Cornell Theory Center, Cornell University, 1993.
Den vollen Inhalt der Quelle findenLöbus, Jörg-Uwe. Generalized diffusion operators. Berlin: Akademie Verlag, 1993.
Den vollen Inhalt der Quelle findenAndreu-Vaillo, Fuensanta. Nonlocal diffusion problems. Providence, R.I: American Mathematical Society, 2010.
Den vollen Inhalt der Quelle findenNonlocal diffusion problems. Providence, R.I: American Mathematical Society, 2010.
Den vollen Inhalt der Quelle findenMontseny, Gérard. Représentation diffusive. Paris: Hermès science, 2005.
Den vollen Inhalt der Quelle findenDiffusions and elliptic operators. New York: Springer, 1998.
Den vollen Inhalt der Quelle findenG, Pinsky Ross. Positive harmonic functions and diffusion. New York: Cambridge University Press, 1995.
Den vollen Inhalt der Quelle findenLong, Hongwei. Symmetric diffusion operators on infinite dimensional spaces. [s.l.]: typescript, 1997.
Den vollen Inhalt der Quelle findenBakry, Dominique, Ivan Gentil und Michel Ledoux. Analysis and Geometry of Markov Diffusion Operators. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-00227-9.
Der volle Inhalt der QuelleTaira, Kazuaki. Diffusion processes and partial differential equations. Boston: Academic Press, 1988.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Diffusion Operator"
Bátkai, András, Marjeta Kramar Fijavž und Abdelaziz Rhandi. „Population Equations with Diffusion“. In Positive Operator Semigroups, 303–24. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-42813-0_19.
Der volle Inhalt der QuelleMorra, Gabriele. „Laplacian Operator and Diffusion“. In Lecture Notes in Earth System Sciences, 143–60. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-55682-6_9.
Der volle Inhalt der QuelleMelnikov, Alexander, und Hongxi Wan. „CVaR Hedging in Defaultable Jump-Diffusion Markets“. In Operator Theory and Harmonic Analysis, 309–33. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-76829-4_17.
Der volle Inhalt der QuelleColombo, Fabrizio, und Jonathan Gantner. „The Quaternionic Evolution Operator“. In Quaternionic Closed Operators, Fractional Powers and Fractional Diffusion Processes, 105–31. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-16409-6_4.
Der volle Inhalt der QuelleGrudsky, S. M., und O. A. Mendez-Lara. „Double-Barrier Option Pricing Under the Hyper-Exponential Jump Diffusion Model“. In Operator Theory and Harmonic Analysis, 197–217. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-76829-4_10.
Der volle Inhalt der QuelleGuebbaï, H., und A. Largillier. „Spectra and Pseudospectra of a Convection–Diffusion Operator“. In Integral Methods in Science and Engineering, 173–80. Boston: Birkhäuser Boston, 2011. http://dx.doi.org/10.1007/978-0-8176-8238-5_16.
Der volle Inhalt der QuelleBertsch, Michiel, und Roberta Dal Passo. „A Parabolic Equation with a Mean-Curvature Type Operator“. In Nonlinear Diffusion Equations and Their Equilibrium States, 3, 89–97. Boston, MA: Birkhäuser Boston, 1992. http://dx.doi.org/10.1007/978-1-4612-0393-3_6.
Der volle Inhalt der QuelleBobrowski, Adam. „Families of Operators Describing Diffusion Through Permeable Membranes“. In Operator Semigroups Meet Complex Analysis, Harmonic Analysis and Mathematical Physics, 87–105. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-18494-4_6.
Der volle Inhalt der QuelleRobinson, Derek W. „Gaussian and non-Gaussian Behaviour of Diffusion Processes“. In Operator Semigroups Meet Complex Analysis, Harmonic Analysis and Mathematical Physics, 463–81. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-18494-4_27.
Der volle Inhalt der QuelleCranston, Michael C., und Zhongxin Zhao. „Some Regularity Results and Eigenfunction Estimates for the Schrödinger Operator“. In Diffusion Processes and Related Problems in Analysis, Volume I, 139–47. Boston, MA: Birkhäuser Boston, 1990. http://dx.doi.org/10.1007/978-1-4684-0564-4_9.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Diffusion Operator"
Ratner, Vadim, und Yehoshua Y. Zeevi. „Telegraph-Diffusion Operator for Image Enhancement“. In 2007 IEEE International Conference on Image Processing. IEEE, 2007. http://dx.doi.org/10.1109/icip.2007.4379007.
Der volle Inhalt der QuelleMoen, Christopher. „Controlling negative coefficients for the CVFEM diffusion operator“. In 29th AIAA, Fluid Dynamics Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1998. http://dx.doi.org/10.2514/6.1998-3008.
Der volle Inhalt der QuelleLadics, Tamás. „Application of operator splitting to solve reaction-diffusion equations“. In The 9'th Colloquium on the Qualitative Theory of Differential Equations. Szeged: Bolyai Institute, SZTE, 2012. http://dx.doi.org/10.14232/ejqtde.2012.3.9.
Der volle Inhalt der QuelleZhang, Yi, und Xiaozhong Yang. „Accelerated Additive Operator Splitting Schemes for Nonlinear Diffusion Filtering“. In 2010 International Conference on Biomedical Engineering and Computer Science (ICBECS). IEEE, 2010. http://dx.doi.org/10.1109/icbecs.2010.5462498.
Der volle Inhalt der QuelleWu, Siyuan, und Zhixing Huang. „A Gossip-based Opinion Diffusion Model via Uninorm Aggregation Operator“. In 2008 International Symposium on Electronic Commerce and Security. IEEE, 2008. http://dx.doi.org/10.1109/isecs.2008.224.
Der volle Inhalt der QuelleCloninger, Alexander, Wojciech Czaja und Timothy Doster. „Operator analysis and diffusion based embeddings for heterogeneous data fusion“. In IGARSS 2014 - 2014 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2014. http://dx.doi.org/10.1109/igarss.2014.6946659.
Der volle Inhalt der QuelleAtkins, H., und Chi-Wang Shu. „Analysis of the discontinuous Galerkin method applied to the diffusion operator“. In 14th Computational Fluid Dynamics Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1999. http://dx.doi.org/10.2514/6.1999-3306.
Der volle Inhalt der QuelleWeng, Guirong. „cDNA Microarray Image Processing Using Morphological Operator and Edge-Enhancing Diffusion“. In 2009 3rd International Conference on Bioinformatics and Biomedical Engineering (iCBBE 2009). IEEE, 2009. http://dx.doi.org/10.1109/icbbe.2009.5162481.
Der volle Inhalt der QuelleRendon, Juan, Marcos Capistran und Bruno Lara. „A Discrete Reaction-Diffusion Operator for Moving Curves and Edge Detection“. In Electronics, Robotics and Automotive Mechanics Conference (CERMA'06). IEEE, 2006. http://dx.doi.org/10.1109/cerma.2006.2.
Der volle Inhalt der QuelleHauge, V. L., J. E. Aarnes und K. A. Lie. „Operator Splitting of Advection and Diffusion on Non-uniformly Coarsened Grids“. In 11th European Conference on the Mathematics of Oil Recovery. Netherlands: EAGE Publications BV, 2008. http://dx.doi.org/10.3997/2214-4609.20146392.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Diffusion Operator"
Roberts, R. M. Hexahedron, wedge, tetrahedron, and pyramid diffusion operator discretization. Office of Scientific and Technical Information (OSTI), August 1996. http://dx.doi.org/10.2172/442193.
Der volle Inhalt der QuelleWinters, Andrew R. Support Operators Method for the Diffusion Equation in Multiple Materials. Office of Scientific and Technical Information (OSTI), August 2012. http://dx.doi.org/10.2172/1048864.
Der volle Inhalt der QuelleWinters, Andrew R., und Mikhail J. Shashkov. Support Operators Method for the Diffusion Equation in Multiple Materials. Office of Scientific and Technical Information (OSTI), August 2012. http://dx.doi.org/10.2172/1048859.
Der volle Inhalt der QuelleTrowbridge, L. D. Long-range global warming impact of gaseous diffusion plant operation. Office of Scientific and Technical Information (OSTI), September 1992. http://dx.doi.org/10.2172/10156151.
Der volle Inhalt der QuelleBaral, Aniruddha, Jeffrey Roesler, M. Ley, Shinhyu Kang, Loren Emerson, Zane Lloyd, Braden Boyd und Marllon Cook. High-volume Fly Ash Concrete for Pavements Findings: Volume 1. Illinois Center for Transportation, September 2021. http://dx.doi.org/10.36501/0197-9191/21-030.
Der volle Inhalt der QuelleConstruction and operation of an industrial solid waste landfill at Portsmouth Gaseous Diffusion Plant, Piketon, Ohio. Office of Scientific and Technical Information (OSTI), Oktober 1995. http://dx.doi.org/10.2172/219097.
Der volle Inhalt der QuelleEnvironmental assessment for the construction and operation of waste storage facilities at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky. Office of Scientific and Technical Information (OSTI), Juni 1994. http://dx.doi.org/10.2172/71517.
Der volle Inhalt der Quelle