Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Diffusion experiments.

Zeitschriftenartikel zum Thema „Diffusion experiments“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Diffusion experiments" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

Divya, V. D., U. Ramamurty und Aloke Paul. „Diffusion in Co-Ni System Studied by Multifoil Technique“. Defect and Diffusion Forum 312-315 (April 2011): 466–71. http://dx.doi.org/10.4028/www.scientific.net/ddf.312-315.466.

Der volle Inhalt der Quelle
Annotation:
Diffusion couple experiments were performed in the Co-Ni binary system for determining inter-, impurity- and intrinsic-diffusion coefficients in the temperature range of 1050 - 1250°C. The activation energy and pre-exponential factor estimated for interdiffusion do not vary significantly with composition. The activation energy calculated for impurity diffusion experiments shows is higher than . Intrinsic diffusion coefficients estimated from the multifoil experiment show that Ni is the fastest diffusing species in this system.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Bodet, J. M., J. Ross und C. Vidal. „Experiments on phase diffusion waves“. Journal of Chemical Physics 86, Nr. 8 (15.04.1987): 4418–24. http://dx.doi.org/10.1063/1.452713.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Mathiak, G., E. Plescher und R. Willnecker. „Vibrational effects on diffusion experiments“. Microgravity - Science and Technology 16, Nr. 1-4 (März 2005): 295–300. http://dx.doi.org/10.1007/bf02945994.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Patzek, Tad W. „Fick’s Diffusion Experiments Revisited —Part I“. Advances in Historical Studies 03, Nr. 04 (2014): 194–206. http://dx.doi.org/10.4236/ahs.2014.34017.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Petelin, A., S. Peteline und O. Oreshina. „Triple Junction Diffusion: Experiments and Models“. Defect and Diffusion Forum 194-199 (April 2001): 1265–72. http://dx.doi.org/10.4028/www.scientific.net/ddf.194-199.1265.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Lorenz, Christine H., David R. Pickens, Donald B. Puffer und Ronald R. Price. „Magnetic resonance diffusion/perfusion phantom experiments“. Magnetic Resonance in Medicine 19, Nr. 2 (Juni 1991): 254–60. http://dx.doi.org/10.1002/mrm.1910190211.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Griesche, Axel, F. Garcia-Moreno, M. P. Macht und Günter Frohberg. „Chemical Diffusion Experiments in AlNiCe-Melts“. Materials Science Forum 508 (März 2006): 567–72. http://dx.doi.org/10.4028/www.scientific.net/msf.508.567.

Der volle Inhalt der Quelle
Annotation:
The long-capillary method was used to measure chemical diffusion in molten AlNiCe alloys. The interdiffusion coefficients were determined for a mean concentration of Al87Ni10Ce3 at 1273 K and for a mean concentration of Al77Ni20Ce3 at 1373 K. The absence of major convection disturbances and of macro-segregation was demonstrated by time-dependent diffusion measurements. An in-situ x-ray monitoring technique for real-time concentration profile determination is presented.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Chen, Aidi, Charles S. Johnson,, Melissa Lin und Michael J. Shapiro. „Chemical Exchange in Diffusion NMR Experiments“. Journal of the American Chemical Society 120, Nr. 35 (September 1998): 9094–95. http://dx.doi.org/10.1021/ja9809410.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Wang, Dezheng, Fanxing Li und Xueliang Zhao. „Diffusion limitation in fast transient experiments“. Chemical Engineering Science 59, Nr. 22-23 (November 2004): 5615–22. http://dx.doi.org/10.1016/j.ces.2004.07.111.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Xia, Qunke, Daogong Chen, S. Carpenter, Xiachen Zhi, Rucheng Wang und Hao Cheng. „Hydrogen diffusion in clinopyroxene: dehydration experiments“. Science in China Series D: Earth Sciences 43, Nr. 6 (Dezember 2000): 561–68. http://dx.doi.org/10.1007/bf02879499.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

Palcut, Marián, Kjell Wiik und Tor Grande. „Cation Self-Diffusion in LaCoO3and La2CoO4Studied by Diffusion Couple Experiments“. Journal of Physical Chemistry B 111, Nr. 9 (März 2007): 2299–308. http://dx.doi.org/10.1021/jp068343s.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

Cherniak, Daniele J., und E. Bruce Watson. „Al and Si diffusion in rutile“. American Mineralogist 104, Nr. 11 (01.11.2019): 1638–49. http://dx.doi.org/10.2138/am-2019-7030.

Der volle Inhalt der Quelle
Annotation:
Abstract Diffusion of Al and Si has been measured in synthetic and natural rutile under anhydrous conditions. Experiments used Al2O3 or Al2O3-TiO2 powder mixtures for Al diffusant sources, and SiO2-TiO2 powder mixtures or quartz-rutile diffusion couples for Si. Experiments were run in air in crimped Pt capsules, or in sealed silica glass ampoules with solid buffers (to buffer at NNO or IW). Al profiles were measured with Nuclear Reaction Analysis (NRA) using the reaction 27Al(p,γ)28Si. Rutherford Backscattering spectrometry (RBS) was used to measure Si diffusion profiles, with RBS also used in measurements of Al to complement NRA profiles. We determine the following Arrhenius relations from these measurements: For Al diffusion parallel to c, for experiments buffered at NNO, over the temperature range 1100–1400 °C: D Al = 1.21 × 10 − 2 exp ⁡ ( − 531 ± 27 kJ/ mol − 1 / RT ) m 2 s − 1 . For Si diffusion parallel to c, for both unbuffered and NNO-buffered experiments, over the temperature range 1100–1450 °C: D Si = 8.53 × 10 − 13 exp ⁡ ( − 254 ± 31 kJ/ mol − 1 / RT ) m 2 s − 1 . Diffusion normal to (100) is similar to diffusion normal to (001) for both Al and Si, indicating little diffusional anisotropy for these elements. Diffusivities measured for synthetic and natural rutile are in good agreement, indicating that these diffusion parameters can be applied in evaluating diffusivities in rutile in natural systems Diffusivities of Al and Si for experiments buffered at IW are faster (by a half to three-quarters of a log unit) than those buffered at NNO. Si and Al are among the slowest-diffusing species in rutile measured thus far. Diffusivities of Al and Si are significantly slower than the diffusion of Pb and slower than the diffusion of tetravalent Zr and Hf and pentavalent Nb and Ta. These data indicate that Al compositional information will be strongly retained in rutile, providing evidence for the robustness of the recently developed Al in rutile thermobarometer. For example, at 900 °C, Al compositional information would be preserved over ~3 Gyr in the center of 250 μm radius rutile grains, but Zr compositional information would be preserved for only about 300 000 yr at this temperature. Al-in-rutile compositions will also be much better preserved during subsolidus thermal events subsequent to crystallization than those for Ti-in-quartz and Zr-in-titanite crystallization thermometers.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Savino, R., und R. Monti. „Improving diffusion-controlled microgravity experiments by facility orientation“. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering 212, Nr. 6 (01.06.1998): 415–26. http://dx.doi.org/10.1243/0954410981532388.

Der volle Inhalt der Quelle
Annotation:
Residual-g (gravity) and g-jitter will be unavoidable sources of undesirable convection during diffusion-dominated fluid science or materials science experiments on the International Space Station. In this paper the facility orientation is proposed as an alternative to passive or active isolation devices, which would be not efficient against any residual-g, to minimize g-disturbances during microgravity experiments. A numerical study for a typical fluid physics experiment shows that both residual-g and g-jitter may be detrimental but also beneficial to achieve purely diffusive conditions, according to the orientation of the residual-g vector and of the vibration direction, relative to the direction of the density gradient. The results of the computations indicate that for the different configurations investigated, corresponding to different relative orientations between residual-g and g-jitter, the experimental facility can be properly oriented to minimize the convection disturbances.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

Cherniak, D. J., und E. B. Watson. „Ti diffusion in feldspar“. American Mineralogist 105, Nr. 7 (01.07.2020): 1040–51. http://dx.doi.org/10.2138/am-2020-7272.

Der volle Inhalt der Quelle
Annotation:
Abstract Chemical diffusion of Ti has been measured in natural K-feldspar and plagioclase. The sources of diffusant used were TiO2 powders or pre-annealed mixtures of TiO2 and Al2O3. Experiments were run in crimped Pt capsules in air or in sealed silica glass capsules with solid buffers (to buffer at NNO). Rutherford backscattering spectrometry (RBS) was used to measure Ti diffusion profiles. From these measurements, the following Arrhenius relations are obtained for diffusion normal to (001):For oligoclase, over the temperature range 750–1050 °C:DOlig=6.67×10-12exp(-207±31kJ/mol/RT)m2s-1For labradorite, over the temperature range 900–1150 °C:DLab=of4.37×10-14exp(-181±57kJ/mol/RT)m2s-1For K-feldspar, over the temperature range 800–1000 °C:DKsp=3.01×10-6exp(-342±47kJ/mol/RT)m2s-1. Diffusivities for experiments buffered at NNO are similar to those run in air, and the presence of hydrous species appears to have little effect on Ti diffusion. Ti diffusion also shows little evidence of anisotropy. In plagioclase, there appears to be a dependence of Ti diffusion on An content of the feldspar, with Ti diffusing more slowly in more calcic plagioclase. This trend is similar to that observed for other cations in plagioclase, including Sr, Pb, Ba, REE, Si, and Mg. In the case of Ti, an increase of 30% in An content would result in an approximate decrease in diffusivity of an order of magnitude. These data indicate that feldspar should be moderately retentive of Ti chemical signatures, depending on feldspar composition. Ti will be more resistant to diffusional alteration than Sr. For example, Ti zoning on a 50 μm scale in oligoclase would be preserved at 600 °C for durations of ~1 million years, with Sr zoning preserved only for ~70 000 yr at this temperature. These new data for a trace impurity that is relatively slow-diffusing and ubiquitous in feldspars (Hoff and Watson 2018) have the potential to extend the scope and applicability of t-T models for crustal rocks based on measurements of trace elements in feldspars.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

Doremus, R. H. „Diffusion of water in crystalline and glassy oxides: Diffusion–reaction model“. Journal of Materials Research 14, Nr. 9 (September 1999): 3754–58. http://dx.doi.org/10.1557/jmr.1999.0508.

Der volle Inhalt der Quelle
Annotation:
Diffusion of water in oxides is modeled as resulting from the solution and diffusion of molecular water in the oxide. This dissolved water can react and exchange with the oxide network to form immobile OH groups and different hydrogen and oxygen isotopes in the oxide. The model agrees with many experiments on water diffusion in oxides. The activation energy for diffusion of water in oxides correlates with the structural openness of the oxide, suggesting that molecular water is the diffusing species.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

Johari, H., K. J. Desabrais und J. C. Hermanson. „Experiments on Impulsively Started Jet Diffusion Flames“. AIAA Journal 35, Nr. 6 (Juni 1997): 1012–17. http://dx.doi.org/10.2514/2.188.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

KOSUGI, Atushi, Hideharu MAKITA und Kenji SAITO. „Wind Tunnel Experiments of Atmospheric Turbulent Diffusion“. Proceedings of the JSME annual meeting 2000.4 (2000): 221–22. http://dx.doi.org/10.1299/jsmemecjo.2000.4.0_221.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

Jansson, Mats, und Trygve E. Eriksen. „In situ anion diffusion experiments using radiotracers“. Journal of Contaminant Hydrology 68, Nr. 3-4 (Februar 2004): 183–92. http://dx.doi.org/10.1016/s0169-7722(03)00149-9.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

Johari, H., K. J. Desabrais und J. C. Hermanson. „Experiments on impulsively started jet diffusion flames“. AIAA Journal 35 (Januar 1997): 1012–17. http://dx.doi.org/10.2514/3.13620.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

Chapman, B. E., und P. W. Kuchel. „Sensitivity in Heteronuclear Multiple-Quantum Diffusion Experiments“. Journal of Magnetic Resonance, Series A 102, Nr. 1 (März 1993): 105–9. http://dx.doi.org/10.1006/jmra.1993.1075.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

Price, Peter E., Sharon Wang und Ilyess Hadj Romdhane. „Extracting effective diffusion parameters from drying experiments“. AIChE Journal 43, Nr. 8 (August 1997): 1925–34. http://dx.doi.org/10.1002/aic.690430802.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

Momot, Konstantin I., und Philip W. Kuchel. „PFG NMR diffusion experiments for complex systems“. Concepts in Magnetic Resonance Part A 28A, Nr. 4 (2006): 249–69. http://dx.doi.org/10.1002/cmr.a.20056.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

Lambert, Nevin A. „Uncoupling diffusion and binding in FRAP experiments“. Nature Methods 6, Nr. 3 (März 2009): 183. http://dx.doi.org/10.1038/nmeth0309-183a.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

Cowern, N. E. B., G. F. A. van de Walle, D. J. Gravesteijn und C. J. Vriezema. „Experiments on atomic-scale mechanisms of diffusion“. Physical Review Letters 67, Nr. 2 (08.07.1991): 212–15. http://dx.doi.org/10.1103/physrevlett.67.212.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

Kosugi, Atsushi, Tomoki Furudate und Satoshi Fukui. „Wind Tunnel Experiments of Atmospheric Turbulent Diffusion.“ Proceedings of Conference of Hokkaido Branch 2016.54 (2016): 71–72. http://dx.doi.org/10.1299/jsmehokkaido.2016.54.71.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

Grzywna, Zbigniew J., und Aleksander M. Simon. „Transient diffusion experiments in catalytically active membranes“. Chemical Engineering Science 46, Nr. 1 (1991): 335–42. http://dx.doi.org/10.1016/0009-2509(91)80142-l.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

Ragan, R. J., und D. M. Schwarz. „Castaing instabilities in longitudinal spin-diffusion experiments“. Journal of Low Temperature Physics 109, Nr. 5-6 (Dezember 1997): 775–99. http://dx.doi.org/10.1007/bf02435489.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

Martelli, Fausto, Sacha Abadie, Jean-Pierre Simonin, Rodolphe Vuilleumier und Riccardo Spezia. „Lanthanoids(III) and actinoids(III) in water: Diffusion coefficients and hydration enthalpies from polarizable molecular dynamics simulations“. Pure and Applied Chemistry 85, Nr. 1 (01.07.2012): 237–46. http://dx.doi.org/10.1351/pac-con-12-02-08.

Der volle Inhalt der Quelle
Annotation:
By using polarizable molecular dynamics (MD) simulations of lanthanoid(III) and actinoid(III) ions in water, we obtained ionic diffusion coefficients and hydration enthalpies for both series. These values are in good agreement with experiments. Simulations thus allow us to relate them to microscopic structure. In particular, across the series the diffusion coefficients decrease, reflecting the increase of ion–water interaction. Hydration enthalpies also show that interactions increase from light to heavy ions in agreement with experiment. The apparent contradictory result of the decrease of the diffusion coefficient with decreasing ionic radius is tentatively explained in terms of dielectric friction predominance on Stokes’ diffusive regime.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

Harte, B., T. Taniguchi und S. Chakraborty. „Diffusion in diamond. II. High-pressure-temperature experiments“. Mineralogical Magazine 73, Nr. 2 (April 2009): 201–4. http://dx.doi.org/10.1180/minmag.2009.073.2.201.

Der volle Inhalt der Quelle
Annotation:
AbstractHigh-pressure-temperature (P-T) experiments were conducted in an attempt to determine the diffusion rates of C atoms in diamond, and the possibility of changes in the isotope compositions of diamond at high P-T in the Earth’s mantle. The starting material consisted of a polished plate of natural diamond (very largely 12C), which had been coated with 13C diamond by chemical-vapourdeposition to form a sharp interface between 12C and 13C diamond. Three experiments were performed at 1800, 2000 and 2300ºC, all at 7.7 GPa, for0.5 –20 h. Isotopic profiles obtained by ion microprobe before and after each experiment showed no evidence of relaxation of the sharp interface between 12C and 13C, and so diffusion must have been on a scale less than the ~32 nm depth resolution for this technique. Using 32 nm as the maximum length scale of diffusion across the interface, the maximum ln D (diffusion coefficient) values for the experiments were calculated to be in the range –38 to –42. Unlike previous experimental data, these results show that changes in the isotopic compositions of diamond on long time scales in the Earth’s upper mantle are unlikely. Furthermore, the results support empirical evidence from mapping of C isotope distributions in natural diamonds that C isotope compositions reflect diamond growth compositions.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
30

Benga, Gheorghe, Octavian Popescu und Victor I. Pop. „Water exchange through erythrocyte membranes: p-choloromercuribenzene sulfonate inhibition of water diffusion in ghosts studied by a nuclear magnetic resonance technique“. Bioscience Reports 5, Nr. 3 (01.03.1985): 223–28. http://dx.doi.org/10.1007/bf01119591.

Der volle Inhalt der Quelle
Annotation:
A comparison of water diffusion in human erythrocytes and ghosts revealed a longer relaxation time in ghosts, A comparison of water diffusion in human erythrocytes and ghosts revealed a longer relaxation time in ghosts, corresponding to a decreased exchange rate. However, the diffusional permeability of ghosts was not significantly different from that of erythrocytes. The changes in water diffusion following exposure to p-chloromercuribenzene sulfonate (PCMBS) have been studied on ghosts suspended in isotonic solutions. It was found that a significant inhibitory effect of PCMBS on water diffusion occurred only after several minutes of incubation at 37°C. No inhibition was noticed after short incubation at 0°C as previously used in some labelling experiments. This indicates the location in the membrane interior of the SH groups involved in water diffusion across human erythrocyte membranes. The nuclear magnetic resonance (n. m. r.) method appears as a useful tool for studying changes in water diffusiofl in erythrocyte ghosts with the aim of locating the water channel.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
31

Rout, Smruti Sourav, Burkhard C. Schmidt und Gerhard Wörner. „Constraints on non-isothermal diffusion modeling: An experimental analysis and error assessment using halogen diffusion in melts“. American Mineralogist 105, Nr. 2 (01.02.2020): 227–38. http://dx.doi.org/10.2138/am-2020-7193.

Der volle Inhalt der Quelle
Annotation:
Abstract Diffusion chronometry on zoned crystals allows constraining duration of magmatic evolution and storage of crystals once temperatures are precisely known. However, non-isothermal diffusion is common in natural samples, and thus timescales may not be determined with confidence while assuming isothermal conditions. The “non-isothermal diffusion incremental step (NIDIS) model” (Petrone et al. 2016) is proposed for such cases for a non-isothermal diffusive analysis. We conducted diffusion experiments with stepwise temperature changes to analyze and test the model, evaluated the associated errors and improved the accuracy by suggesting an alternative algorithm to model diffusion times. We used Cl and F (≤0.4 wt%) as the diffusing elements in nominally anhydrous (H2O ≤ 0.3 wt%) phonolitic melt with composition of Montana Blanca (Tenerife, Spain) in an experimental setup that successively generates multiple diffusive interfaces for different temperatures by adding glass blocks of different Cl and F concentrations. This compound set of two diffusion interfaces represents distinct compositional zones that diffusively interact at different temperatures, which can be taken as an equivalent to non-isothermal diffusion in zoned magmatic crystals. The starting temperature ranged from 975 to 1150 °C, and each set of experiments included a temperature change of 85–150 °C and a total duration of 8–12 h. The experiments were carried out in an internally heated pressure vessel equipped with a rapid quench device at 1 kbar pressure. Cl and F concentration profiles were obtained from the quenched samples by electron microprobe analysis. Although the estimated diffusion times from the NIDIS-model matched well with true experimental values, the errors on estimated timescales, due to errors in curve-fitting and uncertainty in temperature, were ±10–62% (1σ). The errors are much larger at 61–288% (1σ) when the uncertainty in diffusivity parameters is included. We discuss the efficiency and limitations of the model, assess the contribution from different sources of error, and their extent of propagation. A simpler alternative algorithm is proposed that reduces errors on the estimates of diffusion time to 10–32% (1σ) and 60–75% (1σ), with and without including uncertainty in diffusivity parameters, respectively. Using this new algorithm, we recalculated the individual diffusion times for the clinopyroxene crystals analyzed by Petrone et al. (2016) and obtained a significantly reduced error of 26–40% compared to the original error of 61–100%. We also analyzed a sanidine megacryst from Taapaca volcano (N. Chile) as a test case for non-isothermal modeling and obtained diffusion times of 1.5–9.4 ky, which is significantly different from isothermal analyses including a previous study on similar sample. In this analysis, the error estimated by our new method is reduced by 63–70%.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
32

GEORGE, E., J. GLIMM, X. L. LI, A. MARCHESE, Z. L. XU, J. W. GROVE und DAVID H. SHARP. „Numerical methods for the determination of mixing“. Laser and Particle Beams 21, Nr. 3 (Juli 2003): 437–42. http://dx.doi.org/10.1017/s0263034603213239.

Der volle Inhalt der Quelle
Annotation:
We present a Rayleigh–Taylor mixing rate simulation with an acceleration rate falling within the range of experiments. The simulation uses front tracking to prevent interfacial mass diffusion. We present evidence to support the assertion that the lower acceleration rate found in untracked simulations is caused, at least to a large extent, by a reduced buoyancy force due to numerical interfacial mass diffusion. Quantitative evidence includes results from a time-dependent Atwood number analysis of the diffusive simulation, which yields a renormalized mixing rate coefficient for the diffusive simulation in agreement with experiment. We also present the study of Richtmyer–Meshkov mixing in cylindrical geometry using the front tracking method and compare it with the experimental results.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
33

Konakov, Valentin, Enno Mammen und Jeannette Woerner. „Statistical convergence of Markov experiments to diffusion limits“. Bernoulli 20, Nr. 2 (Mai 2014): 623–44. http://dx.doi.org/10.3150/12-bej500.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
34

Moutal, Nicolas, Kerstin Demberg, Denis S. Grebenkov und Tristan Anselm Kuder. „Localization regime in diffusion NMR: Theory and experiments“. Journal of Magnetic Resonance 305 (August 2019): 162–74. http://dx.doi.org/10.1016/j.jmr.2019.06.016.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
35

García-Gutiérrez, M., J. L. Cormenzana, T. Missana, M. Mingarro und P. L. Martín. „Large-scale laboratory diffusion experiments in clay rocks“. Physics and Chemistry of the Earth, Parts A/B/C 31, Nr. 10-14 (Januar 2006): 523–30. http://dx.doi.org/10.1016/j.pce.2006.04.004.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
36

Stait-Gardner, Tim, P. G. Anil Kumar und William S. Price. „Steady state effects in PGSE NMR diffusion experiments“. Chemical Physics Letters 462, Nr. 4-6 (September 2008): 331–36. http://dx.doi.org/10.1016/j.cplett.2008.07.084.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
37

Mathiak, G., E. Plescher und R. Willnecker. „Liquid metal diffusion experiments in microgravity—vibrational effects“. Measurement Science and Technology 16, Nr. 2 (20.01.2005): 336–44. http://dx.doi.org/10.1088/0957-0233/16/2/003.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
38

Jansson, Mats, Trygve E. Eriksen und Susanna Wold. „LOT—in situ diffusion experiments using radioactive tracers“. Applied Clay Science 23, Nr. 1-4 (August 2003): 77–85. http://dx.doi.org/10.1016/s0169-1317(03)00089-9.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
39

Mahler, C. F., und R. Q. Velloso. „Diffusion and sorption experiments using a DKS permeameter“. Engineering Geology 60, Nr. 1-4 (Juni 2001): 173–79. http://dx.doi.org/10.1016/s0013-7952(00)00099-5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
40

Marín, E., J. Marín und R. Hechavarría. „Hyperbolic heat diffusion in photothermal experiments with solids“. Journal de Physique IV (Proceedings) 125 (Juni 2005): 365–68. http://dx.doi.org/10.1051/jp4:2005125085.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
41

Lucas, Laura H., und Cynthia K. Larive. „Measuring ligand-protein binding using NMR diffusion experiments“. Concepts in Magnetic Resonance 20A, Nr. 1 (Januar 2004): 24–41. http://dx.doi.org/10.1002/cmr.a.10094.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
42

Kosugi, Atsushi, und Masaaki Nishiyama. „232 Wind Tunnel Experiments of Atmospheric Turbulent Diffusion“. Proceedings of Conference of Hokkaido Branch 2017.55 (2017): 43–44. http://dx.doi.org/10.1299/jsmehokkaido.2017.55.43.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
43

Avramidis, St, und J. F. Siau. „Experiments in nonisothermal diffusion of moisture in wood“. Wood Science and Technology 21, Nr. 4 (1987): 329–34. http://dx.doi.org/10.1007/bf00380200.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
44

Dewonck, S., M. Descostes, V. Blin, E. Tevissen, J. Radwan, C. Poinssot, A. Cartalade, P. Brisset und D. Coelho. „In situ diffusion experiments in Callovo-Oxfordian mudstone“. Geochimica et Cosmochimica Acta 70, Nr. 18 (August 2006): A140. http://dx.doi.org/10.1016/j.gca.2006.06.296.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
45

Garcı́a-Gutiérrez, M., M. Mingarro, T. Missana, P. L. Martı́n, L. A. Sedano und J. L. Cormenzana. „Diffusion experiments with compacted powder/pellets clay mixtures“. Applied Clay Science 26, Nr. 1-4 (August 2004): 57–64. http://dx.doi.org/10.1016/j.clay.2003.09.014.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
46

Szubiakowski, Jacek, Wiesław Nowak, Aleksander Balter und Andrzej A. Kowalczyk. „Computer-assisted analysis of rotational diffusion fluorescence experiments“. Computers & Chemistry 19, Nr. 3 (September 1995): 325–30. http://dx.doi.org/10.1016/0097-8485(95)00004-c.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
47

Muñoz Aguirre, N., G. González de la Cruz, Yu G. Gurevich, G. N. Logvinov und M. N. Kasyanchuk. „Heat Diffusion in Two-Layer Structures: Photoacoustic Experiments“. physica status solidi (b) 220, Nr. 1 (Juli 2000): 781–87. http://dx.doi.org/10.1002/1521-3951(200007)220:1<781::aid-pssb781>3.0.co;2-d.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
48

Dou, Remy, DaNel Hogan, Mark Kossover, Timothy Spuck und Sarah Young. „Defusing Diffusion“. American Biology Teacher 75, Nr. 6 (01.08.2013): 391–95. http://dx.doi.org/10.1525/abt.2013.75.6.6.

Der volle Inhalt der Quelle
Annotation:
Diffusion has often been taught in science courses as one of the primary ways by which molecules travel, particularly within organisms. For years, classroom teachers have used the same common demonstrations to illustrate this concept (e.g., placing drops of food coloring in a beaker of water). Most of the time, the main contributor to the motion in these demonstrations is not actually diffusion, but rather convection. Yet teachers, textbooks, and workbooks continue to cite these as examples of diffusion, despite having been adequately refuted. In order to reaffirm the refutations and promote greater awareness of the continued existence of these misconceptions among teachers, the authors designed an experiment to test the premise that typical classroom diffusion experiments are, in fact, examples of convection. Taking advantage of the free-fall environment through NASA’s Teaching from Space Microgravity Experience, we were able to show that the great majority of dispersion patterns depicted in these demonstrations are due to convection. Subsequently, we propose classroom activities that serve as more accurate demonstrations of diffusion.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
49

Jerschow, Alexej, und Norbert Müller. „Suppression of Convection Artifacts in Stimulated-Echo Diffusion Experiments. Double-Stimulated-Echo Experiments“. Journal of Magnetic Resonance 125, Nr. 2 (April 1997): 372–75. http://dx.doi.org/10.1006/jmre.1997.1123.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
50

Keller, Katharina, Mian Qi, Christoph Gmeiner, Irina Ritsch, Adelheid Godt, Gunnar Jeschke, Anton Savitsky und Maxim Yulikov. „Intermolecular background decay in RIDME experiments“. Physical Chemistry Chemical Physics 21, Nr. 16 (2019): 8228–45. http://dx.doi.org/10.1039/c8cp07815g.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie