Dissertationen zum Thema „Diffusion du lithium“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit Top-50 Dissertationen für die Forschung zum Thema "Diffusion du lithium" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Sehen Sie die Dissertationen für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.
Senyshyn, A., M. Monchak, O. Dolotko und H. Ehrenberg. „Lithium Diffusion and Diffraction“. Diffusion fundamentals 21 (2014) 4, S.1, 2014. https://ul.qucosa.de/id/qucosa%3A32392.
Der volle Inhalt der QuelleLi, Juchuan. „UNDERSTANDING DEGRADATION AND LITHIUM DIFFUSION IN LITHIUM ION BATTERY ELECTRODES“. UKnowledge, 2012. http://uknowledge.uky.edu/cme_etds/12.
Der volle Inhalt der QuelleHeitjans, Paul. „Diffusion in lithium ion conductors – from fundamentals to applications“. Universitätsbibliothek Leipzig, 2015. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-181798.
Der volle Inhalt der QuelleSwanson, Claudia H., Michael Schulz, Holger Fritze, Jianmin Shi, Klaus-Dieter Becker, Peter Fielitz und Günter Borchardt. „Examinations of high-temperature properties of stoichiometric lithium niobate“. Universitätsbibliothek Leipzig, 2015. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-186802.
Der volle Inhalt der QuelleEpp, Viktor, Christian Brünig, Martin Wilkening, Michael Binnewies und Paul Heitjans. „Lithium diffusion studies of gas-phase synthesized amorphous oxides“. Universitätsbibliothek Leipzig, 2015. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-188235.
Der volle Inhalt der QuelleHeitjans, Paul. „Diffusion in lithium ion conductors – from fundamentals to applications“. Diffusion fundamentals 20 (2013) 19, S. 1-2, 2013. https://ul.qucosa.de/id/qucosa%3A13583.
Der volle Inhalt der QuelleRahn, J., E. Hüger, E. Witt, P. Heitjans und H. Schmidt. „Lithium Self-Diffusion in Single Crystalline and Amorphous LiAlO2“. Diffusion fundamentals 21 (2014) 16, S.1, 2014. https://ul.qucosa.de/id/qucosa%3A32425.
Der volle Inhalt der QuelleBerggren, Elin. „Diffusion of Lithium in Boron-doped Diamond Thin Films“. Thesis, Uppsala universitet, Molekyl- och kondenserade materiens fysik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-413090.
Der volle Inhalt der QuelleOhlendorf, Gerd, Denny Richter, Jan Sauerwald und Holger Fritze. „High-temperature electrical conductivity and electromechanical properties of stoichiometric lithium niobate“. Universitätsbibliothek Leipzig, 2016. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-192902.
Der volle Inhalt der QuelleMoore, Charles J. (Charles Jacob). „Ab initio screening of lithium diffusion rates in transition metal oxide cathodes for lithium ion batteries“. Thesis, Massachusetts Institute of Technology, 2012. http://hdl.handle.net/1721.1/79562.
Der volle Inhalt der QuelleCataloged from PDF version of thesis.
Includes bibliographical references (p. 57-62).
A screening metric for diffusion limitations in lithium ion battery cathodes is derived using transition state theory and common materials properties. The metric relies on net activation barrier for lithium diffusion. Several cathode materials are screened using this approach: [beta]'-LiFePO4, hexagonal LiMnBO3, monoclinic LiMnBO3, Li 3Mn(CO3)(PO4), and Li9V3 (P2O7)3(PO4) 2. The activation barriers for the materials are determined using a combined approach. First, an empirical potential model is used to identify the lithium diffusion topology. Second, density functional theory is used to determine migration barriers. The accuracy of the empirical potential diffusion topologies, the density functional theory migration barriers, and the overall screening metric are compared against experimental evidence to validate the methodology. The accuracy of the empirical potential model is also evaluated against the density functional theory migration barriers.
by Charles J. Moore.
S.M.
Swanson, Claudia H., Michael Schulz, Holger Fritze, Jianmin Shi, Klaus-Dieter Becker, Peter Fielitz und Günter Borchardt. „Examinations of high-temperature properties of stoichiometric lithium niobate“. Diffusion fundamentals 12 (2010) 48, 2010. https://ul.qucosa.de/id/qucosa%3A13886.
Der volle Inhalt der QuellePharr, Matt Mathews. „Diffusion, Deformation, and Damage in Lithium-Ion Batteries and Microelectronics“. Thesis, Harvard University, 2014. http://dissertations.umi.com/gsas.harvard:11593.
Der volle Inhalt der QuelleEngineering and Applied Sciences
Krsulich, Kevin D. „Pulsed field gradient magnetic resonance measurements of lithium-ion diffusion“. Thesis, Massachusetts Institute of Technology, 2014. http://hdl.handle.net/1721.1/95617.
Der volle Inhalt der QuelleCataloged from PDF version of thesis.
Includes bibliographical references (pages 102-119).
The transport of lithium ions between the electrolyte-electrode interface and the electrode bulk is an essential and presently rate limiting process in the high-current operation of lithium-ion batteries. Despite their importance, few methods exist to experimentally investigate these macroscopic diffusion processes and, as a result, much remains unknown regarding their underlying mechanisms and the resulting macroscopic transport. Gradient nuclear magnetic resonance measurements are a mature and effective means of investigating macroscopic transport phenomena and posses several advantages over competing measures of transport in ionic solids. However, short coherence times, slow diffusion rates and a small gyromagnetic ratio have, to date, limited their usefulness for measurements of room-temperature transport in solid lithium-ion conductors. Recent developments in quantum control have demonstrated methods for extending the coherence times of dipolar-coupled nuclear spins by several orders of magnitude, into a regime enabling gradient measurements of slow lithium-ion diffusion. This thesis proposes and demonstrates, through the utilization of a dipolar refocusing sequence and a strong pulsed magnetic field gradient, a nuclear magnetic resonance method for the direct measurement of the lithium ion self-diffusion coefficient within room-temperature lithium-ion conductors. Magnetic resonance field gradient measurements derive ensemble transport statistics through observation of the residual phase mismatch following two position dependent phase rotations, implemented as DC pulses of a spatially varying gradient field, separated in time by a transport period. Generating sufficiently fine spatial encodings to be sensitive to slow diffusion has proven challenging in solids where strong relaxation due to the homonuclear dipole-dipole interaction drastically shortens coherence times and thus limits the duration of applied gradient pulses. This study utilizes a magic echo based refocusing sequence to nullify the dominant decoherence mechanism allowing effective gradient pulses on the order of one millisecond. Combined with a custom-built pulsed field gradient, spatial encodings on the order of 1 [mu]m are obtained. For a demonstrative sample, the lithium-ion conductor lithium sulfide is chosen both for its favorable NMR properties and for its role in the recent renewal of interest in nanostructured integration cathode materials. Initial sample characterization reveals two ⁷Li NMR lines distinguished by their static line widths and refocusing behavior. A modified version of the 1D EXSY selective inversion experiment is performed to characterize an exchange process between these two lines and extract their intrinsic spin-lattice relaxation rates. Two stimulated echo diffusion measurements are performed to identify the apparent diffusion coefficients of each line in the presence of exchange. The observed diffusion coefficient of the narrow line is determined to be 2.39 +/- 0.34 . 10-⁸ cm²/s. Diffusive attenuation is not observed for the broad line. These results are analyzed through a two bath exchange model parameterized by the results of the earlier exchange experiments. The influence of exchange on the observed diffusion coefficients is determined to be negligible as diffusion times are limited by the inverse of the exchange rates.
by Kevin D. Krsulich.
Ph. D.
Petit, Dominique, Jean-Pierre Korb, Pierre Levitz, Jean LeBideau und D. Brevet. „Molecular dynamics of ionic liquids confined in solid silica matrix for lithium batteries“. Universitätsbibliothek Leipzig, 2015. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-191885.
Der volle Inhalt der QuelleChen, Chao-Hsu. „Atomistic Computer Simulations of Diffusion Mechanisms in Lithium Lanthanum Titanate Solid State Electrolytes for Lithium Ion Batteries“. Thesis, University of North Texas, 2014. https://digital.library.unt.edu/ark:/67531/metadc700110/.
Der volle Inhalt der QuelleOhlendorf, Gerd, Denny Richter, Jan Sauerwald und Holger Fritze. „High-temperature electrical conductivity and electromechanical properties of stoichiometric lithium niobate“. Diffusion fundamentals 8 (2008) 6, S. 1-7, 2008. https://ul.qucosa.de/id/qucosa%3A14152.
Der volle Inhalt der QuelleFujimura, Koji. „Theoretical Studies of Lithium-Ion Diffusion in LISICON-Type Solid Electrolytes“. Master's thesis, 京都大学 (Kyoto University), 2013. http://hdl.handle.net/2433/180501.
Der volle Inhalt der QuelleWiedemann, Dennis, Suliman Nakhal, Stefan Zander und Martin Lerch. „Slowly but Surely—Pathways of Ultraslow Lithium Diffusion in γ-LiAlO2“. Diffusion fundamentals 21 (2014) 15, S.1, 2014. https://ul.qucosa.de/id/qucosa%3A32423.
Der volle Inhalt der QuelleToyoura, Kazuaki. „Lithium diffusion in graphite intercalation compounds based on transition state theory“. 京都大学 (Kyoto University), 2008. http://hdl.handle.net/2433/136279.
Der volle Inhalt der QuelleRuprecht, Benjamin, und Paul Heitjans. „Ultraslow lithium diffusion in Li 3 NbO 4 probed by 7 Li stimulated echo NMR spectroscopy“. Universitätsbibliothek Leipzig, 2015. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-188226.
Der volle Inhalt der QuelleEpp, Viktor, Christian Brünig, Martin Wilkening, Michael Binnewies und Paul Heitjans. „Lithium diffusion studies of gas-phase synthesized amorphous oxides: an NMR investigation“. Diffusion fundamentals 12 (2010) 102, 2010. https://ul.qucosa.de/id/qucosa%3A13913.
Der volle Inhalt der QuelleDunford, David V. „Development of diffusion bonding techniques and testing of bonded joints in Al - Li 8090 alloy“. Thesis, Imperial College London, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.318755.
Der volle Inhalt der QuelleRuprecht, Benjamin, Jessica Heine, Martin Wikening, Sylvio Indris, Joseph Wontcheu, Wolfgang Bensch, Thomas Bredow und Paul Heitjans. „Influence of anion substitution on the lithium diffusivity in hexagonal Li x TiS 2-y Se y“. Universitätsbibliothek Leipzig, 2015. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-188254.
Der volle Inhalt der QuelleWilkening, Martin. „Ultralangsame Ionenbewegungen in Festkörpern NMR-spektroskopische Studien an Lithium-Ionenleitern“. Berlin Logos-Verl, 2005. http://deposit.ddb.de/cgi-bin/dokserv?id=2686936&prov=M&dok_var=1&dok_ext=htm.
Der volle Inhalt der QuelleCiampolillo, Maria Vittoria. „Diffusion of Iron in Lithium Niobate for applications in integrated optical devices“. Doctoral thesis, Università degli studi di Padova, 2010. http://hdl.handle.net/11577/3427049.
Der volle Inhalt der QuelleNel campo del trattamento di segnali ottici e dei dispositivi ottici integrati, i cristalli fotorifrattivi sono impiegati per via della loro capacità di mantenere memoria di un pattern di luce. Tra questi, il niobato di litio è particolarmente interessante per via del fatto che la sua risposta fotorifrattiva può essere migliorata o inibita aggiungendo determinati droganti: è quindi possibile produrre, in un cristallo singolo di niobato di litio, un dispositivo integrato in cui ciascuna parte ha differenti proprietà e differenti funzioni a seconda del drogaggio. In particolare, si può realizzare una zona fotorifrattiva drogando con Fe, che come noto aumenta l'eetto fotorifrattivo. Nel contesto dei dispositivi ottici integrati, è necessario drogare localmente con Fe il niobato di litio per ottenere un substrato adatto alla registrazione fotorifrattiva. Questa tesi tratta la preparazione e la caratterizzazione del cristallo drogato localmente, studiando le condizioni di preparazione e come esse in uenzano la qualità del cristallo. Molte tecniche di caratterizzazione abituali in scienza dei materiali, come la spettrometria di ioni secondari, la spettrofotometria ed altre, sono state utilizzate ed affinate specificamente per questo materiale. Accanto all'obiettivo pratico di trovare le migliori condizioni di preparazione, molte proprietà e caratteristiche di base di questo materiale sono state approfondite, progredendo sia nella conoscenza del materiale, sia nell'uso degli strumenti di caratterizzazione.
Petit, Dominique, Jean-Pierre Korb, Pierre Levitz, Jean LeBideau und D. Brevet. „Molecular dynamics of ionic liquids confined in solid silica matrix for lithium batteries“. Diffusion fundamentals 10 (2009) 7, S. 1-3, 2009. https://ul.qucosa.de/id/qucosa%3A13045.
Der volle Inhalt der QuelleHuynh, Tan-Vu. „Etude par résonance magnétique nucléaire de la mobilité du lithium dans les électrolytes à base de polymères“. Thesis, Orléans, 2015. http://www.theses.fr/2015ORLE2054/document.
Der volle Inhalt der QuelleIn battery materials, the mobility of lithium cations is the key to the limitations in battery power and charging rates. NMR spectroscopy can give access to self-diffusion coefficients of spin bearing species using pulsed field gradients which measure atomic displacement over 1 − 2μm length scales. The relaxation of nuclear spins at high magnetic fields, on the other hand, is governed by fluctuations of NMR interactions resonant with the Larmor frequency, at the nanosecond timescale, and these are usually related to atomic motions over 1 Å - 1 nm. In this thesis, we recorded self-diffusion coefficients and ⁷Li relaxation rates for two polymer electrolytes: LiTFSI in polyethylene oxide (PEO) and in a block-copolymer PS-PEO(LiTFSI)-PS. We first investigated the effect of magic-angle spinning (MAS) on diffusion and relaxation, showing that MAS can help retrieve coefficient diffusion when relaxation is fast and diffusion is slow, and second, that lithium motion is not perturbed by the partial alignment of PEO under MAS induced pressure. The relaxation rates of 7Liwere measured at three high magnetic fields (4.7, 9.4 and 17.6 Tesla) allowing us to perform a simple relaxometry study of Li+motion at the nanosecond timescale. In order to reproduce the transverse and longitudinal relaxation behaviors, it proved necessary to introduce a simple model with two correlation times. It showed for the first time that the lithium dynamics in PS-PEO(LiTFSI)-PSis slowed down by the presence of PS domains compared to the pure PEO with similar chain lengths. The results are analyzed and compared to other studies based on molecular dynamics or physical models of diffusion in polymers. A second series of gel polymer electrolytes based on poly(vinylidene fluoride-co-hexafluoropropylene (PVdF-HFP), PEGM(Poly ethyleneglycol methyl ether methacrylate)/PEGDM (Poly ethyleneglycol dimethacrylate), and LiTFSI in ionic liquids were also studied. Adding oxygenated polymers to increase the retention of ionic liquids slowed the diffusion down and explained why the battery performance was degraded at higher charging rates
Lyons, Daniel J. „Application and Challenges of Neutron Depth Profiling to In-Situ Battery Measurements“. The Ohio State University, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=osu1610060345543143.
Der volle Inhalt der QuelleCanales, Sepúlveda Iván Eduardo. „Modeling of diffusion-induced stress in a lithium ion battery using isogeometric analysis“. Tesis, Universidad de Chile, 2018. http://repositorio.uchile.cl/handle/2250/164013.
Der volle Inhalt der QuelleEl desarrollo de baterías de litio de alta potencia es la piedra de tope para el surgimiento de vehículos eléctricos económicos y autónomos, así como para el almacenamiento de electricidad producida por fuentes renovables intermitentes. El principal desafío es la presencia de niveles de deformación y esfuerzo demasiado altos en las zonas activas de los electrodos, a causa del proceso cíclico de intercalación de litio durante la carga y la descarga, llegando incluso a producirse deformación plástica, nucleación de grietas, y fracturas, limitando la vida útil de las baterías. Modelar el fenómeno de la intercalación de litio es complejo, pues los gradientes químicos inducen campos de esfuerzos y, a su vez, los esfuerzos favorecen o dificultan la difusión química a través de la microestructura. Existen modelos que involucran la cinética molecular y la deformación de la microestructura del electrodo. Otros modelos continuos, más sencillos y más fáciles de implementar, han permitido resolver las ecuaciones diferenciales acopladas que dan cuenta del balance termodinámico del sólido involucrado. La mayoría de los modelos están restringidos a geometrías unidimensionales o muy simples. El objetivo de este trabajo es extender el uso de modelos continuos existentes a dos dimensiones, y resolver numéricamente, mediante el análisis isogeométrico, un sistema de ecuaciones diferenciales y acopladas. Con este procedimiento, se espera caracterizar la distribución de esfuerzos y concentratión en una partícula de electrodo de batería, y obtener los niveles de concentración de esfuerzos alrededor de los vacíos y las discontinuidades.
Zaltron, Annamaria. „Local doping of lithium niobate by iron diffusion: a study of photorefractive properties“. Doctoral thesis, Università degli studi di Padova, 2011. http://hdl.handle.net/11577/3425330.
Der volle Inhalt der QuelleNegli ultimi decenni la tecnologia di trasmissione di dati elettronici ha progressivamente raggiunto i suoi limiti di prestazione ed al giorno d'oggi è evidente che ulteriori sviluppi possono essere raggiunti solo con l'utilizzo di sistemi ottici integrati. Perciò la ricerca relativa all'ottica non lineare ha avuto una rapida espansione negli ultimi ventanni, sviluppando molte applicazioni fotoniche che risultano rilevanti sia per il mercato industriale che per quello privato. In particolare, tra i materiali elettro-ottici i fenomeni che si basano sull'effetto fotorifrattivo stanno senza dubbio avendo un ruolo importante nella realizzazione di dispositivi per la trasmissione e il trattamento di segnali optoelettronici e il niobato di litio (LiNbO3) è un materiale promettente, dati i suoi alti coefficienti elettro-ottici e ottici non lineari. Inoltre il niobato di litio offre un incredibile versatilità come substrato per ottiche integrate, permettendo di realizzare sullo stesso cristallo elementi ottici con differenti funzioni, sfruttando varie tecnologie di microstrutturazione. Questo tipo di dispositivi richiede la capacità di cambiare localmente le proprietà fisiche del materiale, drogandolo con un opportuno elemento su una regione limitata del substrato. In particolare, è noto che drogando il niobato di litio con ferro le proprietà fotorifrattive del material vengono notevolmente migliorate, così per realizzare un sistema ottico integrato che presenti uno stadio fotorifrattivo si deve realizzare un drogaggio locale con ferro. In questo lavoro il processo di diffusione termica è sfruttato per realizzare cristalli di niobato di litio drogati localmente con ferro e sono studiate le proprietà strutturali e fotorifrattive dello strato drogato. In particolare è stato sviluppato e costruito un apparato ottico in grado di investigare solo un'area limitata dello strato drogato, permettendo in tal modo ad ogni profondità all'interno della zona drogata di mettere in relazione la concentrazione di ferro esaminata con la corrispondente risposta fotorifrattiva del materiale. In questo modo è possibile realizzare profili in profondità delle principali grandezze fisiche coinvolte nell'effetto fotorifrattivo e meccanismi fisici mai studiati prima possono essere ora investigati.
Ruprecht, Benjamin, und Paul Heitjans. „Ultraslow lithium diffusion in Li 3 NbO 4 probed by 7 Li stimulated echo NMR spectroscopy“. Diffusion fundamentals 12 (2010) 100, 2010. https://ul.qucosa.de/id/qucosa%3A13912.
Der volle Inhalt der QuelleBrenet, Gilles. „Simulations multi-échelles de la cinétique dans les matériaux pour l'énergie : le silicium solaire et les composés d'intercalation pour les batteries lithium-ions“. Thesis, Université Grenoble Alpes (ComUE), 2016. http://www.theses.fr/2016GREAY028/document.
Der volle Inhalt der QuelleEnergy production and storage is a big challenge in our society. The properties of some materials are mainly due to the defects therein. To improve the materials we use, it is necessary to be able to model them. This work focuses on the study of various defects in both materials, silicon and lithium graphite. Through the multi-scale simulation, we model the defects and their kinetics in order to predict their formation but also aging.The first part focuses on the various methods we used. These methods are divided into three categories, each providing access to a simulation scale. By starting on electronic models with textit{ab initio} simulations, we were able to simulate defects behavior with atomistic simulations using stochastic algorithm. These results then led to macroscopic models, in order to compare our simulations with the experimental results.The second part develops our analysis of point defects in silicon: carbon, oxygen, vacancies and interstitials. These defects gather and form complexes in the irradiated silicon. By analyzing the behavior of these complexes at the atomic scale, we could build a model to simulate the kinetics of multiple defects, and the reaction chain, over several decades. Thus, it is possible to determine the conditions for greater control of the formation and aging of various complexes.The last part presents the analysis of lithium graphite. This component of lithium-ion batteries is made of graphite in which lithium atoms intercalate during charging. The kinetics of the charging predicts the grouping of lithium atoms in islands, which move during charging. The lithium atoms diffusion from the edges of the electrode towards the center of the graphite is also analyzed
Ruprecht, Benjamin, Jessica Heine, Martin Wikening, Sylvio Indris, Joseph Wontcheu, Wolfgang Bensch, Thomas Bredow und Paul Heitjans. „Influence of anion substitution on the lithium diffusivity in hexagonal Li x TiS 2-y Se y“. Diffusion fundamentals 12 (2010) 106, 2010. https://ul.qucosa.de/id/qucosa%3A13915.
Der volle Inhalt der QuelleIslam, Mazharul M., und Thomas Bredow. „Li Diffusion in Various Polymorphs of LiTiS2: Insights from Theory“. Diffusion fundamentals 21 (2014) 12, S.1, 2014. https://ul.qucosa.de/id/qucosa%3A32418.
Der volle Inhalt der QuelleHeine, Jessica [Verfasser]. „NMR- und impedanzspektroskopische Untersuchungen an Lithium-Ionenleitern mit eingeschränkter Dimensionalität der Diffusion / Jessica Heine“. Hannover : Gottfried Wilhelm Leibniz Universität Hannover, 2020. http://d-nb.info/1219652202/34.
Der volle Inhalt der QuelleWitt, E., J. Rahn, H. Schmidt, S. Nakhal, M. Lerch, C. V. Chandran und P. Heitjans. „Nuclear Magnetic Resonance and Impedance Spectroscopy Studies on Lithium Ion Diffusion in γ-LiAlO2“. Diffusion fundamentals 21 (2014) 27, S.1, 2014. https://ul.qucosa.de/id/qucosa%3A32437.
Der volle Inhalt der QuelleMoulin, Béatrice. „Spectrométrie de diffusion Raman pulsée pour les hautes températures : application à LiNbO3 et d'autres oxydes modèles“. Orléans, 2002. http://www.theses.fr/2002ORLE2050.
Der volle Inhalt der QuelleMelkior, Thierry. „Etude méthodologique de la diffusion de cations interagissant dans des argiles : application : mise en œuvre expérimentale et modélisation du couplage chimie-diffusion d'alcalins dans une bentonite synthétique“. Châtenay-Malabry, Ecole centrale de Paris, 1999. http://www.theses.fr/1999ECAP0652.
Der volle Inhalt der QuelleFei, Yao. „Carbon-Based Nanomaterials as an Anode for Lithium Ion Battery“. Palaiseau, Ecole polytechnique, 2013. http://pastel.archives-ouvertes.fr/docs/00/96/79/13/PDF/20130912_Fei_YAO_thesis_Ecole_submission.pdf.
Der volle Inhalt der QuelleIn this thesis work, carbon-based nanomaterials using as an anode for lithium ion battery have been generally investigated. Compared to typical micron-sized carbon materials, nanosized carbon materials exhibited great potentials not only in practical anode application but also in the fundamental science exploration of Li ion diffusion. In the case of practical application, one dimensional carbon nanofibers (CNFs) fabricated by electrospinning was prepared for anode material. The structure involves neither a metal substrate nor binders and therefore eventually benefited the capacity and long term stability. Yet, the energy density is still limited to 370 mAh/g of conventional carbon. In order to improve the capacity of raw carbon nanofibers, silicon, a high Li storage material, was incorporated by electrochemical deposition. The resulted Si/CNF mat improved clearly the capacity of carbon materials more than twice for most of cases. In the case of fundamental study, chemical vapor deposition (CVD)-synthesized two dimensional graphene was chosen to be a media to reveal the diffusion pathways of Li ion. Compared to typical graphite which contains both basal and edge planes, a well defined basal plane with large area can be realized in graphene to provide a comprehensive picture of lithium diffusion mechanism. We have discovered that electrochemical reaction of electrode (substrate/graphene) not only is related to the number of graphene layers but also relies on the defect sites on the basal plane of graphene. Combing the experimental results and density functional theory calculations, we proved that basal plane hindered lithium ion diffusion with a high diffusion barrier height, whereas divacancies and higher order defects can be shortcuts for lithium ion diffusion
Chaloux, Sophie. „Stabilité interfaciale d'électrolytes binaires et ternaires face au lithium et coefficient de diffusion de l'ion lithium dans des cathodes d'oxydes mixtes LiNi[indice](1-y)Co[indice]yO[indice]2“. Sherbrooke : Université de Sherbrooke, 2000.
Den vollen Inhalt der Quelle findenVolgmann, K., V. Epp, P. Bottke, C. V. Chandran, S. Nakhal, M. Lerch, M. Wilkening und P. Heitjans. „Multinuclear Solid-State NMR Study of Local Structure and Dynamics in Li0.7Nb3S4“. Diffusion fundamentals 21 (2014) 24, S.1, 2014. https://ul.qucosa.de/id/qucosa%3A32434.
Der volle Inhalt der QuelleWiemhöfer, Hans-Dieter. „Lithium Ion Transport in Polymer Electrolyte Films for Solid State Batteries – An Overview on Concepts, Techniques and Results“. Diffusion fundamentals 21 (2014) 7, S.1, 2014. https://ul.qucosa.de/id/qucosa%3A32399.
Der volle Inhalt der QuelleSonntag, Iris. „Die Verteilung von Lithium, Beryllium und Bor in Phänokristallen von kalkalkalischen Gesteinen am Beispiel der Insel Nisyros (Ägäis)“. [S.l. : s.n.], 2007. http://nbn-resolving.de/urn:nbn:de:bsz:16-opus-81203.
Der volle Inhalt der QuelleGrisard, Arnaud. „Lasers guides d'onde dans le niobate de lithium dopé erbium“. Phd thesis, Université de Nice Sophia-Antipolis, 1997. http://tel.archives-ouvertes.fr/tel-00089120.
Der volle Inhalt der QuelleDans cette perspective, un mécanisme prépondérant de réduction du gain aux fortes concentrations de dopant, caractéristique des cristaux dopés dans la masse, a été identifié et une méthode originale développée pour évaluer simplement ses effets de façon quantitative.
Ce mémoire souligne l'excellent accord entre les prévisions théoriques du modèle d'amplification optique mis en place puis adapté au cas de guides monomodes et les mesures réalisés sur les composants fabriqués dans le même temps par diffusion de bandes de titane dans des substrats dopés dans la masse et en surface.
Ceci a permis d'observer pour la première fois l'effet laser en continu dans des guides d'onde sur niobate de lithium dopé à l'erbium dans la masse et pompés par une diode à 1,48 µm. L'intégration de modulateurs électro-optiques a également conduit à l'observation d'impulsions déclenchées. Pour l'instant limitées par la puissance de pompe disponible, elles devraient pouvoir atteindre plusieurs centaines de watts de puissance crête avec des durées de quelques nanosecondes.
Rycroft, Stuart N. „Small angle neutron scattering study of diffusion of oxygen in silicon, the nickel superalloy SRR99 and aluminium lithium alloys“. Thesis, University of Reading, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.389641.
Der volle Inhalt der QuelleVolgmann, Kai Tristan [Verfasser]. „Untersuchung der Diffusion von Lithium- und Natrium-Ionen in Festkörpern unter Berücksichtigung der Dimensionalität des Kristallgitters / Kai Tristan Volgmann“. Hannover : Technische Informationsbibliothek (TIB), 2016. http://d-nb.info/1122119372/34.
Der volle Inhalt der QuelleWilkening, Martin. „From Ultrafast to Extremely Slow Li Ion Dynamics in (Nano-)crystalline Solids ― Dimensionality Effects and Structural Disorder“. Diffusion fundamentals 21 (2014) 8, S.1-2, 2014. https://ul.qucosa.de/id/qucosa%3A32400.
Der volle Inhalt der QuelleWagner, Reinhard, Daniel Rettenwander, Maria Maier, Walter Schmidt, Julia Langer, Martin Wilkening und Georg Amthauer. „Synthesis of Coarse-grained Garnet-type Li-ion Conductor Li7-3x(Al/Ga)xLa3Zr2O12 and its Li-ion Dynamics“. Diffusion fundamentals 21 (2014) 9, S.1-2, 2014. https://ul.qucosa.de/id/qucosa%3A32401.
Der volle Inhalt der QuelleStrŭzik, M., J. L. M. Rupp, S. Buecheler und M. Rawlence. „Physical and Electronic Characterization of Li7La3Zr2O12 Doped Thin Films“. Diffusion fundamentals 21 (2014) 10, S.1, 2014. https://ul.qucosa.de/id/qucosa%3A32403.
Der volle Inhalt der QuelleHüger, Erwin, Bujar Jerliu, Lars Dörrer, Michael Bruns, Harald Schmidt und Günter Borchardt. „A combined SIMS and XPS Study on the Mechanism of Amorphous Silicon Electrode Lithiation in Li-Ion Batteries“. Diffusion fundamentals 21 (2014) 17, S.1, 2014. https://ul.qucosa.de/id/qucosa%3A32426.
Der volle Inhalt der Quelle