Dissertationen zum Thema „Differential equations“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit Top-50 Dissertationen für die Forschung zum Thema "Differential equations" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Sehen Sie die Dissertationen für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.
Yantır, Ahmet Ufuktepe Ünal. „Oscillation theory for second order differential equations and dynamic equations on time scales/“. [s.l.]: [s.n.], 2004. http://library.iyte.edu.tr/tezler/master/matematik/T000418.pdf.
Der volle Inhalt der QuelleDareiotis, Anastasios Constantinos. „Stochastic partial differential and integro-differential equations“. Thesis, University of Edinburgh, 2015. http://hdl.handle.net/1842/14186.
Der volle Inhalt der QuelleZheng, Ligang. „Almost periodic differential equations“. Thesis, University of Ottawa (Canada), 1990. http://hdl.handle.net/10393/5766.
Der volle Inhalt der QuelleKopfová, Jana. „Differential equations involving hysteresis“. Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk2/tape15/PQDD_0007/NQ29055.pdf.
Der volle Inhalt der QuelleMARINO, GISELA DORNELLES. „COMPLEX ORDINARY DIFFERENTIAL EQUATIONS“. PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2007. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=10175@1.
Der volle Inhalt der QuelleNeste texto estudamos diversos aspectos de singularidades de campos vetoriais holomorfos em dimensão 2. Discutimos detalhadamente o caso particular de uma singularidade sela-nó e o papel desempenhado pelas normalizações setoriais. Isto nos conduz à classificação analítica de difeomorfismos tangentes à identidade. seguir abordamos o Teorema de Seidenberg, tratando da redução de singularidades degeneradas em singularidades simples, através do procedimento de blow-up. Por fim, estudamos a demonstração do Teorema de Mattei-Moussu, acerca da existência de integrais primeiras para folheações holomorfas.
In the present text, we study the different aspects of singularities of holomorphic vector fields in dimension 2. We discuss in detail the particular case of a saddle-node singularity and the role of the sectorial normalizations. This leads us to the analytic classiffication of diffeomorphisms which are tangent to the identity. Next, we approach the Seidenberg Theorem, dealing with the reduction of degenerated singularities into simple ones, by means of the blow-up procedure. Finally, we study the proof of the well-known Mattei-Moussu Theorem concerning the existence of first integrals to holomorphic foliations.
Berntson, B. K. „Integrable delay-differential equations“. Thesis, University College London (University of London), 2017. http://discovery.ucl.ac.uk/1566618/.
Der volle Inhalt der QuelleDodds, Niall. „Non-local differential equations“. Thesis, University of Dundee, 2005. https://discovery.dundee.ac.uk/en/studentTheses/9eda08aa-ba49-455f-94b1-36870a1ad956.
Der volle Inhalt der QuelleTrenn, Stephan. „Distributional differential algebraic equations“. Ilmenau Univ.-Verl, 2009. http://d-nb.info/99693197X/04.
Der volle Inhalt der QuelleBahar, Arifah. „Applications of stochastic differential equations and stochastic delay differential equations in population dynamics“. Thesis, University of Strathclyde, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.415294.
Der volle Inhalt der QuelleThompson, Jeremy R. (Jeremy Ray). „Physical Motivation and Methods of Solution of Classical Partial Differential Equations“. Thesis, University of North Texas, 1995. https://digital.library.unt.edu/ark:/67531/metadc277898/.
Der volle Inhalt der QuelleSaravi, Masoud. „Numerical solution of linear ordinary differential equations and differential-algebraic equations by spectral methods“. Thesis, Open University, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.446280.
Der volle Inhalt der QuelleHollingsworth, Blane Jackson Schmidt Paul G. „Stochastic differential equations a dynamical systems approach /“. Auburn, Ala, 2008. http://repo.lib.auburn.edu/EtdRoot/2008/SPRING/Mathematics_and_Statistics/Dissertation/Hollingsworth_Blane_43.pdf.
Der volle Inhalt der QuelleLuo, Hui. „Population modeling by differential equations“. Huntington, WV : [Marshall University Libraries], 2007. http://www.marshall.edu/etd/descript.asp?ref=795.
Der volle Inhalt der QuelleAllen, Brenda. „Non-smooth differential delay equations“. Thesis, University of Oxford, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.390472.
Der volle Inhalt der QuelleAbourashchi, Niloufar. „Stability of stochastic differential equations“. Thesis, University of Leeds, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.509828.
Der volle Inhalt der QuelleYilmaz, Halis. „Evolution equations for differential invariants“. Thesis, University of Glasgow, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.274288.
Der volle Inhalt der QuellePiggott, Matthew David. „Geometric integration of differential equations“. Thesis, University of Bath, 2002. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.760826.
Der volle Inhalt der QuelleRanner, Thomas. „Computational surface partial differential equations“. Thesis, University of Warwick, 2013. http://wrap.warwick.ac.uk/57647/.
Der volle Inhalt der QuelleTempesta, Patricia. „Simmetries in binary differential equations“. Universidade de São Paulo, 2017. http://www.teses.usp.br/teses/disponiveis/55/55135/tde-11072017-170308/.
Der volle Inhalt der QuelleO objetivo desta tese é introduzir o estudo sistemático de simetrias em equações diferenciais binárias (EDBs). Neste trabalho formalizamos o conceito de EDB simétrica sobre a ação de um grupo de Lie compacto. Um dos principais resultados é uma fórmula que relaciona o efeito geométrico e algébrico das simetrias presentes no problema. Utilizando ferramentas da teoria invariante e de representação para grupos compactos deduzimos as formas gerais para EDBs equivariantes. Um estudo sobre o comportamento das retas invariantes na configuração de EDBs com coeficientes homogêneos de grau n é feito com ênfase nos casos de grau 0 e 1, ainda no caso de grau 1 são apresentadas suas formas normais. Simetrias de 1-formas lineares são também estudadas e relacionadas com as simetrias dos seus campos tangente e ortogonal.
Fedrizzi, Ennio. „Partial differential equations and noise“. Paris 7, 2012. http://www.theses.fr/2012PA077176.
Der volle Inhalt der QuelleIn this work we present examples of the effects of noise on the solution of a partial differential equation in three different settings. We first consider random initial conditions for two nonlinear dispersive partial differential equations, the nonlinear Schrodinger equation and the Korteweg - de Vries equation, and analyze their effects on some special solutions, the soliton solutions. The second case considered is a linear PDE, the wave equation, with random initial conditions. We show that special random initial conditions allow to I substantially decrease the computational and data storage costs of an algorithm to solve the inverse problem based on the boundary measurements of the solution of this equation. Finally, the third example considered is that of the linear transport equation with a singular drift term, where we will show that the addition of a multiplicative noise term forbids the blow up of solutions, under very weak hypothesis for which we have finite-time blow up of solutions in the deterministic case
Howard, Tamani M. „Hyperbolic Monge-Ampère Equation“. Thesis, University of North Texas, 2006. https://digital.library.unt.edu/ark:/67531/metadc5322/.
Der volle Inhalt der QuelleZhang, Wenkui. „Numerical analysis of delay differential and integro-differential equations“. Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape11/PQDD_0011/NQ42489.pdf.
Der volle Inhalt der QuelleWhitehead, Andrew John. „Differential equations and differential polynomials in the complex plane“. Thesis, University of Nottingham, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.273112.
Der volle Inhalt der QuelleZhang, Qi. „Stationary solutions of stochastic partial differential equations and infinite horizon backward doubly stochastic differential equations“. Thesis, Loughborough University, 2008. https://dspace.lboro.ac.uk/2134/34040.
Der volle Inhalt der QuelleMu, Tingshu. „Backward stochastic differential equations and applications : optimal switching, stochastic games, partial differential equations and mean-field“. Thesis, Le Mans, 2020. http://www.theses.fr/2020LEMA1023.
Der volle Inhalt der QuelleThis thesis is related to Doubly Reflected Backward Stochastic Differential Equations (DRBSDEs) with two obstacles and their applications in zero-sum stochastic switching games, systems of partial differential equations, mean-field problems.There are two parts in this thesis. The first part deals with optimal stochastic switching and is composed of two works. In the first work we prove the existence of the solution of a system of DRBSDEs with bilateral interconnected obstacles in a probabilistic framework. This problem is related to a zero-sum switching game. Then we tackle the problem of the uniqueness of the solution. Finally, we apply the obtained results and prove that, without the usual monotonicity condition, the associated PDE system has a unique solution in viscosity sense. In the second work, we also consider a system of DRBSDEs with bilateral interconnected obstacles in the markovian framework. The difference between this work and the first one lies in the fact that switching does not work in the same way. In this second framework, when switching is operated, the system is put in the following state regardless of which player decides to switch. This difference is fundamental and largely complicates the problem of the existence of the solution of the system. Nevertheless, in the Markovian framework we show this existence and give a uniqueness result by the Perron’s method. Later on, two particular switching games are analyzed.In the second part we study a one-dimensional Reflected BSDE with two obstacles of mean-field type. By the fixed point method, we show the existence and uniqueness of the solution in connection with the integrality of the data
Mohrenschildt, Martin von. „Symbolic solutions of discontinuous differential equations /“. [S.l.] : [s.n.], 1994. http://e-collection.ethbib.ethz.ch/show?type=diss&nr=10768.
Der volle Inhalt der QuelleFontana, Gaia. „Traffic waves and delay differential equations“. Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2020. http://amslaurea.unibo.it/21211/.
Der volle Inhalt der QuelleGehrs, Kai Frederik. „Algorithmic methods for ordinary differential equations“. [S.l.] : [s.n.], 2006. http://ubdata.uni-paderborn.de/ediss/17/2007/gehrs.
Der volle Inhalt der QuelleTarkhanov, Nikolai. „Unitary solutions of partial differential equations“. Universität Potsdam, 2005. http://opus.kobv.de/ubp/volltexte/2009/2985/.
Der volle Inhalt der QuelleNg, Chee Loong. „Parameter estimation in ordinary differential equations“. Texas A&M University, 2004. http://hdl.handle.net/1969.1/388.
Der volle Inhalt der QuelleEnstedt, Mattias. „Selected Topics in Partial Differential Equations“. Doctoral thesis, Uppsala universitet, Matematiska institutionen, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-145763.
Der volle Inhalt der QuelleI den tryckta boken har förlag felaktigt angivits som Acta Universitatis Upsaliensis.
Taylor, S. Richard. „Probabilistic Properties of Delay Differential Equations“. Thesis, University of Waterloo, 2004. http://hdl.handle.net/10012/1183.
Der volle Inhalt der QuelleHead, Gerald. „Uniqueness of Solutions of Differential Equations“. TopSCHOLAR®, 1995. http://digitalcommons.wku.edu/theses/913.
Der volle Inhalt der QuelleRassias, Stamatiki. „Stochastic functional differential equations and applications“. Thesis, University of Strathclyde, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.486536.
Der volle Inhalt der QuelleGuo, Yujin. „Partial differential equations of electrostatic MEMS“. Thesis, University of British Columbia, 2007. http://hdl.handle.net/2429/31315.
Der volle Inhalt der QuelleScience, Faculty of
Mathematics, Department of
Graduate
Keane, Therese Alison Mathematics & Statistics Faculty of Science UNSW. „Combat modelling with partial differential equations“. Awarded By:University of New South Wales. Mathematics & Statistics, 2009. http://handle.unsw.edu.au/1959.4/43086.
Der volle Inhalt der QuelleArslan, Sevgi. „Nonlinear Differential Equations with Biological Applications“. Thesis, Linnéuniversitetet, Institutionen för matematik (MA), 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-28410.
Der volle Inhalt der QuelleYung, Tamara. „Traffic Modelling Using Parabolic Differential Equations“. Thesis, Linköpings universitet, Kommunikations- och transportsystem, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-102745.
Der volle Inhalt der QuelleRon, Eyal [Verfasser]. „Hysteresis-Delay Differential Equations / Eyal Ron“. Berlin : Freie Universität Berlin, 2016. http://d-nb.info/1121588026/34.
Der volle Inhalt der QuelleHofmanová, Martina. „Degenerate parabolic stochastic partial differential equations“. Phd thesis, École normale supérieure de Cachan - ENS Cachan, 2013. http://tel.archives-ouvertes.fr/tel-00916580.
Der volle Inhalt der QuelleSeiß, Matthias [Verfasser]. „Root parametrized differential equations / Matthias Seiß“. Kassel : Universitätsbibliothek Kassel, 2012. http://d-nb.info/1028081170/34.
Der volle Inhalt der QuelleWilliams, David Robert Emlyn. „Differential equations driven by discontiuous paths“. Thesis, Imperial College London, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.300842.
Der volle Inhalt der QuelleStoleriu, Iulian. „Integro-differential equations in materials science“. Thesis, University of Strathclyde, 2001. http://oleg.lib.strath.ac.uk:80/R/?func=dbin-jump-full&object_id=21413.
Der volle Inhalt der QuelleWu, Chengfa, und 吳成發. „Meromorphic solutions of complex differential equations“. Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2014. http://hdl.handle.net/10722/206466.
Der volle Inhalt der Quellepublished_or_final_version
Mathematics
Doctoral
Doctor of Philosophy
Adamopoulou, Panagiota-Maria. „Differential equations and quantum integrable systems“. Thesis, University of Kent, 2013. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.655223.
Der volle Inhalt der QuelleKirby, P. J. „The theory of exponential differential equations“. Thesis, University of Oxford, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.433471.
Der volle Inhalt der QuelleLloyd, David J. B. „Localised solutions of partial differential equations“. Thesis, University of Bristol, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.434765.
Der volle Inhalt der QuelleZhu, Wei. „Fractional differential equations in risk theory“. Thesis, University of Liverpool, 2018. http://livrepository.liverpool.ac.uk/3018514/.
Der volle Inhalt der QuelleLin, Kevin K. (Kevin Kwei-yu) 1974. „Coordinate-independent computations on differential equations“. Thesis, Massachusetts Institute of Technology, 1997. http://hdl.handle.net/1721.1/42798.
Der volle Inhalt der QuelleIncludes bibliographical references (v. 2, p. 512-514).
by Kevin K. Lin.
M.Eng.
Désilles, Gaël 1971. „Differential Kolmogorov equations for transiting processes“. Thesis, Massachusetts Institute of Technology, 1998. http://hdl.handle.net/1721.1/49643.
Der volle Inhalt der Quelle