Auswahl der wissenschaftlichen Literatur zum Thema „Differential equations“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Differential equations" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Zeitschriftenartikel zum Thema "Differential equations"

1

Tabor, Jacek. „Differential equations in metric spaces“. Mathematica Bohemica 127, Nr. 2 (2002): 353–60. http://dx.doi.org/10.21136/mb.2002.134163.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Andres, Jan, und Pavel Ludvík. „Topological entropy and differential equations“. Archivum Mathematicum, Nr. 1 (2023): 3–10. http://dx.doi.org/10.5817/am2023-1-3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Laksmikantham, V. „Set differential equations versus fuzzy differential equations“. Applied Mathematics and Computation 164, Nr. 2 (Mai 2005): 277–94. http://dx.doi.org/10.1016/j.amc.2004.06.068.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Parasidis, I. N. „EXTENSION AND DECOMPOSITION METHOD FOR DIFFERENTIAL AND INTEGRO-DIFFERENTIAL EQUATIONS“. Eurasian Mathematical Journal 10, Nr. 3 (2019): 48–67. http://dx.doi.org/10.32523/2077-9879-2019-10-3-48-67.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Chrastinová, Veronika, und Václav Tryhuk. „Parallelisms between differential and difference equations“. Mathematica Bohemica 137, Nr. 2 (2012): 175–85. http://dx.doi.org/10.21136/mb.2012.142863.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Tumajer, František. „Controllable systems of partial differential equations“. Applications of Mathematics 31, Nr. 1 (1986): 41–53. http://dx.doi.org/10.21136/am.1986.104183.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Kurzweil, Jaroslav, und Alena Vencovská. „Linear differential equations with quasiperiodic coefficients“. Czechoslovak Mathematical Journal 37, Nr. 3 (1987): 424–70. http://dx.doi.org/10.21136/cmj.1987.102170.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Sergey, Piskarev, und Siegmund Stefan. „UNSTABLE MANIFOLDS FOR FRACTIONAL DIFFERENTIAL EQUATIONS“. Eurasian Journal of Mathematical and Computer Applications 10, Nr. 3 (27.09.2022): 58–72. http://dx.doi.org/10.32523/2306-6172-2022-10-3-58-72.

Der volle Inhalt der Quelle
Annotation:
We prove the existence of unstable manifolds for an abstract semilinear fractional differential equation Dαu(t) = Au(t) + f(u(t)), u(0) = u 0 , on a Banach space. We then develop a general approach to establish a semidiscrete approximation of unstable manifolds. The main assumption of our results are naturally satisfied. In particular, this is true for operators with compact resolvents and can be verified for finite elements as well as finite differences methods.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Džurina, Jozef. „Comparison theorems for functional differential equations“. Mathematica Bohemica 119, Nr. 2 (1994): 203–11. http://dx.doi.org/10.21136/mb.1994.126077.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Saltas, Vassilios, Vassilios Tsiantos und Dimitrios Varveris. „Solving Differential Equations and Systems of Differential Equations with Inverse Laplace Transform“. European Journal of Mathematics and Statistics 4, Nr. 3 (14.06.2023): 1–8. http://dx.doi.org/10.24018/ejmath.2023.4.3.192.

Der volle Inhalt der Quelle
Annotation:
The inverse Laplace transform enables the solution of ordinary linear differential equations as well as systems of ordinary linear differentials with applications in the physical and engineering sciences. The Laplace transform is essentially an integral transform which is introduced with the help of a suitable generalized integral. The ultimate goal of this work is to introduce the reader to some of the basic ideas and applications for solving initially ordinary differential equations and then systems of ordinary linear differential equations.
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Dissertationen zum Thema "Differential equations"

1

Yantır, Ahmet Ufuktepe Ünal. „Oscillation theory for second order differential equations and dynamic equations on time scales/“. [s.l.]: [s.n.], 2004. http://library.iyte.edu.tr/tezler/master/matematik/T000418.pdf.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Dareiotis, Anastasios Constantinos. „Stochastic partial differential and integro-differential equations“. Thesis, University of Edinburgh, 2015. http://hdl.handle.net/1842/14186.

Der volle Inhalt der Quelle
Annotation:
In this work we present some new results concerning stochastic partial differential and integro-differential equations (SPDEs and SPIDEs) that appear in non-linear filtering. We prove existence and uniqueness of solutions of SPIDEs, we give a comparison principle and we suggest an approximation scheme for the non-local integral operators. Regarding SPDEs, we use techniques motivated by the work of De Giorgi, Nash, and Moser, in order to derive global and local supremum estimates, and a weak Harnack inequality.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Zheng, Ligang. „Almost periodic differential equations“. Thesis, University of Ottawa (Canada), 1990. http://hdl.handle.net/10393/5766.

Der volle Inhalt der Quelle
Annotation:
In this thesis, we will study almost periodic differential equations. The motivation to study such a subject is mainly due to its wide applications. We will focus our attention on the topics of boundedness, almost periodicity, disconjugacy and the non-existence of periodic solutions for the n-body problem. Our main investigation in chapter 1 deals with Bohr almost periodic differential equations. In chapter 2, we will study Stepanov almost periodic differential equations, which is a wider class than Bohr's class and we will give a general Floquet theorem in some special cases. We devote our effort in the last chapter to the special n-body problem-if the configuration remains similar throughout the motion and show some applications of oscillation theory of differential equations to the n-body problem.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Kopfová, Jana. „Differential equations involving hysteresis“. Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk2/tape15/PQDD_0007/NQ29055.pdf.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

MARINO, GISELA DORNELLES. „COMPLEX ORDINARY DIFFERENTIAL EQUATIONS“. PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2007. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=10175@1.

Der volle Inhalt der Quelle
Annotation:
COORDENAÇÃO DE APERFEIÇOAMENTO DO PESSOAL DE ENSINO SUPERIOR
Neste texto estudamos diversos aspectos de singularidades de campos vetoriais holomorfos em dimensão 2. Discutimos detalhadamente o caso particular de uma singularidade sela-nó e o papel desempenhado pelas normalizações setoriais. Isto nos conduz à classificação analítica de difeomorfismos tangentes à identidade. seguir abordamos o Teorema de Seidenberg, tratando da redução de singularidades degeneradas em singularidades simples, através do procedimento de blow-up. Por fim, estudamos a demonstração do Teorema de Mattei-Moussu, acerca da existência de integrais primeiras para folheações holomorfas.
In the present text, we study the different aspects of singularities of holomorphic vector fields in dimension 2. We discuss in detail the particular case of a saddle-node singularity and the role of the sectorial normalizations. This leads us to the analytic classiffication of diffeomorphisms which are tangent to the identity. Next, we approach the Seidenberg Theorem, dealing with the reduction of degenerated singularities into simple ones, by means of the blow-up procedure. Finally, we study the proof of the well-known Mattei-Moussu Theorem concerning the existence of first integrals to holomorphic foliations.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Berntson, B. K. „Integrable delay-differential equations“. Thesis, University College London (University of London), 2017. http://discovery.ucl.ac.uk/1566618/.

Der volle Inhalt der Quelle
Annotation:
Delay-differential equations are differential-difference equations in which the derivatives and shifts are taken with respect to the same variable. This thesis is concerned with these equations from the perspective of the theory of integrable systems, and more specifically, Painlevé equations. Both the classical Painlevé equations and their discrete analogues can be obtained as deautonomizations of equations solved by two-parameter families of elliptic functions. In analogy with this paradigm, we consider autonomous delay-differential equations solved by elliptic functions, delay-differential extensions of the Painlevé equations, and the interrelations between these classes of equations. We develop a method to identify delay-differential equations that admit families of elliptic solutions with at least two degrees of parametric freedom and apply it to two natural 16-parameter families of delay-differential equations. Some of the resulting equations are related to known models including the differential-difference sine-Gordon equation and the Volterra lattice; the corresponding new solutions to these and other equations are constructed in a number of examples. Other equations we have identified appear to be new. Bäcklund transformations for the classical Painlevé equations provide a source of delay-differential Painlevé equations. These transformations were previously used to derive discrete Painlevé equations. We use similar methods to identify delay-differential equations with continuum limits to the first classical Painlevé equation. The equations we identify are solved by elliptic functions in particular limits corresponding to the autonomous limit of the classical first Painlevé equation.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Dodds, Niall. „Non-local differential equations“. Thesis, University of Dundee, 2005. https://discovery.dundee.ac.uk/en/studentTheses/9eda08aa-ba49-455f-94b1-36870a1ad956.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Trenn, Stephan. „Distributional differential algebraic equations“. Ilmenau Univ.-Verl, 2009. http://d-nb.info/99693197X/04.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Bahar, Arifah. „Applications of stochastic differential equations and stochastic delay differential equations in population dynamics“. Thesis, University of Strathclyde, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.415294.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Thompson, Jeremy R. (Jeremy Ray). „Physical Motivation and Methods of Solution of Classical Partial Differential Equations“. Thesis, University of North Texas, 1995. https://digital.library.unt.edu/ark:/67531/metadc277898/.

