Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Differential phase contrast“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Differential phase contrast" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Differential phase contrast"
Jaeho Choi, Jaeho Choi, und Young-Sung Park Young-Sung Park. „Enhanced quantitative X-ray phase-contrast images using Foucault differential filters“. Chinese Optics Letters 15, Nr. 8 (2017): 081103. http://dx.doi.org/10.3788/col201715.081103.
Der volle Inhalt der QuelleLazić, Ivan, Eric G. T. Bosch und Sorin Lazar. „Phase contrast STEM for thin samples: Integrated differential phase contrast“. Ultramicroscopy 160 (Januar 2016): 265–80. http://dx.doi.org/10.1016/j.ultramic.2015.10.011.
Der volle Inhalt der QuelleMcFadyen, Ian R. „Differential phase contrast Lorentz microscopy“. Proceedings, annual meeting, Electron Microscopy Society of America 48, Nr. 4 (August 1990): 758–59. http://dx.doi.org/10.1017/s0424820100176927.
Der volle Inhalt der QuelleMcCartney, M. R., P. Kruit, A. H. Buist und M. R. Scheinfein. „Differential phase contrast in TEM“. Ultramicroscopy 65, Nr. 3-4 (Oktober 1996): 179–86. http://dx.doi.org/10.1016/s0304-3991(96)00068-x.
Der volle Inhalt der QuelleZhao, Ming, Wonryeon Cho, Fred Regnier und David Nolte. „Differential phase-contrast BioCD biosensor“. Applied Optics 46, Nr. 24 (20.08.2007): 6196. http://dx.doi.org/10.1364/ao.46.006196.
Der volle Inhalt der QuelleCong, Wenxiang, Jiangsheng Yang und Ge Wang. „Differential phase-contrast interior tomography“. Physics in Medicine and Biology 57, Nr. 10 (20.04.2012): 2905–14. http://dx.doi.org/10.1088/0031-9155/57/10/2905.
Der volle Inhalt der QuelleChen, Michael, Lei Tian und Laura Waller. „3D differential phase contrast microscopy“. Biomedical Optics Express 7, Nr. 10 (09.09.2016): 3940. http://dx.doi.org/10.1364/boe.7.003940.
Der volle Inhalt der QuelleMehta, Shalin B., und Colin J. R. Sheppard. „Using the phase-space imager to analyze partially coherent imaging systems: bright-field, phase contrast, differential interference contrast, differential phase contrast, and spiral phase contrast“. Journal of Modern Optics 57, Nr. 9 (20.05.2010): 718–39. http://dx.doi.org/10.1080/09500340.2010.481729.
Der volle Inhalt der QuelleJonge, M. D. de, B. Hornberger, C. Holzner, B. Twining, D. Paterson, I. McNulty, C. Jacobsen und S. Vogt. „Quantitative scanning differential phase contrast microscopy“. Journal of Physics: Conference Series 186 (01.09.2009): 012006. http://dx.doi.org/10.1088/1742-6596/186/1/012006.
Der volle Inhalt der QuelleLazic, Ivan, Eric G. T. Bosch und Sorin Lazar. „Integrated differential phase contrast (iDPC) STEM“. Acta Crystallographica Section A Foundations and Advances 73, a2 (01.12.2017): C117—C118. http://dx.doi.org/10.1107/s2053273317094542.
Der volle Inhalt der QuelleDissertationen zum Thema "Differential phase contrast"
King, Sharon Victoria. „Quantitative phase information from differential interference contrast microscopy“. Connect to online resource, 2008. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:3337213.
Der volle Inhalt der QuelleNoorizadeh, Sahand. „SLM-based Fourier Differential Interference Contrast Microscopy“. PDXScholar, 2014. https://pdxscholar.library.pdx.edu/open_access_etds/2011.
Der volle Inhalt der QuelleLoberg, Johannes. „Evaluation of differential phase-contrast mammography with refractive X-ray lenses“. Thesis, KTH, Fysik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-280024.
Der volle Inhalt der QuelleKrajnak, Matus. „Advanced detection in Lorentz microscopy : pixelated detection in differential phase contrast scanning transmission electron microscopy“. Thesis, University of Glasgow, 2017. http://theses.gla.ac.uk/7906/.
Der volle Inhalt der QuelleHajduček, Jan. „Zobrazování metamagnetických tenkých vrstev pomocí TEM“. Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2021. http://www.nusl.cz/ntk/nusl-443233.
Der volle Inhalt der QuelleEsser, Bryan David. „High Resolution Characterization of Magnetic Materials for Spintronic Applications“. The Ohio State University, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=osu1524154928191728.
Der volle Inhalt der QuelleGrah, Joana Sarah. „Mathematical imaging tools in cancer research : from mitosis analysis to sparse regularisation“. Thesis, University of Cambridge, 2018. https://www.repository.cam.ac.uk/handle/1810/273243.
Der volle Inhalt der Quelle„Quantitative phase information from differential interference contrast microscopy“. UNIVERSITY OF COLORADO AT BOULDER, 2009. http://pqdtopen.proquest.com/#viewpdf?dispub=3337213.
Der volle Inhalt der QuelleLin, Yu-Zi, und 林鈺梓. „Design and Development of Modular Microscopy for Acquiring Isotropic Quantitative Differential Phase Contrast Images“. Thesis, 2018. http://ndltd.ncl.edu.tw/handle/6q82ud.
Der volle Inhalt der Quelle國立臺灣大學
機械工程學研究所
106
Because cells are thin and transparent objects, they usually have to be dyed to be observable at a bright field microscope. But fluorescently labeled methodology will lead to a phototoxicity and photo-bleaching problem. After observing dyed cells, they will stop growing and gradually die. In order to observe a transparent cell without poisoning them, it is important to develop label-free microscopic techniques. Label-free microscopic techniques include qualitative and quantitative types. Since a quantitative label-free microscope can provide quantitative optical thickness which is helpful to analyze the process of cells changes. The purpose of this thesis is to develop quantitative label-free microscopy. Due to the advantages of wide-field based measurement, quantitative differential phase contrast microscopy (QDPC), compared to other label-free quantification phase microscopic techniques, it is more efficient to capture images without point-by-point plane scanning or depth scanning. In this study, a thin-film transistor (TFT) shield is placed on the Fourier plane to generate structured light by variable pupil control. After light passes through the TFT shield, the intensity of the light is modulated by the proposed gradient light intensity modulation pattern. After two sets of 4 complementary images are acquired, the phase contrast value of a specimen is obtained by using lab developed Matlab software. Compared with the method proposed by other research groups, which utilized contrast structured light for multiple image acquisition to achieve an isotropic phase transfer function. The color gradient light intensity modulation pattern further makes the system achieve isotropic phase transfer functions at high acquisition speed. The proposed method improves the efficiency and accuracy of phase reconstruction. For experimental verification, micro-plastic spheres have been used standard targets to verify the quantitative measurement capability and accuracy of proposed QDPC system. With the measured phase contrast value and the refractive index of the microspheres, the geometric thickness of the microspheres can be calculated. Furthermore, the developed automatic microscopic image-acquisition is used for acquiring time-lapse QDPC photography of mouse label-free 3T3 fibroblasts cells and human lung cancer cells CYL2 . QDPC reconstructed images provide high contrast and the reconstruction result is independent of viewing angles. The detailed structures and apoptosis process of cells can be clearly observed. While the 3T3 fibroblasts cells shrinks, their phase difference value gradually increases from ~1.5 to ~2.5 rad. While the lung cancer cells CYL2, their phase difference value gradually decrease from ~4.5 to ~2.5 rad. The optical thickness of the cells can be further calculate, and quantitative thickness change data is helpful for the analysis of the cells’ long-time monitoring. Keyword:Optical microscopy, Structured illumination, Variable pupil control, Phase retrieval, Differential phase contrast imaging
Lin, Wen Chuan, und 林文泉. „High-Speed Three-dimensional topography measurement with two-step phase shifting differential interference contrast technique“. Thesis, 2012. http://ndltd.ncl.edu.tw/handle/86668134045647878713.
Der volle Inhalt der QuelleBücher zum Thema "Differential phase contrast"
Maksymilian, Pluta, Szyjer Mariusz, Society of Photo-optical Instrumentation Engineers., Komitet Badań Naukowych (Poland) und International Conference on Phase Contrast and Differential Interference Contrast (1992 : Warsaw, Poland), Hrsg. Phase contrast and differential interference contrast imaging techniques and applications: 19-21 October 1992, Warsaw, Poland. Bellingham, Wash., USA: SPIE, 1994.
Den vollen Inhalt der Quelle findenAletaha, Daniel, und Helga Radner. Rheumatoid arthritis—diagnosis. Oxford University Press, 2013. http://dx.doi.org/10.1093/med/9780199642489.003.0110.
Der volle Inhalt der QuelleBuchteile zum Thema "Differential phase contrast"
Komatsu, Hiroshi, und Gen Sazaki. „Differential Interference Contrast Microscopy/Phase-Contrast Microscopy“. In Compendium of Surface and Interface Analysis, 55–60. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-6156-1_10.
Der volle Inhalt der QuelleMorrison, G. R., und B. Niemann. „Differential Phase Contrast X-Ray Microscopy“. In X-Ray Microscopy and Spectromicroscopy, 85–94. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-642-72106-9_10.
Der volle Inhalt der QuellePalmer, J. R., und G. R. Morrison. „Differential Phase Contrast in X-Ray Microscopy“. In X-Ray Microscopy III, 278–80. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-540-46887-5_63.
Der volle Inhalt der QuelleWang, Jingzheng, und Jian Fu. „A New Method for Differential Phase-Contrast Imaging Without Phase Stepping“. In Lecture Notes in Electrical Engineering, 395–401. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-91659-0_32.
Der volle Inhalt der QuelleNikoonahad, M. „New Techniques in Differential Phase Contrast Scanning Acoustic Microscopy“. In Acoustical Imaging, 501–10. Boston, MA: Springer US, 1988. http://dx.doi.org/10.1007/978-1-4613-0725-9_46.
Der volle Inhalt der QuelleLi, J., J. Huang, X. Liu, J. Guo und Y. Lei. „X-ray absorption gratings fabricated via nanoparticles for differential phase-contrast imaging“. In Frontier Research and Innovation in Optoelectronics Technology and Industry, 419–24. London, UK : CRC Press/Balkema, an imprint of the Taylor & Francis Group, [2019]: CRC Press, 2018. http://dx.doi.org/10.1201/9780429447082-61.
Der volle Inhalt der QuelleWickramasinghe, H. K. „Scanning Differential Phase Contrast Optical Microscope Application to Surface Studies and Micro Metrology“. In Optical Metrology, 86–87. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-3609-6_8.
Der volle Inhalt der QuelleShribak, Michael. „Differential Interference Contrast Microscopy (DIC)“. In Biomedical Optical Phase Microscopy and Nanoscopy, 19–42. Elsevier, 2013. http://dx.doi.org/10.1016/b978-0-12-415871-9.00002-8.
Der volle Inhalt der Quelle„Phase Imaging Microscopy: Beyond Dark-Field, Phase Contrast, and Differential Interference Contrast Microscopy“. In Handbook of Biomedical Optics, 503–36. CRC Press, 2016. http://dx.doi.org/10.1201/b10951-28.
Der volle Inhalt der QuelleKrishnan, Kannan M. „Transmission and Analytical Electron Microscopy“. In Principles of Materials Characterization and Metrology, 552–692. Oxford University Press, 2021. http://dx.doi.org/10.1093/oso/9780198830252.003.0009.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Differential phase contrast"
Brody, Philip S., Charles G. Garvin, Arthur W. Gillman und Lian Shentu. „Phase-imaging holographic microscope“. In Phase Contrast and Differential Interference Contrast Imaging Techniques and Applications, herausgegeben von Maksymilian Pluta und Mariusz Szyjer. SPIE, 1994. http://dx.doi.org/10.1117/12.171863.
Der volle Inhalt der QuelleGniadek, Kazimierz, und Barbara Smolinska. „Phase-object positioning based on optical correlation“. In Phase Contrast and Differential Interference Contrast Imaging Techniques and Applications, herausgegeben von Maksymilian Pluta und Mariusz Szyjer. SPIE, 1994. http://dx.doi.org/10.1117/12.171882.
Der volle Inhalt der QuelleSypek, Maciej. „Reverse phase-contrast problem in optical technology“. In Phase Contrast and Differential Interference Contrast Imaging Techniques and Applications, herausgegeben von Maksymilian Pluta und Mariusz Szyjer. SPIE, 1994. http://dx.doi.org/10.1117/12.171883.
Der volle Inhalt der QuelleJozwicki, Romulad. „Imaging problems in phase-object visualization techniques“. In Phase Contrast and Differential Interference Contrast Imaging Techniques and Applications, herausgegeben von Maksymilian Pluta und Mariusz Szyjer. SPIE, 1994. http://dx.doi.org/10.1117/12.171884.
Der volle Inhalt der QuelleLitwin, Dariusz. „Specific properties of slit phase-contrast imaging“. In Phase Contrast and Differential Interference Contrast Imaging Techniques and Applications, herausgegeben von Maksymilian Pluta und Mariusz Szyjer. SPIE, 1994. http://dx.doi.org/10.1117/12.171885.
Der volle Inhalt der QuelleZeilikovich, Iosif S. „Holographic interferometry of phase objects with increasing sensitivity“. In Phase Contrast and Differential Interference Contrast Imaging Techniques and Applications, herausgegeben von Maksymilian Pluta und Mariusz Szyjer. SPIE, 1994. http://dx.doi.org/10.1117/12.171865.
Der volle Inhalt der QuelleSochacka, Malgorzata. „Optical fiber profiling by phase-stepping transverse interferometry“. In Phase Contrast and Differential Interference Contrast Imaging Techniques and Applications, herausgegeben von Maksymilian Pluta und Mariusz Szyjer. SPIE, 1994. http://dx.doi.org/10.1117/12.171871.
Der volle Inhalt der QuelleSochacka, Malgorzata, und Leszek R. Staronski. „Phase-stepping DIC technique for reflecting surface evaluation“. In Phase Contrast and Differential Interference Contrast Imaging Techniques and Applications, herausgegeben von Maksymilian Pluta und Mariusz Szyjer. SPIE, 1994. http://dx.doi.org/10.1117/12.171879.
Der volle Inhalt der QuelleBesaha, R. N., Igor I. Mokhun und V. V. Yatsenko. „Visualization and reconstruction of images of phase objects“. In Phase Contrast and Differential Interference Contrast Imaging Techniques and Applications, herausgegeben von Maksymilian Pluta und Mariusz Szyjer. SPIE, 1994. http://dx.doi.org/10.1117/12.171887.
Der volle Inhalt der QuelleBozyk, Miroslawa. „Application of phase-contrast microscopy to quantitative characterization of optical fibers“. In Phase Contrast and Differential Interference Contrast Imaging Techniques and Applications, herausgegeben von Maksymilian Pluta und Mariusz Szyjer. SPIE, 1994. http://dx.doi.org/10.1117/12.171874.
Der volle Inhalt der Quelle