Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Diffusio-Osmotic“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Diffusio-Osmotic" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Diffusio-Osmotic"
Lou, Xin, Rui Liu, Ke Chen, Xin Zhou, Rudolf Podgornik und Mingcheng Yang. „Diffusion of a chemically active colloidal particle in composite channels“. Chinese Physics B 31, Nr. 4 (01.04.2022): 044704. http://dx.doi.org/10.1088/1674-1056/ac381b.
Der volle Inhalt der QuelleMuraveva, Valeriia, Marek Bekir, Nino Lomadze, Robert Großmann, Carsten Beta und Svetlana Santer. „Interplay of diffusio- and thermo-osmotic flows generated by single light stimulus“. Applied Physics Letters 120, Nr. 23 (06.06.2022): 231905. http://dx.doi.org/10.1063/5.0090229.
Der volle Inhalt der QuelleMarbach, Sophie, Hiroaki Yoshida und Lydéric Bocquet. „Osmotic and diffusio-osmotic flow generation at high solute concentration. I. Mechanical approaches“. Journal of Chemical Physics 146, Nr. 19 (21.05.2017): 194701. http://dx.doi.org/10.1063/1.4982221.
Der volle Inhalt der QuelleYoshida, Hiroaki, Sophie Marbach und Lydéric Bocquet. „Osmotic and diffusio-osmotic flow generation at high solute concentration. II. Molecular dynamics simulations“. Journal of Chemical Physics 146, Nr. 19 (21.05.2017): 194702. http://dx.doi.org/10.1063/1.4981794.
Der volle Inhalt der QuelleSivasankar, Vishal Sankar, Mihirkumar Prajapati und Siddhartha Das. „Analytical solutions for nonionic and ionic diffusio-osmotic transport at soft and porous interfaces“. Physics of Fluids 34, Nr. 2 (Februar 2022): 022102. http://dx.doi.org/10.1063/5.0076057.
Der volle Inhalt der QuelleSchnitzer, Ory, und Ehud Yariv. „Streaming-potential phenomena in the thin-Debye-layer limit. Part 3. Shear-induced electroviscous repulsion“. Journal of Fluid Mechanics 786 (26.11.2015): 84–109. http://dx.doi.org/10.1017/jfm.2015.647.
Der volle Inhalt der QuelleBonthuis, Douwe Jan, und Ramin Golestanian. „Mechanosensitive Channel Activation by Diffusio-Osmotic Force“. Physical Review Letters 113, Nr. 14 (29.09.2014). http://dx.doi.org/10.1103/physrevlett.113.148101.
Der volle Inhalt der QuelleVisan, Aura, Jeffery Alan Wood und Rob Lammertink. „Enhancing Conversion using Diffusio-Osmosis from Patterned Catalytic Surfaces“. Industrial Chemistry & Materials, 2024. http://dx.doi.org/10.1039/d3im00130j.
Der volle Inhalt der QuelleMonet, Geoffrey, Marie-Laure Bocquet und Lydéric Bocquet. „Unified non-equilibrium simulation methodology for flow through nanoporous carbon membrane“. Journal of Chemical Physics 159, Nr. 1 (05.07.2023). http://dx.doi.org/10.1063/5.0146628.
Der volle Inhalt der QuelleArya, Pooja, Maren Umlandt, Joachim Jelken, David Feldmann, Nino Lomadze, Evgeny S. Asmolov, Olga I. Vinogradova und Svetlana Santer. „Light-induced manipulation of passive and active microparticles“. European Physical Journal E 44, Nr. 4 (April 2021). http://dx.doi.org/10.1140/epje/s10189-021-00032-x.
Der volle Inhalt der QuelleDissertationen zum Thema "Diffusio-Osmotic"
Brahmi, Youcef. „Nouveau concept pour améliorer l'extraction d'énergie bleue par des couches capacitives“. Electronic Thesis or Diss., Université Paris sciences et lettres, 2021. http://www.theses.fr/2021UPSLS099.
Der volle Inhalt der QuelleTo effectively combat global warming, it is necessary to increase the production of clean, renewable energy. Solar, wind power, hydroelectric dams and tidal power plants are mature technologies. Increasing the production of this energy requires the use of energy sources that are little or not exploited like the blue energy which is the a less-known source with enormous potential that can be generated directly from the mixing of fresh and salt water. However, current processes for energy harvesting from salt gradients remain inefficient mainly because commercial selective membranes have poor performance as in the reverse electrodialysis or in the pressure retarded osmosis and still not economically viable. Hopes for nonselective membranes with charged nanofluidic channels which have been designed to reduce the internal resistance of the cell seem to be in vain. Here we present a novel solution that involves increasing the open circuit potential of the membrane by attaching tailored capacitive layers with negatively charged functional groups on the surface that adsorb ions, mainly the positive ones. Such a configuration allows us to double the potential of the open circuit of the cell without modifying too much the global ohmic resistance and thus to multiply by 4 the potentially recoverable power.After a thorough study carried out in order to characterize the process and an optimization of the energy consumption caused by the hydraulic pressure drop, we display a device of a few squared centimeters with only one membrane harvesting a net power density of 2 Watts per square meter of the membrane (estimated net potential power density 5.4 W.m−2 ) which makes the system economically viable
Palacci, Jérémie. „Manipulation of Colloids by Osmotic Forces“. Phd thesis, Université Claude Bernard - Lyon I, 2010. http://tel.archives-ouvertes.fr/tel-00597477.
Der volle Inhalt der Quelle