Der volle Inhalt der Quelle
Annotation:
We consider three classical equations that are important examples of parabolic, elliptic, and hyperbolic partial differential equations, namely, the heat equation, the Laplace's equation, and the wave equation. We derive them from physical principles, explore methods of finding solutions, and make observations about their applications.
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Bücher zum Thema "Differential equations"

1

Zhukova, Galina. Differential equations. ru: INFRA-M Academic Publishing LLC., 2020. http://dx.doi.org/10.12737/1072180.

Der volle Inhalt der Quelle
Annotation:
The textbook presents the theory of ordinary differential equations constituting the subject of the discipline "Differential equations". Studied topics: differential equations of first, second, arbitrary order; differential equations; integration of initial and boundary value problems; stability theory of solutions of differential equations and systems. Introduced the basic concepts, proven properties of differential equations and systems. The article presents methods of analysis and solutions. We consider the applications of the obtained results, which are illustrated on a large number of specific tasks. For independent quality control mastering the course material suggested test questions on the theory, exercises and tasks. It is recommended that teachers, postgraduates and students of higher educational institutions, studying differential equations and their applications.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Rahmani-Andebili, Mehdi. Differential Equations. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-07984-9.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Barbu, Viorel. Differential Equations. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-45261-6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Constanda, Christian. Differential Equations. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-50224-3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Ross, Clay C. Differential Equations. New York, NY: Springer New York, 2004. http://dx.doi.org/10.1007/978-1-4757-3949-7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Tikhonov, Andrei N., Adelaida B. Vasil’eva und Alexei G. Sveshnikov. Differential Equations. Berlin, Heidelberg: Springer Berlin Heidelberg, 1985. http://dx.doi.org/10.1007/978-3-642-82175-2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Constanda, Christian. Differential Equations. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-7297-1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Struthers, Allan, und Merle Potter. Differential Equations. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-20506-5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Sánchez, David A., und David A. Sánchez. Differential equations. 2. Aufl. Reading, Mass: Addison-Wesley Pub. Co., 1988.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Brown, Courtney. Differential Equations. 2455 Teller Road, Thousand Oaks California 91320 United States of America: SAGE Publications, Inc., 2007. http://dx.doi.org/10.4135/9781412983914.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Buchteile zum Thema "Differential equations"

1

Weltner, Klaus, Sebastian John, Wolfgang J. Weber, Peter Schuster und Jean Grosjean. „Differential Equations“. In Mathematics for Physicists and Engineers, 275–322. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-54124-7_10.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Kinzel, Wolfgang, und Georg Reents. „Differential Equations“. In Physics by Computer, 115–56. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-642-46839-1_5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Berck, Peter, und Knut Sydsæter. „Differential equations“. In Economists’ Mathematical Manual, 47–54. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-662-02678-6_10.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Bronshtein, Ilja N., Konstantin A. Semendyayev, Gerhard Musiol und Heiner Muehlig. „Differential Equations“. In Handbook of Mathematics, 485–549. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-662-05382-9_9.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Hu, Pei-Chu, und Chung-Chun Yang. „Differential equations“. In Meromorphic Functions over Non-Archimedean Fields, 115–38. Dordrecht: Springer Netherlands, 2000. http://dx.doi.org/10.1007/978-94-015-9415-8_4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Martínez-Guerra, Rafael, Oscar Martínez-Fuentes und Juan Javier Montesinos-García. „Differential Equations“. In Algebraic and Differential Methods for Nonlinear Control Theory, 125–61. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-12025-2_9.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Holden, K., und A. W. Pearson. „Differential Equations“. In Introductory Mathematics for Economics and Business, 319–63. London: Macmillan Education UK, 1992. http://dx.doi.org/10.1007/978-1-349-22357-2_9.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Oberguggenberger, Michael, und Alexander Ostermann. „Differential Equations“. In Analysis for Computer Scientists, 251–66. London: Springer London, 2011. http://dx.doi.org/10.1007/978-0-85729-446-3_19.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Tiller, Michael. „Differential Equations“. In Introduction to Physical Modeling with Modelica, 17–37. Boston, MA: Springer US, 2001. http://dx.doi.org/10.1007/978-1-4615-1561-6_2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Lynch, Stephen. „Differential Equations“. In Dynamical Systems with Applications using MAPLE, 13–34. Boston, MA: Birkhäuser Boston, 2001. http://dx.doi.org/10.1007/978-1-4899-2849-8_2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Konferenzberichte zum Thema "Differential equations"

1

Yoshizawa, T., und J. Kato. „Functional Differential Equations“. In International Symposium on Functional Differential Equations. WORLD SCIENTIFIC, 1991. http://dx.doi.org/10.1142/9789814539647.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

MALGRANGE, B. „DIFFERENTIAL ALGEBRAIC GROUPS“. In Algebraic Approach to Differential Equations. WORLD SCIENTIFIC, 2010. http://dx.doi.org/10.1142/9789814273244_0007.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

GRANGER, MICHEL. „BERNSTEIN-SATO POLYNOMIALS AND FUNCTIONAL EQUATIONS“. In Algebraic Approach to Differential Equations. WORLD SCIENTIFIC, 2010. http://dx.doi.org/10.1142/9789814273244_0006.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Magalhães, L., C. Rocha und L. Sanchez. „Equadiff 95“. In International Conference on Differential Equations. WORLD SCIENTIFIC, 1998. http://dx.doi.org/10.1142/9789814528757.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Perelló, C., C. Simó und J. Solà-Morales. „Equadiff 91“. In International Conference on Differential Equations. WORLD SCIENTIFIC, 1993. http://dx.doi.org/10.1142/9789814537438.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

NARVÁEZ MACARRO, L. „D-MODULES IN DIMENSION 1“. In Algebraic Approach to Differential Equations. WORLD SCIENTIFIC, 2010. http://dx.doi.org/10.1142/9789814273244_0001.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

CASTRO JIMÉNEZ, FRANCISCO J. „MODULES OVER THE WEYL ALGEBRA“. In Algebraic Approach to Differential Equations. WORLD SCIENTIFIC, 2010. http://dx.doi.org/10.1142/9789814273244_0002.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

LÊ, DŨNG TRÁNG, und BERNARD TEISSIER. „GEOMETRY OF CHARACTERISTIC VARIETIES“. In Algebraic Approach to Differential Equations. WORLD SCIENTIFIC, 2010. http://dx.doi.org/10.1142/9789814273244_0003.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

DELABAERE, E. „SINGULAR INTEGRALS AND THE STATIONARY PHASE METHODS“. In Algebraic Approach to Differential Equations. WORLD SCIENTIFIC, 2010. http://dx.doi.org/10.1142/9789814273244_0004.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

JAMBU, MICHEL. „HYPERGEOMETRIC FUNCTIONS AND HYPERPLANE ARRANGEMENTS“. In Algebraic Approach to Differential Equations. WORLD SCIENTIFIC, 2010. http://dx.doi.org/10.1142/9789814273244_0005.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Berichte der Organisationen zum Thema "Differential equations"

1

Knorrenschild, M. Differential-algebraic equations as stiff ordinary differential equations. Office of Scientific and Technical Information (OSTI), Mai 1989. http://dx.doi.org/10.2172/6980335.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Dresner, L. Nonlinear differential equations. Office of Scientific and Technical Information (OSTI), Januar 1988. http://dx.doi.org/10.2172/5495671.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Gear, C. W. Differential algebraic equations, indices, and integral algebraic equations. Office of Scientific and Technical Information (OSTI), April 1989. http://dx.doi.org/10.2172/6307619.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Shearer, Michael. Nonlinear Differential Equations and Mechanics. Fort Belvoir, VA: Defense Technical Information Center, Dezember 2001. http://dx.doi.org/10.21236/ada398262.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Cohen, Donald S. Differential Equations and Continuum Mechanics. Fort Belvoir, VA: Defense Technical Information Center, Mai 1989. http://dx.doi.org/10.21236/ada208637.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Tewarson, Reginald P. Numerical Methods for Differential Equations. Fort Belvoir, VA: Defense Technical Information Center, September 1986. http://dx.doi.org/10.21236/ada177283.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Yan, Xiaopu. Singularly Perturbed Differential/Algebraic Equations. Fort Belvoir, VA: Defense Technical Information Center, Oktober 1994. http://dx.doi.org/10.21236/ada288365.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Tewarson, Reginald P. Numerical Methods for Differential Equations. Fort Belvoir, VA: Defense Technical Information Center, September 1985. http://dx.doi.org/10.21236/ada162722.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Cohen, Donald S. Differential Equations and Continuum Mechanics. Fort Belvoir, VA: Defense Technical Information Center, Mai 1991. http://dx.doi.org/10.21236/ada237722.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Wiener, Joseph. Boundary Value Problems for Differential and Functional Differential Equations. Fort Belvoir, VA: Defense Technical Information Center, August 1987. http://dx.doi.org/10.21236/ada187378.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie