Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Diffusion CT“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Diffusion CT" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Diffusion CT"
Da Silva, Marly Terezinha Quadri Simões, und Wellington Mazer. „Diffusion coefficient and tortuosity: Brownian Motion“. CONTRIBUCIONES A LAS CIENCIAS SOCIALES 16, Nr. 9 (28.09.2023): 18281–302. http://dx.doi.org/10.55905/revconv.16n.9-264.
Der volle Inhalt der QuelleGuo, Huimin, Zhiwen Zhang, Li Wang, Shuzhan Yao, Shuaishuai Xu, Shulin Ma und Songtao Liu. „Diagnostic Significance of 18F-FDG PET/CT Imaging Coupled with Magnetic Resonance Imaging of the Entire Body for Bone Metastases“. Contrast Media & Molecular Imaging 2022 (27.09.2022): 1–7. http://dx.doi.org/10.1155/2022/7717398.
Der volle Inhalt der QuelleSigismondi, Paolo. „Exploring Translation Gaps: The Untranslatability and Global Diffusion of “Cool”“. Communication Theory 28, Nr. 3 (16.04.2018): 292–310. http://dx.doi.org/10.1093/ct/qtx007.
Der volle Inhalt der QuelleChae, Baek, Chang shik Choi, Seung-Hwa Kang und Yun-Cheol Heo. „Diffusion of television, wax and wane of community and family bond“. Communication Theories 14, Nr. 4 (31.12.2018): 139–82. http://dx.doi.org/10.20879/ct.2018.14.4.139.
Der volle Inhalt der QuelleChae, Baek, Seung-Hwa Kang und Yun-Cheol Heo. „Diffusion of telephone and changes in interpersonal relationship: An oral history study“. Communication Theories 15, Nr. 3 (30.09.2019): 105–51. http://dx.doi.org/10.20879/ct.2019.15.3.105.
Der volle Inhalt der QuelleMorris, N. „A Comparative Analysis of the Diffusion and Participatory Models in Development Communication“. Communication Theory 13, >2 (01.05.2003): 225–48. http://dx.doi.org/10.1093/ct/13.2.225.
Der volle Inhalt der QuelleOkazumi, Shinichi, Gaku Ohira, Koichi Hayano, Tomoyoshi Aoyagi, Shunsuke Imanishi und Hisahiro Matsubara. „Novel Advances in Qualitative Diagnostic Imaging for Decision Making in Multidisciplinary Treatment for Advanced Esophageal Cancer“. Journal of Clinical Medicine 13, Nr. 2 (22.01.2024): 632. http://dx.doi.org/10.3390/jcm13020632.
Der volle Inhalt der QuelleKim, Su-Beom, Soo Jin Song, Yeong Hyoen Yoo und Dar Oh Lim. „International Comparative Analysis of Advanced Diagnostic Imaging Equipment Demand Characteristics Using the Bass Diffusion Model“. Journal of Health Informatics and Statistics 49, Nr. 1 (28.02.2024): 27–34. http://dx.doi.org/10.21032/jhis.2024.49.1.27.
Der volle Inhalt der QuelleDemeestere, Jelle, Carlos Garcia-Esperon, Pablo Garcia-Bermejo, Fouke Ombelet, Patrick McElduff, Andrew Bivard, Mark Parsons und Christopher Levi. „Evaluation of hyperacute infarct volume using ASPECTS and brain CT perfusion core volume“. Neurology 88, Nr. 24 (17.05.2017): 2248–53. http://dx.doi.org/10.1212/wnl.0000000000004028.
Der volle Inhalt der QuelleSato, Akira, und Koichi Ikeda. „Visualization of diffusion phenomena in porous media by means of X-ray computed tomography (CT) scanning“. Canadian Geotechnical Journal 52, Nr. 10 (Oktober 2015): 1448–56. http://dx.doi.org/10.1139/cgj-2014-0451.
Der volle Inhalt der QuelleDissertationen zum Thema "Diffusion CT"
Mosavi, Firas. „Whole-Body MRI including Diffusion-Weighted Imaging in Oncology“. Doctoral thesis, Uppsala universitet, Enheten för radiologi, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-209777.
Der volle Inhalt der QuelleTakahashi, Hiroaki, Yoshimi Seida und Mikazu Yui. „3D X-ray CT and diffusion measurements to assess tortuosity and constrictivity in a sedimentary rock“. Universitätsbibliothek Leipzig, 2015. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-191088.
Der volle Inhalt der QuelleTakahashi, Hiroaki, Yoshimi Seida und Mikazu Yui. „3D X-ray CT and diffusion measurements to assess tortuosity and constrictivity in a sedimentary rock“. Diffusion fundamentals 11 (2009) 89, S. 1-11, 2009. https://ul.qucosa.de/id/qucosa%3A14061.
Der volle Inhalt der QuellePeyrat, Jean-Marc. „Comparison of cardiac anatomy and function : statistics on fibre architecture form DT-MRI and registration of 4D CT images“. Nice, 2009. http://www.theses.fr/2009NICE4053.
Der volle Inhalt der QuelleIn this thesis, we address the problem of comparing cardiac anatomy and function from medical images. The first part focuses on cardiac anatomy with a statistical study of cardiac fibre architecture from diffusion tensor magnetic resonance imaging (DT-MRI). The second part focuses on a joint comparison of cardiac anatomy and function with the nonlinear spatiotemporal registration of two 4D computed tomography (CT) sequences of different patients or of the same patient at different times. Cardiac fiber architecture, a complex spatial arrangement of myofibres locally bounded to each other to form planes called laminar sheets, plays an essential role in defining the electrical and mechanical behaviour of the heart, and thus in cardiac function. We propose a unified computational framework to perform a statistical analysis of cardiac fibre architecture from DT-MRI. The novelty of this framework lies on first- and second-order statistics directly computed on diffusion tensors (symmetric definite positive matrices) based on the Log-Euclidean metric. The variability of fibre and laminar sheet orientations among a population is then extracted from the covariance matrix of diffusion tensors. This computational framework is applied to a dataset of canine DT-MRI acquired ex vivo. This intra-species statistical comparison does not only provide an average model (or atlas) of cardiac fibre architecture, but also shows consistency of fibre orientation and discrepancies of laminar sheet orientation among this population of hearts. The resulting canine atlas is then compared to a rare single human DT-MRI acquisition ex vivo and a synthetic model used for electromechanical simulations or image analysis. This preliminary inter-species comparison shows a much better consistency of fibre orientation than laminar sheet orientation between human and canine hearts. Compared to the canine atlas, the synthetic model has showed to be limited for a complete and accurate description of cardiac fibre architecture. The acquisition of time-series of cardiac images gives the opportunity to observe cardiac motion and thus its function in addition to its anatomy. In order to compare this cardiac function, we propose a novel nonlinear spatiotemporal registration algorithm of time-series of images. The spatiotemporal registration is decoupled into a temporal registration that aims at mapping corresponding physiological events and into a spatial registration that aims at mapping corresponding anatomical points ensuring a consistency with their respective motion. This consistency is ensured by defining «trajectory constraints» linking intra-sequence transformations describing cardiac motion to inter-sequence transformations describing anatomical differences at different physiological times. Under these trajectory constraints, the 4D spatial registration problem is simplified to 3D multichannel registration problem solved using a new version of the «Diffeomorphic Demons», called the «Multichannel Diffeomorphic Demons». This new registration method is applied to the inter-subject registration of 4D cardiac CT sequences for evaluation. Its comparison to other existing methods shows that it is the best compromise between accuracy, spatial and temporal regularization, and computation times. A possible clinical application of the spatiotemporal nonlinear registration is then proposed to compare cardiac anatomy and function before and after therapy. We propose to study over a cardiac cycle the evolution of strains of inter-sequence transformations that we called «Remodeling Strains». These new cardiac indices can be used to explain and quantify remodeling processes after therapy
Peyrat, Jean-Marc. „Comparaison de l'Anatomie et de la Fonction Cardiaque : Statistiques sur l'Architecture des Fibres et Recalage d'Images 4D CT“. Phd thesis, Université de Nice Sophia-Antipolis, 2009. http://tel.archives-ouvertes.fr/tel-00635292.
Der volle Inhalt der QuelleNunn, Jacob. „Investigations of Partial Gas Saturation on Diffusion in Low-permeability Sedimentary Rocks“. Thesis, Université d'Ottawa / University of Ottawa, 2018. http://hdl.handle.net/10393/38396.
Der volle Inhalt der QuelleGu, Jing, und 谷静. „Multiparametric imaging using diffusion and dynamic-contrast enhanced MRI, and 18F-FDG PET/CT in the evaluation of primary rectal cancer andmalignant lymphoma“. Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2011. http://hub.hku.hk/bib/B47027174.
Der volle Inhalt der QuelleFabien, Aurélie Jessica. „Etude du couplage comportement hydromécanique – durabilité dans le béton de la structure : application à la maquette MAREVA“. Nantes, 2012. http://www.theses.fr/2012NANT2090.
Der volle Inhalt der QuelleMaiwald, Bettina, Donald Lobsien, Thomas Kahn und Patrick Stumpp. „Is 3-Tesla Gd-EOB-DTPA-enhanced MRI with diffusion-weighted imaging superior to 64-slice contrast-enhanced CT for the diagnosis of hepatocellular carcinoma?“ Universitätsbibliothek Leipzig, 2014. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-155190.
Der volle Inhalt der QuelleCunningham, Dustin T. „Fusion of Multimodal Neuroimaging for Deep Brain Stimulation Studies“. The Ohio State University, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=osu1337895443.
Der volle Inhalt der QuelleBücher zum Thema "Diffusion CT"
Gardner, Andrew, Grant L. Iverson, Paul van Donkelaar, Philip N. Ainslie und Peter Stanwell. Magnetic Resonance Spectroscopy, Diffusion Tensor Imaging, and Transcranial Doppler Ultrasound Following Sport-Related Concussion. Herausgegeben von Ruben Echemendia und Grant L. Iverson. Oxford University Press, 2015. http://dx.doi.org/10.1093/oxfordhb/9780199896585.013.12.
Der volle Inhalt der QuelleGlockner, James F., Kazuhiro Kitajima und Akira Kawashima. Magnetic resonance imaging. Herausgegeben von Christopher G. Winearls. Oxford University Press, 2018. http://dx.doi.org/10.1093/med/9780199592548.003.0015_update_001.
Der volle Inhalt der QuelleDas, Raj, Susan Heenan und Uday Patel. Magnetic resonance imaging in urology. Herausgegeben von Michael Weston. Oxford University Press, 2017. http://dx.doi.org/10.1093/med/9780199659579.003.0134.
Der volle Inhalt der QuelleBuchteile zum Thema "Diffusion CT"
Ferrozzi, Francesco, Giacomo Garlaschi und Davide Bova. „Modalities of Metastatic Diffusion“. In CT of Metastases, 5–10. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-642-59595-0_3.
Der volle Inhalt der QuelleAli, Hazrat, Shafaq Murad und Zubair Shah. „Spot the Fake Lungs: Generating Synthetic Medical Images Using Neural Diffusion Models“. In Communications in Computer and Information Science, 32–39. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-26438-2_3.
Der volle Inhalt der QuelleRossi, Armando, und Giorgio Rossi. „Diffusion of Malignant Tumors of Intraperitoneal Organs to the Peritoneum, Ligaments, Mesenteries, Omentum and Lymph Nodes“. In CT of the Peritoneum, 353–403. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-642-56488-8_13.
Der volle Inhalt der QuelleKaur, Kavkirat, und Shailendra Tiwari. „Low-Dose CT Image Reconstruction Using Complex Diffusion Regularization“. In Advances in Intelligent Systems and Computing, 657–68. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-1135-2_50.
Der volle Inhalt der QuelleManniesing, Rashindra, und Wiro Niessen. „Multiscale Vessel Enhancing Diffusion in CT Angiography Noise Filtering“. In Lecture Notes in Computer Science, 138–49. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/11505730_12.
Der volle Inhalt der QuelleKroon, Dirk-Jan, Cornelis H. Slump und Thomas J. J. Maal. „Optimized Anisotropic Rotational Invariant Diffusion Scheme on Cone-Beam CT“. In Medical Image Computing and Computer-Assisted Intervention – MICCAI 2010, 221–28. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-15711-0_28.
Der volle Inhalt der QuelleWan, Simon. „MRI and Diffusion-Weighted MRI in Treatment Response Evaluation Overview“. In Atlas of Clinical PET-CT in Treatment Response Evaluation in Oncology, 17–26. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-68858-5_3.
Der volle Inhalt der QuelleLiu, Jianfei, Shijun Wang, Jianhua Yao, Marius George Linguraru und Ronald M. Summers. „Manifold Diffusion for Exophytic Kidney Lesion Detection on Non-contrast CT Images“. In Advanced Information Systems Engineering, 340–47. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-40811-3_43.
Der volle Inhalt der Quellede Win, Maartje M. L. „Imaging of the Orbit: “Current Concepts”“. In Surgery in and around the Orbit, 121–39. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-40697-3_4.
Der volle Inhalt der QuelleLeiva-Salinas, Carlos, Wade Smith und Max Wintermark. „Application of MR Diffusion, CT Angiography and Perfusion Imaging in Stroke Neurocritical Care“. In Emergency Management in Neurocritical Care, 205–13. Oxford, UK: Wiley-Blackwell, 2012. http://dx.doi.org/10.1002/9781118297162.ch23.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Diffusion CT"
Liu, Anqi, Grace J. Gang und Joseph W. Stayman. „Fourier diffusion for sparse CT reconstruction“. In Physics of Medical Imaging, herausgegeben von Rebecca Fahrig, John M. Sabol und Ke Li. SPIE, 2024. http://dx.doi.org/10.1117/12.3008622.
Der volle Inhalt der QuelleLi, Shudong, Matthew Tivnan und Joseph W. Stayman. „Diffusion posterior sampling for nonlinear CT reconstruction“. In Physics of Medical Imaging, herausgegeben von Rebecca Fahrig, John M. Sabol und Ke Li. SPIE, 2024. http://dx.doi.org/10.1117/12.3007693.
Der volle Inhalt der QuelleFogden, Andrew, Terri Olson, Qianhao Cheng, Jill Middleton, Andrew Kingston, Michael Turner, Adrian Sheppard und Ryan Armstrong. „Dynamic Micro-CT Imaging of Diffusion in Unconventionals“. In Unconventional Resources Technology Conference. Society of Petroleum Engineers, 2015. http://dx.doi.org/10.2118/178617-ms.
Der volle Inhalt der QuelleFogden, Andrew, Terri Olson, Michael Turner und Jill Middleton. „Dynamic Micro-CT Imaging of Diffusion in Unconventionals“. In Unconventional Resources Technology Conference. Tulsa, OK, USA: American Association of Petroleum Geologists, 2015. http://dx.doi.org/10.15530/urtec-2015-2154822.
Der volle Inhalt der QuelleGao, Yuan, Huiqiao Xie, Chih-Wei Chang, Junbo Peng, Jing Wang, Lei Qiu, Tonghe Wang et al. „Contrast-enhanced dual-energy CT synthesis from single energy CT using diffusion model“. In Clinical and Biomedical Imaging, herausgegeben von Barjor S. Gimi und Andrzej Krol. SPIE, 2024. http://dx.doi.org/10.1117/12.3008507.
Der volle Inhalt der QuelleDouiri, Abdel, Musib Siddique, Xujiong Ye, Gareth Beddoe und Greg Slabaugh. „Enhanced detection in CT colonography using adaptive diffusion filtering“. In SPIE Medical Imaging, herausgegeben von Josien P. W. Pluim und Benoit M. Dawant. SPIE, 2009. http://dx.doi.org/10.1117/12.811563.
Der volle Inhalt der QuellePan, Shaoyan, Elham Abouei, Jacob Wynne, Tonghe Wang, Richard Qiu, Yuheng Li, Chih-Wei Chang et al. „Synthetic CT generation from MRI using 3D diffusion model“. In Image Processing, herausgegeben von Olivier Colliot und Jhimli Mitra. SPIE, 2024. http://dx.doi.org/10.1117/12.3006578.
Der volle Inhalt der QuelleFerreira, Victor, Anselmo Cardoso de Paiva, Aristofanes Silva, João Sousa de Almeida, Geraldo Braz Junior und Francesco Renna. „Diffusion Model for Generating Synthetic Contrast Enhanced CT from Non-Enhanced Heart Axial CT Images“. In 26th International Conference on Enterprise Information Systems. SCITEPRESS - Science and Technology Publications, 2024. http://dx.doi.org/10.5220/0012724600003690.
Der volle Inhalt der QuelleBruder, H., R. Raupach, E. Klotz, K. Stierstorfer und T. Flohr. „Spatio-temporal filtration of dynamic CT data using diffusion filters“. In SPIE Medical Imaging, herausgegeben von Ehsan Samei und Jiang Hsieh. SPIE, 2009. http://dx.doi.org/10.1117/12.811085.
Der volle Inhalt der QuelleKhazaee, Tina, Chris J. D. Norley, Hristo N. Nikolov, Steven I. Pollmann und David W. Holdsworth. „Micro-CT imaging technique to characterize diffusion of small-molecules“. In Biomedical Applications in Molecular, Structural, and Functional Imaging, herausgegeben von Barjor S. Gimi und Andrzej Krol. SPIE, 2020. http://dx.doi.org/10.1117/12.2548624.
Der volle Inhalt der Quelle