Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Differential equations.

Zeitschriftenartikel zum Thema „Differential equations“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Differential equations" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

Tabor, Jacek. „Differential equations in metric spaces“. Mathematica Bohemica 127, Nr. 2 (2002): 353–60. http://dx.doi.org/10.21136/mb.2002.134163.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Andres, Jan, und Pavel Ludvík. „Topological entropy and differential equations“. Archivum Mathematicum, Nr. 1 (2023): 3–10. http://dx.doi.org/10.5817/am2023-1-3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Laksmikantham, V. „Set differential equations versus fuzzy differential equations“. Applied Mathematics and Computation 164, Nr. 2 (Mai 2005): 277–94. http://dx.doi.org/10.1016/j.amc.2004.06.068.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Parasidis, I. N. „EXTENSION AND DECOMPOSITION METHOD FOR DIFFERENTIAL AND INTEGRO-DIFFERENTIAL EQUATIONS“. Eurasian Mathematical Journal 10, Nr. 3 (2019): 48–67. http://dx.doi.org/10.32523/2077-9879-2019-10-3-48-67.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Chrastinová, Veronika, und Václav Tryhuk. „Parallelisms between differential and difference equations“. Mathematica Bohemica 137, Nr. 2 (2012): 175–85. http://dx.doi.org/10.21136/mb.2012.142863.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Tumajer, František. „Controllable systems of partial differential equations“. Applications of Mathematics 31, Nr. 1 (1986): 41–53. http://dx.doi.org/10.21136/am.1986.104183.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Kurzweil, Jaroslav, und Alena Vencovská. „Linear differential equations with quasiperiodic coefficients“. Czechoslovak Mathematical Journal 37, Nr. 3 (1987): 424–70. http://dx.doi.org/10.21136/cmj.1987.102170.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Sergey, Piskarev, und Siegmund Stefan. „UNSTABLE MANIFOLDS FOR FRACTIONAL DIFFERENTIAL EQUATIONS“. Eurasian Journal of Mathematical and Computer Applications 10, Nr. 3 (27.09.2022): 58–72. http://dx.doi.org/10.32523/2306-6172-2022-10-3-58-72.

Der volle Inhalt der Quelle
Annotation:
We prove the existence of unstable manifolds for an abstract semilinear fractional differential equation Dαu(t) = Au(t) + f(u(t)), u(0) = u 0 , on a Banach space. We then develop a general approach to establish a semidiscrete approximation of unstable manifolds. The main assumption of our results are naturally satisfied. In particular, this is true for operators with compact resolvents and can be verified for finite elements as well as finite differences methods.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Džurina, Jozef. „Comparison theorems for functional differential equations“. Mathematica Bohemica 119, Nr. 2 (1994): 203–11. http://dx.doi.org/10.21136/mb.1994.126077.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Saltas, Vassilios, Vassilios Tsiantos und Dimitrios Varveris. „Solving Differential Equations and Systems of Differential Equations with Inverse Laplace Transform“. European Journal of Mathematics and Statistics 4, Nr. 3 (14.06.2023): 1–8. http://dx.doi.org/10.24018/ejmath.2023.4.3.192.

Der volle Inhalt der Quelle
Annotation:
The inverse Laplace transform enables the solution of ordinary linear differential equations as well as systems of ordinary linear differentials with applications in the physical and engineering sciences. The Laplace transform is essentially an integral transform which is introduced with the help of a suitable generalized integral. The ultimate goal of this work is to introduce the reader to some of the basic ideas and applications for solving initially ordinary differential equations and then systems of ordinary linear differential equations.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

N O, Onuoha. „Transformation of Parabolic Partial Differential Equations into Heat Equation Using Hopf Cole Transform“. International Journal of Science and Research (IJSR) 12, Nr. 6 (05.06.2023): 1741–43. http://dx.doi.org/10.21275/sr23612082710.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

Loud, Warren S., A. N. Tikhonov, A. B. Vasil'eva und A. G. Sveshnikov. „Differential Equations.“ American Mathematical Monthly 94, Nr. 3 (März 1987): 308. http://dx.doi.org/10.2307/2323408.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Croft, Tony, D. A. Sanchez, R. C. Allen Jr. und W. T. Kyner. „Differential Equations“. Mathematical Gazette 73, Nr. 465 (Oktober 1989): 249. http://dx.doi.org/10.2307/3618470.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

Brindley, Graham, D. Lomen und J. Mark. „Differential Equations“. Mathematical Gazette 73, Nr. 466 (Dezember 1989): 353. http://dx.doi.org/10.2307/3619335.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

Abbott, Steve, und SMP. „Differential Equations“. Mathematical Gazette 79, Nr. 484 (März 1995): 186. http://dx.doi.org/10.2307/3620064.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

Berkshire, Frank, A. N. Tikhonov, A. B. Vasil'eva und A. G. Sveshnikov. „Differential Equations“. Mathematical Gazette 70, Nr. 452 (Juni 1986): 168. http://dx.doi.org/10.2307/3615804.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

Lee, Tzong-Yow. „Differential Equations“. Annals of Probability 29, Nr. 3 (Juli 2001): 1047–60. http://dx.doi.org/10.1214/aop/1015345595.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

Barrett, K. E. „Differential equations“. Applied Mathematical Modelling 11, Nr. 3 (Juni 1987): 233–34. http://dx.doi.org/10.1016/0307-904x(87)90010-2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

He, Ji-Huan, und Zheng-Biao Li. „Converting fractional differential equations into partial differential equations“. Thermal Science 16, Nr. 2 (2012): 331–34. http://dx.doi.org/10.2298/tsci110503068h.

Der volle Inhalt der Quelle
Annotation:
A transform is suggested in this paper to convert fractional differential equations with the modified Riemann-Liouville derivative into partial differential equations, and it is concluded that the fractional order in fractional differential equations is equivalent to the fractal dimension.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

Knorrenschild, Michael. „Differential/Algebraic Equations As Stiff Ordinary Differential Equations“. SIAM Journal on Numerical Analysis 29, Nr. 6 (Dezember 1992): 1694–715. http://dx.doi.org/10.1137/0729096.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

MANOFF, S. „GEODESIC AND AUTOPARALLEL EQUATIONS OVER DIFFERENTIABLE MANIFOLDS“. International Journal of Modern Physics A 11, Nr. 21 (20.08.1996): 3849–74. http://dx.doi.org/10.1142/s0217751x96001814.

Der volle Inhalt der Quelle
Annotation:
The notions of ordinary, covariant and Lie differentials are considered as operators over differentiable manifolds with different (not only by sign) contravariant and covariant affine connections and metric. The difference between the interpretations of the ordinary differential as a covariant basic vector field and as a component of a contravariant vector field is discussed. By means of the covariant metric and the ordinary differential the notion of the line element is introduced and the geodesic equation is obtained and compared with the autoparallel equation.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

Lazopoulos, Konstantinos A. „On Λ-Fractional Differential Equations“. Foundations 2, Nr. 3 (05.09.2022): 726–45. http://dx.doi.org/10.3390/foundations2030050.

Der volle Inhalt der Quelle
Annotation:
Λ-fractional differential equations are discussed since they exhibit non-locality and accuracy. Fractional derivatives form fractional differential equations, considered as describing better various physical phenomena. Nevertheless, fractional derivatives fail to satisfy the prerequisites of differential topology for generating differentials. Hence, all the sources of generating fractional differential equations, such as fractional differential geometry, the fractional calculus of variations, and the fractional field theory, are not mathematically accurate. Nevertheless, the Λ-fractional derivative conforms to all prerequisites demanded by differential topology. Hence, the various mathematical forms, including those derivatives, do not lack the mathematical accuracy or defects of the well-known fractional derivatives. A summary of the Λ-fractional analysis is presented with its influence on the sources of differential equations, such as fractional differential geometry, field theorems, and calculus of variations. Λ-fractional ordinary and partial differential equations will be discussed.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

Elishakoff, Isaac. „Differential Equations of Love and Love of Differential Equations“. Journal of Humanistic Mathematics 9, Nr. 2 (Juli 2019): 226–46. http://dx.doi.org/10.5642/jhummath.201902.15.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

Barles, Guy, Rainer Buckdahn und Etienne Pardoux. „Backward stochastic differential equations and integral-partial differential equations“. Stochastics and Stochastic Reports 60, Nr. 1-2 (Februar 1997): 57–83. http://dx.doi.org/10.1080/17442509708834099.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

Hino, Yoshiyuki, und Taro Yoshizawa. „Total stability property in limiting equations for a functional-differential equation with infinite delay“. Časopis pro pěstování matematiky 111, Nr. 1 (1986): 62–69. http://dx.doi.org/10.21136/cpm.1986.118265.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

Frittelli, Simonetta, Carlos Kozameh und Ezra T. Newman. „Differential Geometry from Differential Equations“. Communications in Mathematical Physics 223, Nr. 2 (01.10.2001): 383–408. http://dx.doi.org/10.1007/s002200100548.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

Marjona, Kosimova. „APPLICATION OF DIFFERENTIAL EQUATIONS IN VARIOUS FIELDS OF SCIENCE“. American Journal of Applied Science and Technology 4, Nr. 6 (01.06.2024): 76–81. http://dx.doi.org/10.37547/ajast/volume04issue06-15.

Der volle Inhalt der Quelle
Annotation:
The article, "Application of Differential Equations in Various Fields of Science," explores the use of differential equations for modeling economic and natural phenomena. It examines two main models of economic dynamics: the Evans model for the market of a single product, and the Solow model for economic growth.The author emphasizes the importance of proving the existence of solutions to differential equations in order to verify the accuracy of mathematical models. They also discuss the role of electronic computers in developing the theory of differential equations and its connection with other branches of mathematics such as functional analysis, algebra, and probability theory.Furthermore, the article highlights the significance of various solution methods for differential equations, including the Fourier method, Ritz method, Galerkin method, and perturbation theory.Special attention is paid to the theory of partial differential equations, the theory of differential operators, and problems arising in physics, mechanics, and technology. Differential equations are the theoretical foundation of almost all scientific and technological models and a key tool for understanding various processes in science, such as in physics, chemistry, and biology.Examples of processes described by differential equations include normalreproduction, explosive growth, and the logistic curve. Cases of using differential equations to model deterministic, finite-dimensional, and differentiable phenomena, as well as the impact of catch quotas on population dynamics, are discussed.In conclusion, the significance of differential equations for research and their role in stimulating the development of new mathematical areas is emphasized.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

Chrastina, Jan. „On formal theory of differential equations. I.“ Časopis pro pěstování matematiky 111, Nr. 4 (1986): 353–83. http://dx.doi.org/10.21136/cpm.1986.118285.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

Chrastina, Jan. „On formal theory of differential equations. II.“ Časopis pro pěstování matematiky 114, Nr. 1 (1989): 60–105. http://dx.doi.org/10.21136/cpm.1989.118369.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
30

Li, Tongxing, Yuriy V. Rogovchenko und Chenghui Zhang. „Oscillation of fourth-order quasilinear differential equations“. Mathematica Bohemica 140, Nr. 4 (2015): 405–18. http://dx.doi.org/10.21136/mb.2015.144459.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
31

Kwapisz, Marian. „On solving systems of differential algebraic equations“. Applications of Mathematics 37, Nr. 4 (1992): 257–64. http://dx.doi.org/10.21136/am.1992.104508.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
32

Franců, Jan. „Weakly continuous operators. Applications to differential equations“. Applications of Mathematics 39, Nr. 1 (1994): 45–56. http://dx.doi.org/10.21136/am.1994.134242.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
33

Grace, S. R., und Bikkar S. Lalli. „Oscillation theorems for certain neutral differential equations“. Czechoslovak Mathematical Journal 38, Nr. 4 (1988): 745–53. http://dx.doi.org/10.21136/cmj.1988.102270.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
34

Ohriska, Ján. „Oscillation of differential equations and $v$-derivatives“. Czechoslovak Mathematical Journal 39, Nr. 1 (1989): 24–44. http://dx.doi.org/10.21136/cmj.1989.102276.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
35

Gopalsamy, K., B. S. Lalli und B. G. Zhang. „Oscillation of odd order neutral differential equations“. Czechoslovak Mathematical Journal 42, Nr. 2 (1992): 313–23. http://dx.doi.org/10.21136/cmj.1992.128330.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
36

Džurina, Jozef. „Comparison theorem for third-order differential equations“. Czechoslovak Mathematical Journal 44, Nr. 2 (1994): 357–66. http://dx.doi.org/10.21136/cmj.1994.128464.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
37

Grace, S. R., und B. S. Lalli. „Oscillation criteria for forced neutral differential equations“. Czechoslovak Mathematical Journal 44, Nr. 4 (1994): 713–24. http://dx.doi.org/10.21136/cmj.1994.128489.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
38

Fraňková, Dana. „Substitution method for generalized linear differential equations“. Mathematica Bohemica 116, Nr. 4 (1991): 337–59. http://dx.doi.org/10.21136/mb.1991.126028.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
39

Chrastina, Jan. „On formal theory of differential equations. III.“ Mathematica Bohemica 116, Nr. 1 (1991): 60–90. http://dx.doi.org/10.21136/mb.1991.126196.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
40

Tiwari, Chinta Mani, und Richa Yadav. „Distributional Solutions to Nonlinear Partial Differential Equations“. International Journal of Research Publication and Reviews 5, Nr. 4 (11.04.2024): 6441–47. http://dx.doi.org/10.55248/gengpi.5.0424.1085.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
41

Freeman, J. S., und S. A. Velinsky. „Comparison of the Dynamics of Conventional and Worm-Gear Differentials“. Journal of Mechanisms, Transmissions, and Automation in Design 111, Nr. 4 (01.12.1989): 605–10. http://dx.doi.org/10.1115/1.3259043.

Der volle Inhalt der Quelle
Annotation:
The differential mechanism has been used for many years and a variety of unique designs have been developed for particular applications. This paper investigates the performance of both the conventional bevel-gear differential and the worm-gear differential as used in vehicles. The worm-gear differential is a design in which the bevel gears of the conventional differential are replaced by worm gear/worm wheel pairs. The resultant differential exhibits some interesting behavior which has made this differential desirable for use in high performance and off-road vehicles. In this work, an Euler-Lagrange formulation of the equations of motion of the conventional and worm-gear differentials allows comparison of their respective behavior. Additionally, each differential is incorporated into a full vehicle model to observe their effects on gross vehicle response. The worm-gear differential is shown to exhibit the desirable characteristics of a limited-slip differential while maintaining the conventional differential’s ability to differentiate output shaft speeds at all power levels.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
42

Balamuralitharan, S., und . „MATLAB Programming of Nonlinear Equations of Ordinary Differential Equations and Partial Differential Equations“. International Journal of Engineering & Technology 7, Nr. 4.10 (02.10.2018): 773. http://dx.doi.org/10.14419/ijet.v7i4.10.26114.

Der volle Inhalt der Quelle
Annotation:
My idea of this paper is to discuss the MATLAB program for various mathematical modeling in ordinary differential equations (ODEs) and partial differential equations (PDEs). Idea of this paper is very useful to research scholars, faculty members and all other fields like engineering and biology. Also we get easily to find the numerical solutions from this program.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
43

Harir, Atimad, Said Melliani und Lalla Saadia Chadli. „Fuzzy Conformable Fractional Differential Equations“. International Journal of Differential Equations 2021 (04.02.2021): 1–6. http://dx.doi.org/10.1155/2021/6655450.

Der volle Inhalt der Quelle
Annotation:
In this study, fuzzy conformable fractional differential equations are investigated. We study conformable fractional differentiability, and we define fractional integrability properties of such functions and give an existence and uniqueness theorem for a solution to a fuzzy fractional differential equation by using the concept of conformable differentiability. This concept is based on the enlargement of the class of differentiable fuzzy mappings; for this, we consider the lateral Hukuhara derivatives of order q ∈ 0,1 .
APA, Harvard, Vancouver, ISO und andere Zitierweisen
44

Devaney, Robert L., Beverly West, Steven Strogatz, Jean Marie McDill und John Cantwell. „Interactive Differential Equations.“ American Mathematical Monthly 105, Nr. 7 (August 1998): 687. http://dx.doi.org/10.2307/2589275.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
45

Brauer, Fred, Vladimir I. Arnol'd und Roger Cook. „Ordinary Differential Equations.“ American Mathematical Monthly 100, Nr. 8 (Oktober 1993): 810. http://dx.doi.org/10.2307/2324802.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
46

Hibberd, S., Richard Bellman und George Adomian. „Partial Differential Equations“. Mathematical Gazette 71, Nr. 458 (Dezember 1987): 341. http://dx.doi.org/10.2307/3617100.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
47

Abbott, Steve, und Lawrence C. Evans. „Partial Differential Equations“. Mathematical Gazette 83, Nr. 496 (März 1999): 185. http://dx.doi.org/10.2307/3618751.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
48

Abram, J., W. E. Boyce und R. C. DiPrima. „Elementary Differential Equations“. Mathematical Gazette 78, Nr. 481 (März 1994): 83. http://dx.doi.org/10.2307/3619457.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
49

Norris, J. R., und B. Oksendal. „Stochastic Differential Equations“. Mathematical Gazette 77, Nr. 480 (November 1993): 393. http://dx.doi.org/10.2307/3619809.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
50

Rawlins, A. D., und M. Sever. „Ordinary Differential Equations“. Mathematical Gazette 72, Nr. 462 (Dezember 1988): 334. http://dx.doi.org/10.2307/3619967.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie