Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Differential equations, Parabolic.

Zeitschriftenartikel zum Thema „Differential equations, Parabolic“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Differential equations, Parabolic" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

Bonafede, Salvatore, und Salvatore A. Marano. „Implicit parabolic differential equations“. Bulletin of the Australian Mathematical Society 51, Nr. 3 (Juni 1995): 501–9. http://dx.doi.org/10.1017/s0004972700014349.

Der volle Inhalt der Quelle
Annotation:
Let QT = ω x (0, T), where ω is a bounded domain in ℝn (n ≥ 3) having the cone property and T is a positive real number; let Y be a nonempty, closed connected and locally connected subset of ℝh; let f be a real-valued function defined in QT × ℝh × ℝnh × Y; let ℒ be a linear, second order, parabolic operator. In this paper we establish the existence of strong solutions (n + 2 ≤ p < + ∞) to the implicit parabolic differential equationwith the homogeneus Cauchy-Dirichlet conditions where u = (u1, u2, …, uh), Dxu = (Dxu1, Dxu2, …, Dxuh), Lu = (ℒu1, ℒu2, … ℒuh).
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

N O, Onuoha. „Transformation of Parabolic Partial Differential Equations into Heat Equation Using Hopf Cole Transform“. International Journal of Science and Research (IJSR) 12, Nr. 6 (05.06.2023): 1741–43. http://dx.doi.org/10.21275/sr23612082710.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Ishii, Katsuyuki, Michel Pierre und Takashi Suzuki. „Quasilinear Parabolic Equations Associated with Semilinear Parabolic Equations“. Mathematics 11, Nr. 3 (02.02.2023): 758. http://dx.doi.org/10.3390/math11030758.

Der volle Inhalt der Quelle
Annotation:
We formulate a quasilinear parabolic equation describing the behavior of the global-in-time solution to a semilinear parabolic equation. We study this equation in accordance with the blow-up and quenching patterns of the solution to the original semilinear parabolic equation. This quasilinear equation is new in the theory of partial differential equations and presents several difficulties for mathematical analysis. Two approaches are examined: functional analysis and a viscosity solution.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Rubio, Gerardo. „The Cauchy-Dirichlet Problem for a Class of Linear Parabolic Differential Equations with Unbounded Coefficients in an Unbounded Domain“. International Journal of Stochastic Analysis 2011 (22.06.2011): 1–35. http://dx.doi.org/10.1155/2011/469806.

Der volle Inhalt der Quelle
Annotation:
We consider the Cauchy-Dirichlet problem in [0,∞)×D for a class of linear parabolic partial differential equations. We assume that D⊂ℝd is an unbounded, open, connected set with regular boundary. Our hypotheses are unbounded and locally Lipschitz coefficients, not necessarily differentiable, with continuous data and local uniform ellipticity. We construct a classical solution to the nonhomogeneous Cauchy-Dirichlet problem using stochastic differential equations and parabolic differential equations in bounded domains.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Ashyralyev, Allaberen, und Ülker Okur. „Stability of Stochastic Partial Differential Equations“. Axioms 12, Nr. 7 (24.07.2023): 718. http://dx.doi.org/10.3390/axioms12070718.

Der volle Inhalt der Quelle
Annotation:
In this paper, we study the stability of the stochastic parabolic differential equation with dependent coefficients. We consider the stability of an abstract Cauchy problem for the solution of certain stochastic parabolic differential equations in a Hilbert space. For the solution of the initial-boundary value problems (IBVPs), we obtain the stability estimates for stochastic parabolic equations with dependent coefficients in specific applications.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Klevchuk, I. I. „Existence and stability of traveling waves in parabolic systems of differential equations with weak diffusion“. Carpathian Mathematical Publications 14, Nr. 2 (30.12.2022): 493–503. http://dx.doi.org/10.15330/cmp.14.2.493-503.

Der volle Inhalt der Quelle
Annotation:
The aim of the present paper is to investigate of some properties of periodic solutions of a nonlinear autonomous parabolic systems with a periodic condition. We investigate parabolic systems of differential equations using an integral manifolds method of the theory of nonlinear oscillations. We prove the existence of periodic solutions in an autonomous parabolic system of differential equations with weak diffusion on the circle. We study the existence and stability of an arbitrarily large finite number of cycles for a parabolic system with weak diffusion. The periodic solution of parabolic equation is sought in the form of traveling wave. A representation of the integral manifold is obtained. We seek a solution of parabolic system with the periodic condition in the form of a Fourier series in the complex form and introduce a norm in the space of the coefficients in the Fourier expansion. We use the normal forms method in the general parabolic system of differential equations with retarded argument and weak diffusion. We use bifurcation theory for delay differential equations and quasilinear parabolic equations. The existence of periodic solutions in an autonomous parabolic system of differential equations on the circle with retarded argument and small diffusion is proved. The problems of existence and stability of traveling waves in the parabolic system with retarded argument and weak diffusion are investigated.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Hrytchuk, M., und I. Klevchuk. „BIFURCATION OF TORI FOR PARABOLIC SYSTEMS OF DIFFERENTIAL EQUATIONS WITH WEAK DIFFUSION“. Bukovinian Mathematical Journal 11, Nr. 2 (2023): 100–103. http://dx.doi.org/10.31861/bmj2023.02.10.

Der volle Inhalt der Quelle
Annotation:
The aim of the present article is to investigate of some properties of quasiperiodic solutions of nonlinear autonomous parabolic systems with the periodic condition. The research is devoted to the investigation of parabolic systems of differential equations with the help of integral manifolds method in the theory of nonlinear oscillations. We prove the existence of quasiperiodic solutions in autonomous parabolic system of differential equations with weak diffusion on the circle. We study existence and stability of an arbitrarily large finite number of tori for a parabolic system with weak diffusion. The quasiperiodic solution of parabolic system is sought in the form of traveling wave. A representation of the integral manifold is obtained. We seek a solution of parabolic system with the periodic condition in the form of a Fourier series in the complex form and introduce the norm in the space of the coefficients in the Fourier expansion. We use the normal forms method in the general parabolic system of differential equations with weak diffusion. We use bifurcation theory for ordinary differential equations and quasilinear parabolic equations. The existence of quasiperiodic solutions in an autonomous parabolic system of differential equations on the circle with small diffusion is proved. The problems of existence and stability of traveling waves in the parabolic system with weak diffusion are investigated.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

BOUFOUSSI, B., und N. MRHARDY. „MULTIVALUED STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS VIA BACKWARD DOUBLY STOCHASTIC DIFFERENTIAL EQUATIONS“. Stochastics and Dynamics 08, Nr. 02 (Juni 2008): 271–94. http://dx.doi.org/10.1142/s0219493708002317.

Der volle Inhalt der Quelle
Annotation:
In this paper, we establish by means of Yosida approximation, the existence and uniqueness of the solution of a backward doubly stochastic differential equation whose coefficient contains the subdifferential of a convex function. We will use this result to prove the existence of stochastic viscosity solution for some multivalued parabolic stochastic partial differential equation.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Simon, László, und Willi Jäger. „On non-uniformly parabolic functional differential equations“. Studia Scientiarum Mathematicarum Hungarica 45, Nr. 2 (01.06.2008): 285–300. http://dx.doi.org/10.1556/sscmath.2007.1036.

Der volle Inhalt der Quelle
Annotation:
We consider initial boundary value problems for second order quasilinear parabolic equations where also the main part contains functional dependence on the unknown function and the equations are not uniformly parabolic. The results are generalizations of that of [10]
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Walter, Wolfgang. „Nonlinear parabolic differential equations and inequalities“. Discrete & Continuous Dynamical Systems - A 8, Nr. 2 (2002): 451–68. http://dx.doi.org/10.3934/dcds.2002.8.451.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

Prato, Giuseppe Da, und Alessandra Lunardi. „Stabilizability of integro-differential parabolic equations“. Journal of Integral Equations and Applications 2, Nr. 2 (Juni 1990): 281–304. http://dx.doi.org/10.1216/jie-1990-2-2-281.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

Dynkin, E. B. „Superdiffusions and Parabolic Nonlinear Differential Equations“. Annals of Probability 20, Nr. 2 (April 1992): 942–62. http://dx.doi.org/10.1214/aop/1176989812.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Hofmanová, Martina. „Degenerate parabolic stochastic partial differential equations“. Stochastic Processes and their Applications 123, Nr. 12 (Dezember 2013): 4294–336. http://dx.doi.org/10.1016/j.spa.2013.06.015.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

Blázquez, C. Miguel, und Elías Tuma. „Saddle connections in parabolic differential equations“. Proyecciones (Antofagasta) 13, Nr. 1 (1994): 25–34. http://dx.doi.org/10.22199/s07160917.1994.0001.00005.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

Alicki, R., und D. Makowiec. „Functional integral for parabolic differential equations“. Journal of Physics A: Mathematical and General 18, Nr. 17 (01.12.1985): 3319–25. http://dx.doi.org/10.1088/0305-4470/18/17/012.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

Ibragimov, N. H., S. V. Meleshko und E. Thailert. „Invariants of linear parabolic differential equations“. Communications in Nonlinear Science and Numerical Simulation 13, Nr. 2 (März 2008): 277–84. http://dx.doi.org/10.1016/j.cnsns.2006.03.017.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

Chow, S. N., K. N. Lu und J. Malletparet. „Floquet Theory for Parabolic Differential Equations“. Journal of Differential Equations 109, Nr. 1 (April 1994): 147–200. http://dx.doi.org/10.1006/jdeq.1994.1047.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

Selitskii, Anton. „ON SOLVABILITY OF PARABOLIC FUNCTIONAL DIFFERENTIAL EQUATIONS IN BANACH SPACES (II)“. Eurasian Mathematical Journal 11, Nr. 2 (2020): 86–92. http://dx.doi.org/10.32523/2077-9879-2020-11-2-86-92.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

Wang, Hanxiao. „Extended backward stochastic Volterra integral equations, Quasilinear parabolic equations, and Feynman–Kac formula“. Stochastics and Dynamics 21, Nr. 01 (11.03.2020): 2150004. http://dx.doi.org/10.1142/s0219493721500040.

Der volle Inhalt der Quelle
Annotation:
This paper is concerned with the relationship between backward stochastic Volterra integral equations (BSVIEs, for short) and a kind of non-local quasilinear (and possibly degenerate) parabolic equations. As a natural extension of BSVIEs, the extended BSVIEs (EBSVIEs, for short) are introduced and investigated. Under some mild conditions, the well-posedness of EBSVIEs is established and some regularity results of the adapted solution to EBSVIEs are obtained via Malliavin calculus. Then it is shown that a given function expressed in terms of the adapted solution to EBSVIEs uniquely solves a certain system of non-local parabolic equations, which generalizes the famous nonlinear Feynman–Kac formula in Pardoux–Peng [Backward stochastic differential equations and quasilinear parabolic partial differential equations, in Stochastic Partial Differential Equations and Their Applications (Springer, 1992), pp. 200–217].
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

Cywiak-Códova, D., G. Gutiérrez-Juárez und And M. Cywiak-Garbarcewicz. „Spectral generalized function method for solving homogeneous partial differential equations with constant coefficients“. Revista Mexicana de Física E 17, Nr. 1 Jan-Jun (28.01.2020): 11. http://dx.doi.org/10.31349/revmexfise.17.11.

Der volle Inhalt der Quelle
Annotation:
A method based on a generalized function in Fourier space gives analytical solutions to homogeneous partial differential equations with constant coefficients of any order in any number of dimensions. The method exploits well-known properties of the Dirac delta, reducing the differential mathematical problem into the factorization of an algebraic expression that finally has to be integrated. In particular, the method was utilized to solve the most general homogeneous second order partial differential equation in Cartesian coordinates, finding a general solution for non-parabolic partial differential equations, which can be seen as a generalization of d'Alambert solution. We found that the traditional classification, i.e., parabolic, hyperbolic and elliptic, is not necessary reducing the classification to only parabolic and non-parabolic cases. We put special attention for parabolic partial differential equations, analyzing the general 1D homogeneous solution of the Photoacoustic and Photothermal equations in the frequency and time domain. Finally, we also used the method to solve Helmholtz equation in cylindrical coordinates, showing that it can be used in other coordinates systems.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

Kehaili, Abdelkader, Ali Hakem und Abdelkader Benali. „Homotopy Perturbation Transform method for solving the partial and the time-fractional differential equations with variable coefficients“. Global Journal of Pure and Applied Sciences 26, Nr. 1 (01.06.2020): 35–55. http://dx.doi.org/10.4314/gjpas.v26i1.6.

Der volle Inhalt der Quelle
Annotation:
In this paper, we present the exact solutions of the Parabolic-like equations and Hyperbolic-like equations with variable coefficients, by using Homotopy perturbation transform method (HPTM). Finally, we extend the results to the time-fractional differential equations. Keywords: Caputo’s fractional derivative, fractional differential equations, homotopy perturbation transform method, hyperbolic-like equation, Laplace transform, parabolic-like equation.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

Shakhmurov, Veli. „Regularity properties of nonlocal fractional differential equations and applications“. Georgian Mathematical Journal 29, Nr. 2 (05.02.2022): 275–84. http://dx.doi.org/10.1515/gmj-2021-2128.

Der volle Inhalt der Quelle
Annotation:
Abstract The regularity properties of nonlocal fractional elliptic and parabolic equations in vector-valued Besov spaces are studied. The uniform B p , q s B_{p,q}^{s} -separability properties and sharp resolvent estimates are obtained for abstract elliptic operator in terms of fractional derivatives. In particular, it is proven that the fractional elliptic operator generated by these equations is sectorial and also is a generator of an analytic semigroup. Moreover, the maximal regularity properties of the nonlocal fractional abstract parabolic equation are established. As an application, the nonlocal anisotropic fractional differential equations and the system of nonlocal fractional parabolic equations are studied.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

Bahuguna, D., und V. Raghavendra. „Rothe’s method to parabolic integra-differential equations via abstract integra-differential equations“. Applicable Analysis 33, Nr. 3-4 (Januar 1989): 153–67. http://dx.doi.org/10.1080/00036818908839869.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

Turkyilmazoglu, M. „Parabolic Partial Differential Equations with Nonlocal Initial and Boundary Values“. International Journal of Computational Methods 12, Nr. 05 (Oktober 2015): 1550024. http://dx.doi.org/10.1142/s0219876215500243.

Der volle Inhalt der Quelle
Annotation:
Parabolic partial differential equations possessing nonlocal initial and boundary specifications are used to model some real-life applications. This paper focuses on constructing fast and accurate analytic approximations via an easy, elegant and powerful algorithm based on a double power series representation of the solution via ordinary polynomials. Consequently, a parabolic partial differential equation is reduced to a system involving algebraic equations. Exact solutions are obtained when the solutions are themselves polynomials. Some parabolic partial differential equations are treated by the technique to judge its validity and also to measure its accuracy as compared to the existing methods.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

Netka, Milena. „Differential difference inequalities related to parabolic functional differential equations“. Opuscula Mathematica 30, Nr. 1 (2010): 95. http://dx.doi.org/10.7494/opmath.2010.30.1.95.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

Matusik, Milena. „Iterative methods for parabolic functional differential equations“. Applicationes Mathematicae 40, Nr. 2 (2013): 221–35. http://dx.doi.org/10.4064/am40-2-5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

Anikushyn, A. V., und A. L. Hulianytskyi. „Generalized solvability of parabolic integro-differential equations“. Differential Equations 50, Nr. 1 (Januar 2014): 98–109. http://dx.doi.org/10.1134/s0012266114010133.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

Lord, Gabriel J., und Tony Shardlow. „Postprocessing for Stochastic Parabolic Partial Differential Equations“. SIAM Journal on Numerical Analysis 45, Nr. 2 (Januar 2007): 870–89. http://dx.doi.org/10.1137/050640138.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

Garroni, Maria Giovanna, und José Luis Menaldi. „Regularizing effect for integro-differential parabolic equations“. Communications in Algebra 18, Nr. 12 (1993): 2023–50. http://dx.doi.org/10.1080/00927879308824122.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
30

Gear, C. W., und Ioannis G. Kevrekidis. „Telescopic projective methods for parabolic differential equations“. Journal of Computational Physics 187, Nr. 1 (Mai 2003): 95–109. http://dx.doi.org/10.1016/s0021-9991(03)00082-2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
31

Atkinson, Kendall, Olaf Hansen und David Chien. „A spectral method for parabolic differential equations“. Numerical Algorithms 63, Nr. 2 (27.07.2012): 213–37. http://dx.doi.org/10.1007/s11075-012-9620-8.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
32

Al Horani, Mohammed, Angelo Favini und Hiroki Tanabe. „Parabolic First and Second Order Differential Equations“. Milan Journal of Mathematics 84, Nr. 2 (27.10.2016): 299–315. http://dx.doi.org/10.1007/s00032-016-0260-7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
33

Malek, St�phane. „Hypergeometric Functions and Parabolic Partial Differential Equations“. Journal of Dynamical and Control Systems 11, Nr. 2 (April 2005): 253–62. http://dx.doi.org/10.1007/s10883-005-4173-y.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
34

Simon, L. „On higher order parabolic functional differential equations“. Periodica Mathematica Hungarica 31, Nr. 1 (August 1995): 53–62. http://dx.doi.org/10.1007/bf01876354.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
35

Zuur, E. A. H. „Time-step sequences for parabolic differential equations“. Applied Numerical Mathematics 17, Nr. 2 (Mai 1995): 173–86. http://dx.doi.org/10.1016/0168-9274(95)00012-j.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
36

Bayer, Christian, Denis Belomestny, Martin Redmann, Sebastian Riedel und John Schoenmakers. „Solving linear parabolic rough partial differential equations“. Journal of Mathematical Analysis and Applications 490, Nr. 1 (Oktober 2020): 124236. http://dx.doi.org/10.1016/j.jmaa.2020.124236.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
37

Lefton, L. E., und V. L. Shapiro. „Resonance and Quasilinear Parabolic Partial Differential Equations“. Journal of Differential Equations 101, Nr. 1 (Januar 1993): 148–77. http://dx.doi.org/10.1006/jdeq.1993.1009.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
38

Qahremani, E., T. Allahviranloo, S. Abbasbandy und N. Ahmady. „A study on the fuzzy parabolic Volterra partial integro-differential equations“. Journal of Intelligent & Fuzzy Systems 40, Nr. 1 (04.01.2021): 1639–54. http://dx.doi.org/10.3233/jifs-201125.

Der volle Inhalt der Quelle
Annotation:
This paper is concerned with aspects of the analytical fuzzy solutions of the parabolic Volterra partial integro-differential equations under generalized Hukuhara partial differentiability and it consists of two parts. The first part of this paper deals with aspects of background knowledge in fuzzy mathematics, with emphasis on the generalized Hukuhara partial differentiability. The existence and uniqueness of the solutions of the fuzzy Volterra partial integro-differential equations by considering the type of [gH - p]-differentiability of solutions are proved in this part. The second part is concerned with the central themes of this paper, using the fuzzy Laplace transform method for solving the fuzzy parabolic Volterra partial integro-differential equations with emphasis on the type of [gH - p]-differentiability of solution. We test the effectiveness of method by solving some fuzzy Volterra partial integro-differential equations of parabolic type.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
39

M. El-Borai, Mahmoud, Hamed Kamal Awad und Randa Hamdy M. Ali. „Method of Averaging for Some Parabolic Partial Differential Equations“. Academic Journal of Applied Mathematical Sciences, Nr. 61 (25.01.2020): 1–4. http://dx.doi.org/10.32861/ajams.61.1.4.

Der volle Inhalt der Quelle
Annotation:
Quantitative and qualitative analysis of the Averaging methods for the parabolic partial differential equation appears as an exciting field of the investigation. In this paper, we generalize some known results due to Krol on the averaging methods and use them to solve the parabolic partial differential equation.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
40

Barletta, Giuseppina. „Parabolic equations with discontinuous nonlinearities“. Bulletin of the Australian Mathematical Society 63, Nr. 2 (April 2001): 219–28. http://dx.doi.org/10.1017/s0004972700019286.

Der volle Inhalt der Quelle
Annotation:
In this paper we deal with the homogeneous Cauchy-Dirichlet problem for a class of parabolic equations with either Carathéodory or discontinuous nonlinear terms. We then present an application and explicitly point out an existence result for a differential inclusion, which can be applied to the classical Stefan problem.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
41

R.Ramesh Rao, T. „Numerical Solution of Time Fractional Parabolic Differential Equations“. International Journal of Engineering & Technology 7, Nr. 4.10 (02.10.2018): 790. http://dx.doi.org/10.14419/ijet.v7i4.10.26117.

Der volle Inhalt der Quelle
Annotation:
In this paper, we study the coupling of an approximate analytical technique called reduced differential transform (RDT) with fractional complex transform. The present method reduces the time fractional differential equations in to integer order differential equations. The fractional derivatives are defined in Jumaries modified Riemann-Liouville sense. Result shows that the present technique is effective and powerful for handling the fractional order differential equations.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
42

Hu, Zhanrong, und Zhen Jin. „Almost Automorphic Mild Solutions to Neutral Parabolic Nonautonomous Evolution Equations with Nondense Domain“. Discrete Dynamics in Nature and Society 2013 (2013): 1–10. http://dx.doi.org/10.1155/2013/183420.

Der volle Inhalt der Quelle
Annotation:
Combining the exponential dichotomy of evolution family, composition theorems for almost automorphic functions with Banach fixed point theorem, we establish new existence and uniqueness theorems for almost automorphic mild solutions to neutral parabolic nonautonomous evolution equations with nondense domain. A unified framework is set up to investigate the existence and uniqueness of almost automorphic mild solutions to some classes of parabolic partial differential equations and neutral functional differential equations.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
43

Topolski, Krzysztof A. „On the existence of classical solutions for differential-functional IBVP“. Abstract and Applied Analysis 3, Nr. 3-4 (1998): 363–75. http://dx.doi.org/10.1155/s1085337598000608.

Der volle Inhalt der Quelle
Annotation:
We consider the initial-boundary value problem for second order differential-functional equations of parabolic type. Functional dependence in the equation is of the Hale type. By using Leray-Schauder theorem we prove the existence of classical solutions. Our formulation and results cover a large class of parabolic problems both with a deviated argument and integro-differential equations.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
44

Hensel, Edward. „Inverse Problems for Multi-Dimensional Parabolic Partial Differential Equations“. Applied Mechanics Reviews 41, Nr. 6 (01.06.1988): 263–69. http://dx.doi.org/10.1115/1.3151898.

Der volle Inhalt der Quelle
Annotation:
The parabolic inverse boundary value problem is defined, and the major characteristics common to multi-dimensional parabolic inverse problems are discussed. These include sensitivity to measurement error and noise, the value of future time information, the nonuniqueness of estimates, and the effects of temperature dependent thermal properties. The importance of quantifying resolution degradation and estimate variances is discussed.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
45

Shakhmurov, Veli B. „Maximal regular boundary value problems in Banach-valued function spaces and applications“. International Journal of Mathematics and Mathematical Sciences 2006 (2006): 1–26. http://dx.doi.org/10.1155/ijmms/2006/92134.

Der volle Inhalt der Quelle
Annotation:
The nonlocal boundary value problems for differential operator equations of second order with dependent coefficients are studied. The principal parts of the differential operators generated by these problems are non-selfadjoint. Several conditions for the maximal regularity and the Fredholmness in Banach-valuedLp-spaces of these problems are given. By using these results, the maximal regularity of parabolic nonlocal initial boundary value problems is shown. In applications, the nonlocal boundary value problems for quasi elliptic partial differential equations, nonlocal initial boundary value problems for parabolic equations, and their systems on cylindrical domain are studied.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
46

Lee, Min Ho. „Mixed automorphic forms and differential equations“. International Journal of Mathematics and Mathematical Sciences 13, Nr. 4 (1990): 661–68. http://dx.doi.org/10.1155/s0161171290000916.

Der volle Inhalt der Quelle
Annotation:
We construct mixed automorphic forms associated to a certain class of nonhomogeneous linear ordinary differential equations. We also establish an isomorphism between the space of mixed automorphic forms of the second kind modulo exact forms nd a certain parabolic cohomology explicitly in terms of the periods of mixed automorphic forms.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
47

Truman, Aubrey, FengYu Wang, JiangLun Wu und Wei Yang. „A link of stochastic differential equations to nonlinear parabolic equations“. Science China Mathematics 55, Nr. 10 (09.08.2012): 1971–76. http://dx.doi.org/10.1007/s11425-012-4463-2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
48

Ruaa Shawqi Ismael, Ali Al -Fayadh und Saad M. Salman. „Solving Partial Differential Equations by using Efficient Hybrid Transform Iterative Method“. Tikrit Journal of Pure Science 29, Nr. 3 (25.06.2024): 75–83. http://dx.doi.org/10.25130/tjps.v29i3.1566.

Der volle Inhalt der Quelle
Annotation:
The aim of this article is to propose an efficient hybrid transform iteration method that combines the homotopy perturbation approach, the variational iteration method, and the Aboodh transform forsolving various partial differential equations. The Korteweg-de Vries (KdV), modified KdV, coupled KdV, and coupled pseudo-parabolic equations are given as examples to show how effective and practical the suggested method is. The obtained exact solitary solutions of the KdV equations as well as the exact solution of the coupled pseudo-parabolic equations are identified as a convergent series with easily calculable components. identified as a convergent series with easily calculable components. When used to solve KdV , Wave like and Pseudo – Parabolic equations , the proposed method helps to avoid Problems that frequently arise when determining the Lagrange Multiplier and the difficult integration usedin the variation iteration method , as well as the need to use the transform convolution theorem.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
49

Van Brunt, B., D. Pidgeon, M. Vlieg-Hulstman und W. D. Halford. „Conservation laws for second-order parabolic partial differential equations“. ANZIAM Journal 45, Nr. 3 (Januar 2004): 333–48. http://dx.doi.org/10.1017/s1446181100013407.

Der volle Inhalt der Quelle
Annotation:
AbstractConservation laws for partial differential equations can be characterised by an operator, the characteristic and a condition involving the adjoint of the Fréchet derivatives of this operator and the operator defining the partial differential equation. This approach was developed by Anco and Bluman and we exploit it to derive conditions for second-order parabolic partial differential equations to admit conservation laws. We show that such partial differential equations admit conservation laws only if the time derivative appears in one of two ways. The adjoint condition, however, is a biconditional, and we use this to prove necessary and sufficient conditions for a certain class of partial differential equations to admit a conservation law.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
50

Ameer, Zainab Abdel, und Sameer Qasim Hasan. „Solution of Parabolic Differential Equations with Dirichlet Control Boundary problem“. Journal of Physics: Conference Series 2322, Nr. 1 (01.08.2022): 012047. http://dx.doi.org/10.1088/1742-6596/2322/1/012047.

Der volle Inhalt der Quelle
Annotation:
Abstract In this paper we study a system of two degenerate parabolic equations which defined in a bounded domain. Using concepts of parabolic for finding existence of the solutions of the Dirichlet control boundary problem and the existence of Periodic time-solutions were achieved with results presented in detail for the proposed system.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie