Bücher zum Thema „Differential Equation Method de Wormald“

Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Differential Equation Method de Wormald.

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-38 Bücher für die Forschung zum Thema "Differential Equation Method de Wormald" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Bücher für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

Schiesser, W. E. A compendium of partial differential equation models: Method of lines analysis with MATLAB. Cambridge: Cambridge University Press, 2009.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

C, Sorensen D., und Institute for Computer Applications in Science and Engineering., Hrsg. An asymptotic induced numerical method for the convection-diffusion-reaction equation. Hampton, VA: Institute for Computer Applications in Science and Engineering, NASA Langley Research Center, 1988.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

N, Bellomo, und Gatignol Renée, Hrsg. Lecture notes on the discretization of the Boltzmann equation. River Edge, NJ: World Scientific, 2003.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

United States. National Aeronautics and Space Administration., Hrsg. Compact finite volume methods for the diffusion equation. Greensboro, NC: Dept. of Mechanical Engineering, N.C. A&T State University, 1989.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

T, Patera Anthony, Peraire Jaume und Langley Research Center, Hrsg. A posteriori finite element bounds for sensitivity derivatives of partial-differential-equation outputs. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1998.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Parallel-vector equation solvers for finite element engineering applications. New York: Kluwer Academic / Plenum Publishers, 2002.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Wang, Baoxiang. Harmonic analysis method for nonlinear evolution equations, I. Singapore: World Scientific Pub. Co., 2011.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Sin-Chung, Chang, und United States. National Aeronautics and Space Administration., Hrsg. The Space-time solution element method-a new numerical approach for the Navier-Stokes equations. [Washington, DC]: National Aeronautics and Space Administration, 1995.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Sin-Chung, Chang, und United States. National Aeronautics and Space Administration., Hrsg. The Space-time solution element method-a new numerical approach for the Navier-Stokes equations. [Washington, DC]: National Aeronautics and Space Administration, 1995.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Yeffet, Amir. A non-dissipative staggered fourth-order accurate explicit finite difference scheme for the time-domain Maxwell's equations. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1999.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

Yeffet, Amir. A non-dissipative staggered fourth-order accurate explicit finite difference scheme for the time-domain Maxwell's equations. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1999.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

Yeffet, Amir. A non-dissipative staggered fourth-order accurate explicit finite difference scheme for the time-domain Maxwell's equations. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1999.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Yeffet, Amir. A non-dissipative staggered fourth-order accurate explicit finite difference scheme for the time-domain Maxwell's equations. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1999.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

Yeffet, Amir. A non-dissipative staggered fourth-order accurate explicit finite difference scheme for the time-domain Maxwell's equations. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1999.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

R, Radespiel, Turkel E und Institute for Computer Applications in Science and Engineering., Hrsg. Comparison of several dissipation algorithms for central difference schemes. Hampton, VA: Institute for Computer Applications in Science and Engineering, NASA Langley Research Center, 1997.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

N, Tiwari S., und Langley Research Center, Hrsg. Radiative interactions in chemically reacting compressible nozzle flows using Monte Carlo simulations. Norfolk, Va: Institute for Computational and Applied Mechanics, Old Dominion University, 1994.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

Center, Langley Research, Hrsg. Proper orthogonal decomposition in optimal control of fluids. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1999.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

Differential equation based method for accurate approximations in optimization. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1990.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

Schiesser, W. E., und Graham W. Griffiths. Compendium of Partial Differential Equation Models: Method of Lines Analysis with Matlab. Cambridge University Press, 2009.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

Wu, Sean F. Helmholtz Equation Least Squares Method: For Reconstructing and Predicting Acoustic Radiation. Springer, 2015.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

Donninger, Roland, und Joachim Krieger. Vector Field Method on the Distorted Fourier Side and Decay for Wave Equations with Potentials. American Mathematical Society, 2016.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

Griffiths, Graham W., und William E. Schiesser. Compendium of Partial Differential Equation Models: Method of Lines Analysis with Matlab. Cambridge University Press, 2009.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

Griffiths, Graham W., und William E. Schiesser. Compendium of Partial Differential Equation Models: Method of Lines Analysis with Matlab. Cambridge University Press, 2009.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

Griffiths, Graham W., und William E. Schiesser. Compendium of Partial Differential Equation Models: Method of Lines Analysis with Matlab. Cambridge University Press, 2009.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

Griffiths, Graham W., und William E. Schiesser. Compendium of Partial Differential Equation Models: Method of Lines Analysis with Matlab. Cambridge University Press, 2009.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

Wu, Sean F. The Helmholtz Equation Least Squares Method: For Reconstructing and Predicting Acoustic Radiation. Springer, 2016.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

Nguyen, Duc Thai. Parallel-Vector Equation Solvers for Finite Element Engineering Applications. Springer, 2012.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

Ohira, Toru. A master equation approach to stochastic neurodynamics. 1993.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

(Editor), N. Bellomo, und Renee Gatignol (Editor), Hrsg. Lecture Notes on the Discretization of the Boltzmann Equation (Series on Advances in Mathematics for Applied Sciences). World Scientific Publishing Company, 2003.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
30

The Space-time solution element method-a new numerical approach for the Navier-Stokes equations. [Washington, DC]: National Aeronautics and Space Administration, 1995.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
31

Mann, Peter. Differential Equations. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198822370.003.0035.

Der volle Inhalt der Quelle
Annotation:
This chapter presents the general formulation of the calculus of variations as applied to mechanics, relativity and field theories. The calculus of variations is a common mathematical technique used throughout classical mechanics. First developed by Euler to determine the shortest paths between fixed points along a surface, it was applied by Lagrange to mechanical problems in analytical mechanics. The variational problems in the chapter have been simplified for ease of understanding upon first introduction, in order to give a general mathematical framework. This chapter takes a relaxed approach to explain how the Euler–Lagrange equation is derived using this method. It also discusses first integrals. The chapter closes by defining the functional derivative, which is used in classical field theory.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
32

Escudier, Marcel. Laminar boundary layers. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198719878.003.0017.

Der volle Inhalt der Quelle
Annotation:
This chapter starts by introducing the concept of a boundary layer and the associated boundary-layer approximations. The laminar boundary-layer equations are then derived from the Navier-Stokes equations. The assumption of velocity-profile similarity is shown to reduce the partial differential boundary-layer equations to ordinary differential equations. The results of numerical solutions to these equations are discussed: Blasius’ equation, for zero-pressure gradient, and the Falkner-Skan equation for wedge flows. Von Kármán’s momentum-integral equation is derived and used to obtain useful results for the zero-pressure-gradient boundary layer. Pohlhausen’s quartic-profile method is then discussed, followed by the approximate method of Thwaites. The chapter concludes with a qualitative account of the way in which aerodynamic lift is generated.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
33

Rajeev, S. G. Finite Difference Methods. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198805021.003.0014.

Der volle Inhalt der Quelle
Annotation:
This chapter offers a peek at the vast literature on numerical methods for partial differential equations. The focus is on finite difference methods (FDM): approximating differential operators by functions of difference operators. Padé approximants (Fornberg) give a unifying principle for deriving the various stencils used by numericists. Boundary value problems for the Poisson equation and initial value problems for the diffusion equation are solved using FDM. Numerical instability of explicit schemes are explained physically and implicit schemes introduced. A discrete version of theClebsch formulation of incompressible Euler equations is proposed. The chapter concludes with the radial basis function method and its application to a discrete version of the Lagrangian formulation of Navier–Stokes.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
34

Eriksson, Olle, Anders Bergman, Lars Bergqvist und Johan Hellsvik. Atomistic Spin Dynamics. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198788669.001.0001.

Der volle Inhalt der Quelle
Annotation:
The purpose of this book is to provide a theoretical foundation and an understanding of atomistic spin-dynamics, and to give examples of where the atomistic Landau-Lifshitz-Gilbert equation can and should be used. The contents involve a description of density functional theory both from a fundamental viewpoint as well as a practical one, with several examples of how this theory can be used for the evaluation of ground state properties like spin and orbital moments, magnetic form-factors, magnetic anisotropy, Heisenberg exchange parameters, and the Gilbert damping parameter. This book also outlines how interatomic exchange interactions are relevant for the effective field used in the temporal evolution of atomistic spins. The equation of motion for atomistic spin-dynamics is derived starting from the quantum mechanical equation of motion of the spin-operator. It is shown that this lead to the atomistic Landau-Lifshitz-Gilbert equation, provided a Born-Oppenheimer-like approximation is made, where the motion of atomic spins is considered slower than that of the electrons. It is also described how finite temperature effects may enter the theory of atomistic spin-dynamics, via Langevin dynamics. Details of the practical implementation of the resulting stochastic differential equation are provided, and several examples illustrating the accuracy and importance of this method are given. Examples are given of how atomistic spin-dynamics reproduce experimental data of magnon dispersion of bulk and thin-film systems, the damping parameter, the formation of skyrmionic states, all-thermal switching motion, and ultrafast magnetization measurements.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
35

Rajeev, S. G. Spectral Methods. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198805021.003.0013.

Der volle Inhalt der Quelle
Annotation:
Thenumerical solution of ordinary differential equations (ODEs)with boundary conditions is studied here. Functions are approximated by polynomials in a Chebychev basis. Sections then cover spectral discretization, sampling, interpolation, differentiation, integration, and the basic ODE. Following Trefethen et al., differential operators are approximated as rectangular matrices. Boundary conditions add additional rows that turn them into square matrices. These can then be diagonalized using standard linear algebra methods. After studying various simple model problems, this method is applied to the Orr–Sommerfeld equation, deriving results originally due to Orszag. The difficulties of pushing spectral methods to higher dimensions are outlined.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
36

Mann, Peter. Vector Calculus. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198822370.003.0034.

Der volle Inhalt der Quelle
Annotation:
This chapter gives a non-technical overview of differential equations from across mathematical physics, with particular attention to those used in the book. It is a common trend in physics and nature, or perhaps just the way numbers and calculus come together, that, to describe the evolution of things, most theories use a differential equation of low order. This chapter is useful for those with no prior knowledge of the differential equations and explains the concepts required for a basic exposition of classical mechanics. It discusses separable differential equations, boundary conditions and initial value problems, as well as particular solutions, complete solutions, series solutions and general solutions. It also discusses the Cauchy–Lipschitz theorem, flow and the Fourier method, as well as first integrals, complete integrals and integral curves.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
37

Boudreau, Joseph F., und Eric S. Swanson. Continuum dynamics. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198708636.003.0019.

Der volle Inhalt der Quelle
Annotation:
The theory and application of a variety of methods to solve partial differential equations are introduced in this chapter. These methods rely on representing continuous quantities with discrete approximations. The resulting finite difference equations are solved using algorithms that stress different traits, such as stability or accuracy. The Crank-Nicolson method is described and extended to multidimensional partial differential equations via the technique of operator splitting. An application to the time-dependent Schrödinger equation, via scattering from a barrier, follows. Methods for solving boundary value problems are explored next. One of these is the ubiquitous fast Fourier transform which permits the accurate solution of problems with simple boundary conditions. Lastly, the finite element method that is central to modern engineering is developed. Methods for generating finite element meshes and estimating errors are also discussed.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
38

Optimization of Objective Functions: Analytics. Numerical Methods. Design of Experiments. Moscow, Russia: Fizmatlit Publisher, 2009.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie