Zeitschriftenartikel zum Thema „Differential electrochemical mass spectrometry (DEMS)“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Differential electrochemical mass spectrometry (DEMS)" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.
Clark, Ezra L. „(Invited) Investigations of Electrochemical CO2 Reduction with Differential Electrochemical Mass Spectrometry“. ECS Meeting Abstracts MA2023-01, Nr. 26 (28.08.2023): 1720. http://dx.doi.org/10.1149/ma2023-01261720mtgabs.
Der volle Inhalt der QuelleGoyal, Akansha, Christoph J. Bondue, Matthias Graf und Marc T. M. Koper. „Effect of pore diameter and length on electrochemical CO2 reduction reaction at nanoporous gold catalysts“. Chemical Science 13, Nr. 11 (2022): 3288–98. http://dx.doi.org/10.1039/d1sc05743j.
Der volle Inhalt der QuelleShimizu, Shugo, Atsunori Ikezawa, Takeyoshi Okajima und Hajime Arai. „Quantitative Differential Electrochemical Mass Spectroscopy Analysis of Electrochemical Carbon Corrosion Reactions in Alkaline Electrolyte Solutions“. ECS Meeting Abstracts MA2024-02, Nr. 60 (22.11.2024): 4054. https://doi.org/10.1149/ma2024-02604054mtgabs.
Der volle Inhalt der QuelleKim, Dong Wook, Su Mi Ahn, Jungwon Kang, Jungdon Suk, Hwan Kyu Kim und Yongku Kang. „In situ real-time and quantitative investigation on the stability of non-aqueous lithium oxygen battery electrolytes“. Journal of Materials Chemistry A 4, Nr. 17 (2016): 6332–41. http://dx.doi.org/10.1039/c6ta00371k.
Der volle Inhalt der QuelleQueiroz, Adriana, Wanderson Oliveira da Silva, Daniel Cantane, Igor Messias, Maria Rodrigues Pinto, Fabio De Lima und Raphael Nagao. „Building a Differential Electrochemical Mass Spectrometry (DEMS): A Powerful Toll for Investigation of (photo)Electrochemical Processes“. ECS Meeting Abstracts MA2021-01, Nr. 46 (30.05.2021): 1873. http://dx.doi.org/10.1149/ma2021-01461873mtgabs.
Der volle Inhalt der QuelleCuomo, Angelina, Pavlo Nikolaienko und Karl J. J. Mayrhofer. „Designing a Novel Setup for High-Throughput Investigations of Electrochemical Reactions in Real Time“. ECS Meeting Abstracts MA2023-02, Nr. 55 (22.12.2023): 2702. http://dx.doi.org/10.1149/ma2023-02552702mtgabs.
Der volle Inhalt der QuelleCelorrio, V., L. Calvillo, R. Moliner, E. Pastor und M. J. Lázaro. „Carbon nanocoils as catalysts support for methanol electrooxidation: A Differential Electrochemical Mass Spectrometry (DEMS) study“. Journal of Power Sources 239 (Oktober 2013): 72–80. http://dx.doi.org/10.1016/j.jpowsour.2013.03.037.
Der volle Inhalt der QuelleWiniwarter, Anna, Kim Degn Jensen und Johannes Novak Hartmann. „Quantitative Electrochemistry-Mass Spectrometry: Real-Time Detection of Volatile Products for Electrocatalysis and Batteries“. ECS Meeting Abstracts MA2023-01, Nr. 48 (28.08.2023): 2537. http://dx.doi.org/10.1149/ma2023-01482537mtgabs.
Der volle Inhalt der QuelleMusilová-Kebrlová, Natálie, Pavel Janderka und Libuše Trnková. „Electrochemical processes of adsorbed chlorobenzene and fluorobenzene on a platinum polycrystalline electrode“. Collection of Czechoslovak Chemical Communications 74, Nr. 4 (2009): 611–25. http://dx.doi.org/10.1135/cccc2008221.
Der volle Inhalt der QuelleAmin, Hatem M. A., und Helmut Baltruschat. „How many surface atoms in Co3O4 take part in oxygen evolution? Isotope labeling together with differential electrochemical mass spectrometry“. Physical Chemistry Chemical Physics 19, Nr. 37 (2017): 25527–36. http://dx.doi.org/10.1039/c7cp03914j.
Der volle Inhalt der QuelleHariyanto, H., Widodo W. Purwanto und Roekmijati W. Soemantojo. „CO2 current efficiency in direct ethanol fuel cell“. Jurnal Teknik Kimia Indonesia 6, Nr. 1 (02.10.2018): 581. http://dx.doi.org/10.5614/jtki.2007.6.1.6.
Der volle Inhalt der QuelleIkezawa, Atsunori, Juri Kida, Shugo Shimizu und Hajime Arai. „Quantitative Analysis of CO2 Evolution in an Alkaline Electrolyte Solution By Differential Electrochemical Mass Spectroscopy“. ECS Meeting Abstracts MA2023-02, Nr. 55 (22.12.2023): 2686. http://dx.doi.org/10.1149/ma2023-02552686mtgabs.
Der volle Inhalt der QuelleBrimaud, Sylvain, Zenonas Jusys und R. Jürgen Behm. „Shape-selected nanocrystals for in situ spectro-electrochemistry studies on structurally well defined surfaces under controlled electrolyte transport: A combined in situ ATR-FTIR/online DEMS investigation of CO electrooxidation on Pt“. Beilstein Journal of Nanotechnology 5 (28.05.2014): 735–46. http://dx.doi.org/10.3762/bjnano.5.86.
Der volle Inhalt der QuelleMora-Hernandez, J. M., Williams I. González-Suárez, Arturo Manzo-Robledo und Mayra Luna-Trujillo. „A comparative differential electrochemical mass spectrometry (DEMS) study towards the CO2 reduction on Pd, Cu, and Sn -based electrocatalyst“. Journal of CO2 Utilization 47 (Mai 2021): 101504. http://dx.doi.org/10.1016/j.jcou.2021.101504.
Der volle Inhalt der QuelleBayer, Domnik, Florina Jung, Birgit Kintzel, Martin Joos, Carsten Cremers, Dierk Martin, Jörg Bernard und Jens Tübke. „On the Use of Potential Denaturing Agents for Ethanol in Direct Ethanol Fuel Cells“. International Journal of Electrochemistry 2011 (2011): 1–8. http://dx.doi.org/10.4061/2011/154039.
Der volle Inhalt der QuelleCrafton, Matthew J., Zijian Cai, Tzu-Yang Huang, Zachary M. Konz, Ning Guo, Wei Tong, Gerbrand Ceder und Bryan D. McCloskey. „Dialing in the Voltage Window: Reconciling Interfacial Degradation and Cycling Performance Decay with Cation-Disordered Rocksalt Cathodes“. ECS Meeting Abstracts MA2023-01, Nr. 2 (28.08.2023): 636. http://dx.doi.org/10.1149/ma2023-012636mtgabs.
Der volle Inhalt der QuelleMayer, Matthew T., Alexander Arndt, Laura Carolina Pardo Perez, Chaoqun Ma und Peter Bogdanoff. „Activating New Reaction Pathways in Electrochemical CO2 Conversion Using Pulsing“. ECS Meeting Abstracts MA2024-02, Nr. 62 (22.11.2024): 4183. https://doi.org/10.1149/ma2024-02624183mtgabs.
Der volle Inhalt der QuelleRus, Eric D., Hongsen Wang, Deli Wang und Héctor D. Abruña. „A Mechanistic Differential Electrochemical Mass Spectrometry (DEMS) and in situ Fourier Transform Infrared Investigation of Dimethoxymethane Electro-Oxidation at Platinum“. Journal of Physical Chemistry C 115, Nr. 27 (15.06.2011): 13293–302. http://dx.doi.org/10.1021/jp1120405.
Der volle Inhalt der QuelleHe, Meinan, und Mei Cai. „(Invited) A Novel Dems Approach for Studying Gas Evolution in Pouch Cells“. ECS Meeting Abstracts MA2023-02, Nr. 2 (22.12.2023): 218. http://dx.doi.org/10.1149/ma2023-022218mtgabs.
Der volle Inhalt der QuelleKaufman, Lori A., Dong hun Lee, Tzu-Yang Huang und Bryan D. McCloskey. „The Role of Gas Evolution in Particle Surface Cracking in Nickel-Rich Lithium-Ion Cathode Materials“. ECS Meeting Abstracts MA2022-01, Nr. 2 (07.07.2022): 437. http://dx.doi.org/10.1149/ma2022-012437mtgabs.
Der volle Inhalt der QuelleWang, Junkai, Rui Gao und Xiangfeng Liu. „Reversible Conversion between Lithium Superoxide and Lithium Peroxide: A Closed “Lithium–Oxygen” Battery“. Inorganics 11, Nr. 2 (01.02.2023): 69. http://dx.doi.org/10.3390/inorganics11020069.
Der volle Inhalt der QuelleYoo, Ji Mun, Katharina Trapp und Maria R. Lukatskaya. „Electrolyte Engineering for Improved Selectivity of Electrochemical CO2 Reduction“. ECS Meeting Abstracts MA2023-02, Nr. 54 (22.12.2023): 2619. http://dx.doi.org/10.1149/ma2023-02542619mtgabs.
Der volle Inhalt der QuelleKumar, Bijandra, Baleeswaraiah Muchharla, Brianna Barbee, Marlon Darby, Kishor Kumar Sadasivuni, Adetayo Adedeji, Abdennaceur Karoui und Mehran Elahi. „Understanding the Role of Underlying Substrates on Hydrogen Evolution Reaction (HER) Catalytic Activity of Atomically Dispersed Pt Atoms“. ECS Meeting Abstracts MA2023-01, Nr. 36 (28.08.2023): 2106. http://dx.doi.org/10.1149/ma2023-01362106mtgabs.
Der volle Inhalt der QuelleLi, Qingyu, Yichao Hou, Jie Yin und Pinxian Xi. „The Evolution of Hexagonal Cobalt Nanosheets for CO2 Electrochemical Reduction Reaction“. Catalysts 13, Nr. 10 (21.10.2023): 1384. http://dx.doi.org/10.3390/catal13101384.
Der volle Inhalt der QuelleRastinejad, Justin, Bernardine Lucia Deborah Rinkel und Bryan D. McCloskey. „Quantifying Mixed Redox and Parasitic Processes in Li-Rich Disordered Rocksalt Li-Ion Battery Cathodes“. ECS Meeting Abstracts MA2024-01, Nr. 53 (09.08.2024): 2796. http://dx.doi.org/10.1149/ma2024-01532796mtgabs.
Der volle Inhalt der QuelleKoellisch-Mirbach, Andreas, Pawel Peter Bawol, Inhee Park und Helmut Baltruschat. „(Keynote) Oxygen Reduction and Evolution in Ca2+ Containing DMSO on Atomically Smooth and Rough Pt and Au – Towards a Generalized ORR Mechanism in M2+ Containing DMSO“. ECS Meeting Abstracts MA2022-01, Nr. 49 (07.07.2022): 2063. http://dx.doi.org/10.1149/ma2022-01492063mtgabs.
Der volle Inhalt der QuelleFujihira, Masamichi, und Toshimitsu Noguchi. „A novel differential electrochemical mass spectrometer (DEMS) with a stationary gas-permeable electrode in a rotational flow produced by a rotating rod“. Journal of Electroanalytical Chemistry 347, Nr. 1-2 (April 1993): 457–63. http://dx.doi.org/10.1016/0022-0728(93)80111-t.
Der volle Inhalt der QuelleSubhakumari, Akhila, und Naga Phani B. Aetukuri. „Electrochemical Analysis of Charge Overpotentials in Non-Aqueous Lithium and Sodium Oxygen Batteries“. ECS Meeting Abstracts MA2023-02, Nr. 4 (22.12.2023): 595. http://dx.doi.org/10.1149/ma2023-024595mtgabs.
Der volle Inhalt der QuelleHegemann, M., P. P. Bawol, A. Köllisch-Mirbach und H. Baltruschat. „Mixed Lithium and Sodium Ion Aprotic DMSO Electrolytes for Oxygen Reduction on Au and Pt Studied by DEMS and RRDE“. Electrocatalysis 12, Nr. 5 (15.05.2021): 564–78. http://dx.doi.org/10.1007/s12678-021-00669-4.
Der volle Inhalt der QuelleSawangphruk, Montree, und Krisara Srimanon. „Dry Particle Fusion Assisted Ceramic Coatings for High Nickel Cathode for Scalable 18650 Lithium-Ion Batteries“. ECS Meeting Abstracts MA2022-01, Nr. 2 (07.07.2022): 416. http://dx.doi.org/10.1149/ma2022-012416mtgabs.
Der volle Inhalt der QuelleLi, Jingyi, Xiang Li, Charuni M. Gunathunge und Matthias M. Waegele. „Hydrogen bonding steers the product selectivity of electrocatalytic CO reduction“. Proceedings of the National Academy of Sciences 116, Nr. 19 (19.04.2019): 9220–29. http://dx.doi.org/10.1073/pnas.1900761116.
Der volle Inhalt der QuellePriamushko, Tatiana, Evanie Franz, Daniel Escalera López, Olaf Brummel, Jörg Libuda, Freddy Kleitz und Serhiy Cherevko. „Assessing the Stability of Co3O4 Under Oxygen Evolution Reaction Conditions at Low and Mild pH“. ECS Meeting Abstracts MA2023-02, Nr. 58 (22.12.2023): 2848. http://dx.doi.org/10.1149/ma2023-02582848mtgabs.
Der volle Inhalt der Quellemosen Harzandi, Ahmad, Adel Azaribeni und Mohammad Asadi. „A Rechargeable Solid-State Sodium-Oxygen Battery with Enhanced Energy Efficiency and Cycle Life“. ECS Meeting Abstracts MA2024-01, Nr. 1 (09.08.2024): 22. http://dx.doi.org/10.1149/ma2024-01122mtgabs.
Der volle Inhalt der QuelleChen, Sijie, und Weiran Zheng. „Catalyst Deactivation on Transition Metal Oxides during Ammonia Electrooxidation“. ECS Meeting Abstracts MA2024-02, Nr. 56 (22.11.2024): 3763. https://doi.org/10.1149/ma2024-02563763mtgabs.
Der volle Inhalt der QuelleLim, Jungwoo, Rory Powell und Laurence J. Hardwick. „Gas Evolution from Sulfide-Based All-Solid-State Batteries“. ECS Meeting Abstracts MA2022-01, Nr. 2 (07.07.2022): 231. http://dx.doi.org/10.1149/ma2022-012231mtgabs.
Der volle Inhalt der QuelleRastinejad, Justin, und Bryan D. McCloskey. „Understanding High Voltage Electrolyte Reactivity on Cation-Disordered Rock Salt Cathodes“. ECS Meeting Abstracts MA2024-02, Nr. 7 (22.11.2024): 1001. https://doi.org/10.1149/ma2024-0271001mtgabs.
Der volle Inhalt der QuelleCamilo, Mariana R., und Fabio H. B. Lima. „Tin Alloy Nanoparticles for Selective Electrocatalytic Reduction of Carbon Dioxide to Formate“. ECS Meeting Abstracts MA2018-01, Nr. 31 (13.04.2018): 1830. http://dx.doi.org/10.1149/ma2018-01/31/1830.
Der volle Inhalt der QuelleReuter, Lennart, Leonhard J. Reinschlüssel und Hubert Andreas Gasteiger. „Development of a 3-Electrode Setup for the Operando Detection of Parasitic Side Reactions: Exemplified at the Quantification of Released Oxygen“. ECS Meeting Abstracts MA2024-01, Nr. 2 (09.08.2024): 201. http://dx.doi.org/10.1149/ma2024-012201mtgabs.
Der volle Inhalt der QuelleSchmidt, Leon, Kie Hankins, Lars Bläubaum, Michail Gerasimov und Ulrike Krewer. „Identifying Thermal Decomposition Mechanisms of the Solid Electrolyte Interphase with in-Situ Gas Analysis of Lithium-Ion Batteries“. ECS Meeting Abstracts MA2023-02, Nr. 7 (22.12.2023): 949. http://dx.doi.org/10.1149/ma2023-027949mtgabs.
Der volle Inhalt der QuelleBazan, Antony, Gonzalo García, Angélica María Baena-Moncada und Elena Pastor. „Ni Foam-Supported NiMo Catalysts for the HER“. ECS Meeting Abstracts MA2022-01, Nr. 34 (07.07.2022): 1390. http://dx.doi.org/10.1149/ma2022-01341390mtgabs.
Der volle Inhalt der QuelleBaltruschat, Helmut. „Differential electrochemical mass spectrometry“. Journal of the American Society for Mass Spectrometry 15, Nr. 12 (Dezember 2004): 1693–706. http://dx.doi.org/10.1016/j.jasms.2004.09.011.
Der volle Inhalt der QuelleBinder, Markus, Matthias Kuenzel, Thomas Diemant, Zenonas Jusys, Rolf Behm, Joachim Binder, Sandro Stock et al. „A Ternary Additive Mixture for Suppressed Electrolyte Decomposition and Mitigated Gassing in 5V Lnmo‖Graphite Li-Ion Cells“. ECS Meeting Abstracts MA2022-02, Nr. 3 (09.10.2022): 204. http://dx.doi.org/10.1149/ma2022-023204mtgabs.
Der volle Inhalt der QuelleWu, Zhenrui, Evan Hansen und Jian Liu. „An in-Depth Study of How Zinc Metal Surface Morphology Determines Aqueous Zinc-Ion Battery Stability“. ECS Meeting Abstracts MA2022-01, Nr. 1 (07.07.2022): 14. http://dx.doi.org/10.1149/ma2022-01114mtgabs.
Der volle Inhalt der QuelleZhang, Li, Liang Yin, Weiqun Li, Hou Xu, B. Layla Mehdi und Nuria Tapia Ruiz. „(Digital Presentation) Regulating Anion Redox during Cycling of Spinel LiMn1.5Ni0.5O4 As Cathodes for Lithium Ion Batteries“. ECS Meeting Abstracts MA2022-01, Nr. 2 (07.07.2022): 380. http://dx.doi.org/10.1149/ma2022-012380mtgabs.
Der volle Inhalt der QuelleWasmus, S., S. R. Samms und R. F. Savinell. „Multipurpose Electrochemical Mass Spectrometry: A New Powerful Extension of Differential Electrochemical Mass Spectrometry“. Journal of The Electrochemical Society 142, Nr. 4 (01.04.1995): 1183–89. http://dx.doi.org/10.1149/1.2044149.
Der volle Inhalt der QuelleAbd-El-Latif, A. A., C. J. Bondue, S. Ernst, M. Hegemann, J. K. Kaul, M. Khodayari, E. Mostafa, A. Stefanova und H. Baltruschat. „Insights into electrochemical reactions by differential electrochemical mass spectrometry“. TrAC Trends in Analytical Chemistry 70 (Juli 2015): 4–13. http://dx.doi.org/10.1016/j.trac.2015.01.015.
Der volle Inhalt der QuelleFaverge, Theo, Antoine Bonnefont, Marian Chatenet und Christophe Coutanceau. „Electrocatalytic Conversion of Glucose into Hydrogen and Value-Added Compounds on Gold and Nickel Catalysts“. ECS Meeting Abstracts MA2023-02, Nr. 27 (22.12.2023): 1421. http://dx.doi.org/10.1149/ma2023-02271421mtgabs.
Der volle Inhalt der Quellede Souza, João C. P., Wanderson O. Silva, Fabio H. B. Lima und Frank N. Crespilho. „Enzyme activity evaluation by differential electrochemical mass spectrometry“. Chemical Communications 53, Nr. 60 (2017): 8400–8402. http://dx.doi.org/10.1039/c7cc03963h.
Der volle Inhalt der QuelleSong, Yuman, und Hede Gong. „Untargeted Metabolomic Profiling of Fructus Chebulae and Fructus Terminaliae Billericae“. Applied Sciences 14, Nr. 7 (08.04.2024): 3123. http://dx.doi.org/10.3390/app14073123.
Der volle Inhalt der QuelleFujikawa, Keikichi, und Feng Li. „A Review of Differential Electrochemical Mass Spectroscopy Technique Ⅱ.The principle and development of DEMS“. Journal of Electrochemistry 2, journal/vol2/iss4 (28.11.1996): 357–61. http://dx.doi.org/10.61558/2993-074x.3497.
Der volle Inhalt der Quelle