Zeitschriftenartikel zum Thema „Differential Equation Method de Wormald“

Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Differential Equation Method de Wormald.

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Differential Equation Method de Wormald" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

Zou, Li, Zhen Wang und Zhi Zong. „Generalized differential transform method to differential-difference equation“. Physics Letters A 373, Nr. 45 (November 2009): 4142–51. http://dx.doi.org/10.1016/j.physleta.2009.09.036.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Li, Meng-Rong, Tzong-Hann Shieh, C. Jack Yue, Pin Lee und Yu-Tso Li. „Parabola Method in Ordinary Differential Equation“. Taiwanese Journal of Mathematics 15, Nr. 4 (August 2011): 1841–57. http://dx.doi.org/10.11650/twjm/1500406383.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Ali Hussain, Eman, und Yahya Mourad Abdul – Abbass. „On Fuzzy differential equation“. Journal of Al-Qadisiyah for computer science and mathematics 11, Nr. 2 (21.08.2019): 1–9. http://dx.doi.org/10.29304/jqcm.2019.11.2.540.

Der volle Inhalt der Quelle
Annotation:
In this paper, we introduce a hybrid method to use fuzzy differential equation, and Genetic Turing Machine developed for solving nth order fuzzy differential equation under Seikkala differentiability concept [14]. The Errors between the exact solutions and the approximate solutions were computed by fitness function and the Genetic Turing Machine results are obtained. After comparing the approximate solution obtained by the GTM method with approximate to the exact solution, the approximate results by Genetic Turing Machine demonstrate the efficiency of hybrid methods for solving fuzzy differential equations (FDE).
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Chang, Ick-Soon, und Sheon-Young Kang. „Fredholm integral equation method for the integro-differential Schrödinger equation“. Computers & Mathematics with Applications 56, Nr. 10 (November 2008): 2676–85. http://dx.doi.org/10.1016/j.camwa.2008.05.027.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Jain, Pankaj, Chandrani Basu und Vivek Panwar. „Reduced $pq$-Differential Transform Method and Applications“. Journal of Inequalities and Special Functions 13, Nr. 1 (30.03.2022): 24–40. http://dx.doi.org/10.54379/jiasf-2022-1-3.

Der volle Inhalt der Quelle
Annotation:
In this paper, Reduced Differential Transform method in the framework of (p, q)-calculus, denoted by Rp,qDT , has been introduced and applied in solving a variety of differential equations such as diffusion equation, 2Dwave equation, K-dV equation, Burgers equations and Ito system. While the diffusion equation has been studied for the special case p = 1, i.e., in the framework of q-calculus, the other equations have not been studied even in q-calculus.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Abe, Kenji, Akira Ishida, Tsuguhiro Watanabe, Yasumasa Kanada und Kyoji Nishikawa. „HIDM-New Numerical Method for Differential Equation“. Kakuyūgō kenkyū 57, Nr. 2 (1987): 85–95. http://dx.doi.org/10.1585/jspf1958.57.85.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Chen, Xi, und Ying Dai. „Differential transform method for solving Richards’ equation“. Applied Mathematics and Mechanics 37, Nr. 2 (Februar 2016): 169–80. http://dx.doi.org/10.1007/s10483-016-2023-8.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Youness, Ebrahim A., Abd El-Monem A. Megahed, Elsayed E. Eladdad und Hanem F. A. Madkour. „Min-max differential game with partial differential equation“. AIMS Mathematics 7, Nr. 8 (2022): 13777–89. http://dx.doi.org/10.3934/math.2022759.

Der volle Inhalt der Quelle
Annotation:
<abstract><p>In this paper, we are concerned with a min-max differential game with Cauchy initial value problem (CIVP) as the state trajectory for the differential game, we studied the analytical solution and the approximate solution by using Picard method (PM) of this problem. We obtained the equivalent integral equation to the CIVP. Also, we suggested a method for solving this problem. The existence, uniqueness of the solution and the uniform convergence are discussed for the two methods.</p></abstract>
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Khalili Golmankhaneh, Alireza, und Carlo Cattani. „Fractal Logistic Equation“. Fractal and Fractional 3, Nr. 3 (11.07.2019): 41. http://dx.doi.org/10.3390/fractalfract3030041.

Der volle Inhalt der Quelle
Annotation:
In this paper, we give difference equations on fractal sets and their corresponding fractal differential equations. An analogue of the classical Euler method in fractal calculus is defined. This fractal Euler method presets a numerical method for solving fractal differential equations and finding approximate analytical solutions. Fractal differential equations are solved by using the fractal Euler method. Furthermore, fractal logistic equations and functions are given, which are useful in modeling growth of elements in sciences including biology and economics.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Tuluce Demiray, Seyma, Yusuf Pandir und Hasan Bulut. „Generalized Kudryashov Method for Time-Fractional Differential Equations“. Abstract and Applied Analysis 2014 (2014): 1–13. http://dx.doi.org/10.1155/2014/901540.

Der volle Inhalt der Quelle
Annotation:
In this study, the generalized Kudryashov method (GKM) is handled to find exact solutions of time-fractional Burgers equation, time-fractional Cahn-Hilliard equation, and time-fractional generalized third-order KdV equation. These time-fractional equations can be turned into another nonlinear ordinary differantial equation by travelling wave transformation. Then, GKM has been implemented to attain exact solutions of time-fractional Burgers equation, time-fractional Cahn-Hilliard equation, and time-fractional generalized third-order KdV equation. Also, some new hyperbolic function solutions have been obtained by using this method. It can be said that this method is a generalized form of the classical Kudryashov method.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

Abdulghafoor J. Salim und Ali F. Ali. „Studying the Ito ̃ ’s formula for some stochastic differential equation: (Quotient stochastic differential equation)“. Tikrit Journal of Pure Science 26, Nr. 3 (10.07.2021): 108–12. http://dx.doi.org/10.25130/tjps.v26i3.150.

Der volle Inhalt der Quelle
Annotation:
The aim of this paper is to study It ’s formula for some stochastic differential equation such as quotient stochastic differential equation, by using the function F (t, x (t)) which satisfies the product Ito’s formula, then we find some calculus relation for the quotient stochastic differential equation and we generalize the method for all m supported by some examples to explain the method.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

CARIÑENA, J. F., G. MARMO und J. NASARRE. „THE NONLINEAR SUPERPOSITION PRINCIPLE AND THE WEI-NORMAN METHOD“. International Journal of Modern Physics A 13, Nr. 21 (20.08.1998): 3601–27. http://dx.doi.org/10.1142/s0217751x98001694.

Der volle Inhalt der Quelle
Annotation:
Group theoretical methods are used to study some properties of the Riccati equation, which is the only differential equation admitting a nonlinear superposition principle. The Wei–Norman method is applied to obtain the associated differential equation in the group SL(2, ℝ). The superposition principle for first order differential equation systems and Lie–Scheffers theorem are also analyzed from this group theoretical perspective. Finally, the theory is applied in the solution of second order differential equations like time independent Schrödinger equation.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Saeed, Umer, und Mujeeb ur Rehman. „Hermite Wavelet Method for Fractional Delay Differential Equations“. Journal of Difference Equations 2014 (02.07.2014): 1–8. http://dx.doi.org/10.1155/2014/359093.

Der volle Inhalt der Quelle
Annotation:
We proposed a method by utilizing method of steps and Hermite wavelet method, for solving the fractional delay differential equations. This technique first converts the fractional delay differential equation to a fractional nondelay differential equation and then applies the Hermite wavelet method on the obtained fractional nondelay differential equation to find the solution. Several numerical examples are solved to show the applicability of the proposed method.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

Rajchel, Kazimierz, und Jerzy Szczęsny. „New method to solve certain differential equations“. Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica 15, Nr. 1 (01.12.2016): 107–11. http://dx.doi.org/10.1515/aupcsm-2016-0009.

Der volle Inhalt der Quelle
Annotation:
AbstractA new method to solve stationary one-dimensional Schroedinger equation is investigated. Solutions are described by means of representation of circles with multiple winding number. The results are demonstrated using the well-known analytical solutions of the Schroedinger equation.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

R. Rizkalla, Raafat, Seham SH. Tantawy und Mahmoud H.Taha. „Applications on Differential Transform method for solving Singularly Perturbed Volterra integral equation, Volterra integral equation and integro-differential equation“. International Journal of Mathematics Trends and Technology 23, Nr. 1 (25.07.2015): 42–53. http://dx.doi.org/10.14445/22315373/ijmtt-v23p507.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

Ab. Aziz, Amiruddin, Noor Noor Syazana Ngarisan und Nur Afriza Baki. „Solution of Finite Difference Method and Differential Quadrature Method in Burgers Equation“. Journal of Ocean, Mechanical and Aerospace -science and engineering- (JOMAse) 63, Nr. 3 (30.11.2019): 1–4. http://dx.doi.org/10.36842/jomase.v63i3.97.

Der volle Inhalt der Quelle
Annotation:
The Finite Difference Method and Differential Quadrature Method are used to solve the partial differential equation in Burgers equation. The different number of nodes is used in these methods to investigate the accuracy. The solutions of these methods are compared in terms of accuracy of the numerical solution. C language program have been developed based on the method in order to solve the Burgers equation. The results of this study are compared in terms of convergence as well as accuracy of the numerical solution. Generally, from the numerical results show that the Differential Quadrature Method is better than the Finite Different Method in terms of accuracy and convergence.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

Vitanov, Nikolay K., Zlatinka I. Dimitrova und Kaloyan N. Vitanov. „Simple Equations Method (SEsM): Algorithm, Connection with Hirota Method, Inverse Scattering Transform Method, and Several Other Methods“. Entropy 23, Nr. 1 (23.12.2020): 10. http://dx.doi.org/10.3390/e23010010.

Der volle Inhalt der Quelle
Annotation:
The goal of this article is to discuss the Simple Equations Method (SEsM) for obtaining exact solutions of nonlinear partial differential equations and to show that several well-known methods for obtaining exact solutions of such equations are connected to SEsM. In more detail, we show that the Hirota method is connected to a particular case of SEsM for a specific form of the function from Step 2 of SEsM and for simple equations of the kinds of differential equations for exponential functions. We illustrate this particular case of SEsM by obtaining the three- soliton solution of the Korteweg-de Vries equation, two-soliton solution of the nonlinear Schrödinger equation, and the soliton solution of the Ishimori equation for the spin dynamics of ferromagnetic materials. Then we show that a particular case of SEsM can be used in order to reproduce the methodology of the inverse scattering transform method for the case of the Burgers equation and Korteweg-de Vries equation. This particular case is connected to use of a specific case of Step 2 of SEsM. This step is connected to: (i) representation of the solution of the solved nonlinear partial differential equation as expansion as power series containing powers of a “small” parameter ϵ; (ii) solving the differential equations arising from this representation by means of Fourier series, and (iii) transition from the obtained solution for small values of ϵ to solution for arbitrary finite values of ϵ. Finally, we show that the much-used homogeneous balance method, extended homogeneous balance method, auxiliary equation method, Jacobi elliptic function expansion method, F-expansion method, modified simple equation method, trial function method and first integral method are connected to particular cases of SEsM.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

Yang, Xiao-Feng, und Yi Wei. „Bilinear Equation of the Nonlinear Partial Differential Equation and Its Application“. Journal of Function Spaces 2020 (28.04.2020): 1–14. http://dx.doi.org/10.1155/2020/4912159.

Der volle Inhalt der Quelle
Annotation:
The homogeneous balance of undetermined coefficient method is firstly proposed to derive a more general bilinear equation of the nonlinear partial differential equation (NLPDE). By applying perturbation method, subsidiary ordinary differential equation (sub-ODE) method, and compatible condition to bilinear equation, more exact solutions of NLPDE are obtained. The KdV equation, Burgers equation, Boussinesq equation, and Sawada-Kotera equation are chosen to illustrate the validity of our method. We find that the underlying relation among the G′/G-expansion method, Hirota’s method, and HB method is a bilinear equation. The proposed method is also a standard and computable method, which can be generalized to deal with other types of NLPDE.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

Peng, Hai-Jun, Sheng Zhang, Zhi-Gang Wu und Biao-Song Chen. „Precise Integration Method for Solving Noncooperative LQ Differential Game“. Mathematical Problems in Engineering 2013 (2013): 1–9. http://dx.doi.org/10.1155/2013/713725.

Der volle Inhalt der Quelle
Annotation:
The key of solving the noncooperative linear quadratic (LQ) differential game is to solve the coupled matrix Riccati differential equation. The precise integration method based on the adaptive choosing of the two parameters is expanded from the traditional symmetric Riccati differential equation to the coupled asymmetric Riccati differential equation in this paper. The proposed expanded precise integration method can overcome the difficulty of the singularity point and the ill-conditioned matrix in the solving of coupled asymmetric Riccati differential equation. The numerical examples show that the expanded precise integration method gives more stable and accurate numerical results than the “direct integration method” and the “linear transformation method”.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

Zhang, Yinnan, und Weian Zheng. „Discretizing a backward stochastic differential equation“. International Journal of Mathematics and Mathematical Sciences 32, Nr. 2 (2002): 103–16. http://dx.doi.org/10.1155/s0161171202110234.

Der volle Inhalt der Quelle
Annotation:
We show a simple method to discretize Pardoux-Peng's nonlinear backward stochastic differential equation. This discretization scheme also gives a numerical method to solve a class of semi-linear PDEs.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

Ebaid, Abdelhalim. „ON A NEW DIFFERENTIAL TRANSFORMATION METHOD FOR SOLVING NONLINEAR DIFFERENTIAL EQUATIONS“. Asian-European Journal of Mathematics 06, Nr. 04 (Dezember 2013): 1350057. http://dx.doi.org/10.1142/s1793557113500575.

Der volle Inhalt der Quelle
Annotation:
The main difficulty in solving nonlinear differential equations by the differential transformation method (DTM) is how to treat complex nonlinear terms. This method can be easily applied to simple nonlinearities, e.g. polynomials, however obstacles exist for treating complex nonlinearities. In the latter case, a technique has been recently proposed to overcome this difficulty, which is based on obtaining a differential equation satisfied by this nonlinear term and then applying the DTM to this obtained differential equation. Accordingly, if a differential equation has n-nonlinear terms, then this technique must be separately repeated for each nonlinear term, i.e. n-times, consequently a system of n-recursive relations is required. This significantly increases the computational budget. We instead propose a general symbolic formula to treat any analytic nonlinearity. The new formula can be easily applied when compared with the only other available technique. We also show that this formula has the same mathematical structure as the Adomian polynomials but with constants instead of variable components. Several nonlinear ordinary differential equations are solved to demonstrate the reliability and efficiency of the improved DTM method, which increases its applicability.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

Viswam, Sonia. „THE ADOMIAN DECOMPOSITION METHOD AND THE DIFFERENTIAL EQUATION“. International Journal of Engineering Applied Sciences and Technology 5, Nr. 4 (01.08.2020): 173–77. http://dx.doi.org/10.33564/ijeast.2020.v05i04.023.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

Tate, Shivaji. „A New Iterative Method for Riccati Differential Equation“. International Journal for Research in Applied Science and Engineering Technology V, Nr. XI (23.11.2017): 2722–25. http://dx.doi.org/10.22214/ijraset.2017.11375.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

Abd Ali, Hadeel G. „Modify Lyapunov-Schmidt Method for Nonhomogeneous Differential Equation“. BASRA JOURNAL OF SCIENCE 40, Nr. 2 (01.09.2022): 306–20. http://dx.doi.org/10.29072/basjs.20220204.

Der volle Inhalt der Quelle
Annotation:
The Lyapunov-Schmidt reduction for nonhomogeneous problems is modified when the dimension of the null space is two. The novel method was utilized to approximate the solutions of the nonlinear wave equation. This equation's related key function has been identified
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

Sharma, Devender, Puneet Sharma und Ritu Sharma. „Non-Blind Deblurring Using Partial Differential Equation Method“. International Journal of Computer Applications Technology and Research 2, Nr. 3 (10.05.2013): 232–36. http://dx.doi.org/10.7753/ijcatr0203.1005.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

Pritchard, Jocelyun I., und Howard M. Adelman. „Differential Equation Based Method for Accurate Modal Approximations“. AIAA Journal 29, Nr. 3 (März 1991): 484–86. http://dx.doi.org/10.2514/3.10609.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

CAI, Q. D. „CONTINUOUS NEWTON METHOD FOR NONLINEAR PARTIAL DIFFERENTIAL EQUATION“. Modern Physics Letters B 24, Nr. 13 (30.05.2010): 1303–6. http://dx.doi.org/10.1142/s0217984910023487.

Der volle Inhalt der Quelle
Annotation:
Newton method is a widely used iteration method in solving nonlinear algebraic equations. In this method, a linear algebraic equations need to be solved in every step. The coefficient matrix of the algebraic equations is so-called Jacobian matrix, which needs to be determined at every step. For a complex non-linear system, usually no explicit form of Jacobian matrix can be found. Several methods are introduced to obtain an approximated matrix, which are classified as Jacobian-free method. The finite difference method is used to approximate the derivatives in Jacobian matrix, and a small parameter is needed in this process. Some problems may arise because of the interaction of this parameter and round-off errors. In the present work, we show that this kind of Newton method may encounter difficulties in solving non-linear partial differential equation (PDE) on fine mesh. To avoid this problem, the continuous Newton method is presented, which is a modification of classical Newton method for non-linear PDE.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

Shu, C., und H. Xue. „Solution of Helmholtz equation by differential quadrature method“. Computer Methods in Applied Mechanics and Engineering 175, Nr. 1-2 (Juni 1999): 203–12. http://dx.doi.org/10.1016/s0045-7825(98)00370-3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

Cveticanin, L. „Homotopy–perturbation method for pure nonlinear differential equation“. Chaos, Solitons & Fractals 30, Nr. 5 (Dezember 2006): 1221–30. http://dx.doi.org/10.1016/j.chaos.2005.08.180.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
30

Allahviranloo, T., und S. Salahshour. „Euler method for solving hybrid fuzzy differential equation“. Soft Computing 15, Nr. 7 (01.10.2010): 1247–53. http://dx.doi.org/10.1007/s00500-010-0659-y.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
31

Saeed, Umer. „CAS Picard method for fractional nonlinear differential equation“. Applied Mathematics and Computation 307 (August 2017): 102–12. http://dx.doi.org/10.1016/j.amc.2017.02.044.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
32

Lin, Bin. „REDUCED DIFFERENTIAL TRANSFORM METHOD FOR NONLINEAR SCHRÖDINGER EQUATION“. Far East Journal of Dynamical Systems 26, Nr. 2 (14.07.2015): 91–98. http://dx.doi.org/10.17654/fjdsjun2015_091_098.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
33

Mredula, K. P., und D. C. Vakaskar. „Collocation Method Using Wavelet for Partial Differential Equation“. Indian Journal of Industrial and Applied Mathematics 8, Nr. 1 (2017): 14. http://dx.doi.org/10.5958/1945-919x.2017.00002.0.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
34

Lei, Wu, Zong Feng-De und Zhang Jie-Fang. „Adomian Decomposition Method for Nonlinear Differential-Difference Equation“. Communications in Theoretical Physics 48, Nr. 6 (Dezember 2007): 983–86. http://dx.doi.org/10.1088/0253-6102/48/6/004.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
35

Wang, Qi. „Extended rational expansion method for differential-difference equation“. Applied Mathematics and Computation 219, Nr. 17 (Mai 2013): 8965–72. http://dx.doi.org/10.1016/j.amc.2013.03.097.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
36

Wang, Xiao, Yufu Ning, Tauqir A. Moughal und Xiumei Chen. „Adams–Simpson method for solving uncertain differential equation“. Applied Mathematics and Computation 271 (November 2015): 209–19. http://dx.doi.org/10.1016/j.amc.2015.09.009.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
37

Gao, Qiang, Shu-jun Tan, Wan-xie Zhong und Hong-wu Zhang. „Improved precise integration method for differential Riccati equation“. Applied Mathematics and Mechanics 34, Nr. 1 (13.12.2012): 1–14. http://dx.doi.org/10.1007/s10483-013-1648-8.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
38

Tan, Yue, und Saeid Abbasbandy. „Homotopy analysis method for quadratic Riccati differential equation“. Communications in Nonlinear Science and Numerical Simulation 13, Nr. 3 (Juni 2008): 539–46. http://dx.doi.org/10.1016/j.cnsns.2006.06.006.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
39

Aminikhah, Hossein, und Milad Hemmatnezhad. „An efficient method for quadratic Riccati differential equation“. Communications in Nonlinear Science and Numerical Simulation 15, Nr. 4 (April 2010): 835–39. http://dx.doi.org/10.1016/j.cnsns.2009.05.009.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
40

Kudryashov, Nikolai A., und Nadejda B. Loguinova. „Extended simplest equation method for nonlinear differential equations“. Applied Mathematics and Computation 205, Nr. 1 (November 2008): 396–402. http://dx.doi.org/10.1016/j.amc.2008.08.019.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
41

El-Tawil, Magdy A., Ahmed A. Bahnasawi und Ahmed Abdel-Naby. „Solving Riccati differential equation using Adomian's decomposition method“. Applied Mathematics and Computation 157, Nr. 2 (Oktober 2004): 503–14. http://dx.doi.org/10.1016/j.amc.2003.08.049.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
42

Hua, Ni. „Transformation Method for Generating Periodic Solutions of Abel’s Differential Equation“. Advances in Mathematical Physics 2019 (02.04.2019): 1–10. http://dx.doi.org/10.1155/2019/3582142.

Der volle Inhalt der Quelle
Annotation:
This paper deals with Abel’s differential equation. We suppose that r=r(t) is a periodic particular solution of Abel’s differential equation and, then, by means of the transformation method and the fixed point theory, present an alternative method of generating the other periodic solutions of Abel’s differential equation.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
43

P, Govindaraju, und Senthil Kumar. „A study on stochastic differential equation“. Journal of Computational Mathematica 5, Nr. 2 (20.12.2021): 68–75. http://dx.doi.org/10.26524/cm109.

Der volle Inhalt der Quelle
Annotation:
In this paper we study solutions to stochastic differential equations (SDEs) with discontinuous drift. In this paper we discussed The Euler-Maruyama method and this shows that a candidate density function based on the Euler-Maruyama method. The point of departure for this work is a particular SDE with discontinuous drift.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
44

Gülsu, Mustafa, Yalçın Öztürk und Ayşe Anapali. „A Collocation Method for Solving Fractional Riccati Differential Equation“. Advances in Applied Mathematics and Mechanics 5, Nr. 06 (Dezember 2013): 872–84. http://dx.doi.org/10.4208/aamm.12-m12118.

Der volle Inhalt der Quelle
Annotation:
AbstractIn this article, we have introduced a Taylor collocation method, which is based on collocation method for solving fractional Riccati differential equation. The fractional derivatives are described in the Caputo sense. This method is based on first taking the truncated Taylor expansions of the solution function in the fractional Riccati differential equation and then substituting their matrix forms into the equation. Using collocation points, the systems of nonlinear algebraic equation is derived. We further solve the system of nonlinear algebraic equation using Maple 13 and thus obtain the coefficients of the generalized Taylor expansion. Illustrative examples are presented to demonstrate the effectiveness of the proposed method.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
45

Navickas, Zenonas, Minvydas Ragulskis und Liepa Bikulčienė. „SPECIAL SOLUTIONS OF HUXLEY DIFFERENTIAL EQUATION“. Mathematical Modelling and Analysis 16, Nr. 1 (24.06.2011): 248–59. http://dx.doi.org/10.3846/13926292.2011.579627.

Der volle Inhalt der Quelle
Annotation:
The conditions when solutions of Huxley equation can be expressed in special form and the procedure of finding exact solutions are presented in this paper. Huxley equation is an evolution equation that describes the nerve propagation in biology. It is often useful to obtain a generalized solitary solution for fully understanding its physical meanings. It is shown that the solution produced by the Exp-function method may not hold for all initial conditions. It is proven that the analytical condition describing the existence of the produced solution in the space of initial conditions (or even in the space of the system's parameters) can not be derived by the Exp-function method because the question about the existence of that solution is omitted. The proposed operator method, on the contrary, brings the load of symbolic computations before the structure of the solution is identified. The method for the derivation of the solution is based on the concept of the rank of the Hankel matrix constructed from the sequence of coefficients representing formal solution in the series form. Moreover, the structure of the algebraic-analytic solution is generated automatically together with all conditions of the solution's existence. Computational experiments are used to illustrate the properties of derived analytical solutions.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
46

Öztürk, Yalçın, Ayşe Anapalı, Mustafa Gülsu und Mehmet Sezer. „A Collocation Method for Solving Fractional Riccati Differential Equation“. Journal of Applied Mathematics 2013 (2013): 1–8. http://dx.doi.org/10.1155/2013/598083.

Der volle Inhalt der Quelle
Annotation:
We have introduced a Taylor collocation method, which is based on collocation method for solving fractional Riccati differential equation with delay term. This method is based on first taking the truncated Taylor expansions of the solution function in the fractional Riccati differential equation and then substituting their matrix forms into the equation. Using collocation points, we have the system of nonlinear algebraic equation. Then, we solve the system of nonlinear algebraic equation using Maple 13, and we have the coefficients of the truncated Taylor sum. In addition, illustrative examples are presented to demonstrate the effectiveness of the proposed method. Comparing the methodology with some known techniques shows that the present approach is relatively easy and highly accurate.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
47

Yiğider, Muhammed, Khatereh Tabatabaei und Ercan Çelik. „The Numerical Method for Solving Differential Equations of Lane-Emden Type by Padé Approximation“. Discrete Dynamics in Nature and Society 2011 (2011): 1–9. http://dx.doi.org/10.1155/2011/479396.

Der volle Inhalt der Quelle
Annotation:
Numerical solution differential equation of Lane-Emden type is considered by Padé approximation. We apply these method to two examples. First differential equation of Lane-Emden type has been converted to power series by one-dimensional differential transformation, then the numerical solution of equation was put into Padé series form. Thus, we have obtained numerical solution differential equation of Lane-Emden type.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
48

Altoum, Sami H., Aymen Ettaieb und Hafedh Rguigui. „Generalized Bernoulli Wick differential equation“. Infinite Dimensional Analysis, Quantum Probability and Related Topics 24, Nr. 01 (März 2021): 2150008. http://dx.doi.org/10.1142/s0219025721500089.

Der volle Inhalt der Quelle
Annotation:
Based on the distributions space on [Formula: see text] (denoted by [Formula: see text]) which is the topological dual space of the space of entire functions with exponential growth of order [Formula: see text] and of minimal type, we introduce a new type of differential equations using the Wick derivation operator and the Wick product of elements in [Formula: see text]. These equations are called generalized Bernoulli Wick differential equations which are the analogue of the classical Bernoulli differential equations. We solve these generalized Wick differential equations. The present method is exemplified by several examples.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
49

Kalybay, A. A., und A. O. Baiarystanov. „Differential inequality and non-oscillation of fourth order differential equation“. BULLETIN OF THE KARAGANDA UNIVERSITY-MATHEMATICS 104, Nr. 4 (30.12.2021): 103–9. http://dx.doi.org/10.31489/2021m4/103-109.

Der volle Inhalt der Quelle
Annotation:
The oscillatory theory of fourth order differential equations has not yet been developed well enough. The results are known only for the case when the coefficients of differential equations are power functions. This fact can be explained by the absence of simple effective methods for studying such higher order equations. In this paper, the authors investigate the oscillatory properties of a class of fourth order differential equations by the variational method. The presented variational method allows to consider any arbitrary functions as coefficients, and our main results depend on their boundary behavior in neighborhoods of zero and infinity. Moreover, this variational method is based on the validity of a certain weighted differential inequality of Hardy type, which is of independent interest. The authors of the article also find two-sided estimates of the least constant for this inequality, which are especially important for their applications to the main results on the oscillatory properties of these differential equations.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
50

Nyein, Ei Ei, und Aung Khaing Zaw. „A fixed point method to solve differential equation and Fredholm integral equation“. Journal of Nonlinear Sciences and Applications 13, Nr. 04 (28.02.2020): 205–11. http://dx.doi.org/10.22436/jnsa.013.04.05.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie