Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Differential electrochemical mass spectrometry (DEMS)“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Differential electrochemical mass spectrometry (DEMS)" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Differential electrochemical mass spectrometry (DEMS)"
Clark, Ezra L. „(Invited) Investigations of Electrochemical CO2 Reduction with Differential Electrochemical Mass Spectrometry“. ECS Meeting Abstracts MA2023-01, Nr. 26 (28.08.2023): 1720. http://dx.doi.org/10.1149/ma2023-01261720mtgabs.
Der volle Inhalt der QuelleGoyal, Akansha, Christoph J. Bondue, Matthias Graf und Marc T. M. Koper. „Effect of pore diameter and length on electrochemical CO2 reduction reaction at nanoporous gold catalysts“. Chemical Science 13, Nr. 11 (2022): 3288–98. http://dx.doi.org/10.1039/d1sc05743j.
Der volle Inhalt der QuelleShimizu, Shugo, Atsunori Ikezawa, Takeyoshi Okajima und Hajime Arai. „Quantitative Differential Electrochemical Mass Spectroscopy Analysis of Electrochemical Carbon Corrosion Reactions in Alkaline Electrolyte Solutions“. ECS Meeting Abstracts MA2024-02, Nr. 60 (22.11.2024): 4054. https://doi.org/10.1149/ma2024-02604054mtgabs.
Der volle Inhalt der QuelleKim, Dong Wook, Su Mi Ahn, Jungwon Kang, Jungdon Suk, Hwan Kyu Kim und Yongku Kang. „In situ real-time and quantitative investigation on the stability of non-aqueous lithium oxygen battery electrolytes“. Journal of Materials Chemistry A 4, Nr. 17 (2016): 6332–41. http://dx.doi.org/10.1039/c6ta00371k.
Der volle Inhalt der QuelleQueiroz, Adriana, Wanderson Oliveira da Silva, Daniel Cantane, Igor Messias, Maria Rodrigues Pinto, Fabio De Lima und Raphael Nagao. „Building a Differential Electrochemical Mass Spectrometry (DEMS): A Powerful Toll for Investigation of (photo)Electrochemical Processes“. ECS Meeting Abstracts MA2021-01, Nr. 46 (30.05.2021): 1873. http://dx.doi.org/10.1149/ma2021-01461873mtgabs.
Der volle Inhalt der QuelleCuomo, Angelina, Pavlo Nikolaienko und Karl J. J. Mayrhofer. „Designing a Novel Setup for High-Throughput Investigations of Electrochemical Reactions in Real Time“. ECS Meeting Abstracts MA2023-02, Nr. 55 (22.12.2023): 2702. http://dx.doi.org/10.1149/ma2023-02552702mtgabs.
Der volle Inhalt der QuelleCelorrio, V., L. Calvillo, R. Moliner, E. Pastor und M. J. Lázaro. „Carbon nanocoils as catalysts support for methanol electrooxidation: A Differential Electrochemical Mass Spectrometry (DEMS) study“. Journal of Power Sources 239 (Oktober 2013): 72–80. http://dx.doi.org/10.1016/j.jpowsour.2013.03.037.
Der volle Inhalt der QuelleWiniwarter, Anna, Kim Degn Jensen und Johannes Novak Hartmann. „Quantitative Electrochemistry-Mass Spectrometry: Real-Time Detection of Volatile Products for Electrocatalysis and Batteries“. ECS Meeting Abstracts MA2023-01, Nr. 48 (28.08.2023): 2537. http://dx.doi.org/10.1149/ma2023-01482537mtgabs.
Der volle Inhalt der QuelleMusilová-Kebrlová, Natálie, Pavel Janderka und Libuše Trnková. „Electrochemical processes of adsorbed chlorobenzene and fluorobenzene on a platinum polycrystalline electrode“. Collection of Czechoslovak Chemical Communications 74, Nr. 4 (2009): 611–25. http://dx.doi.org/10.1135/cccc2008221.
Der volle Inhalt der QuelleAmin, Hatem M. A., und Helmut Baltruschat. „How many surface atoms in Co3O4 take part in oxygen evolution? Isotope labeling together with differential electrochemical mass spectrometry“. Physical Chemistry Chemical Physics 19, Nr. 37 (2017): 25527–36. http://dx.doi.org/10.1039/c7cp03914j.
Der volle Inhalt der QuelleDissertationen zum Thema "Differential electrochemical mass spectrometry (DEMS)"
Sun, Shiguo [Verfasser]. „Electrooxidation of small organic molecules at elevated temperature and pressure: an online Differential Electrochemical Mass Spectrometry (DEMS) study / Shiguo Sun“. Ulm : Universität Ulm. Fakultät für Naturwissenschaften, 2012. http://d-nb.info/102493134X/34.
Der volle Inhalt der QuelleAshton, Sean James [Verfasser], Matthias [Akademischer Betreuer] Arenz, Moniek [Akademischer Betreuer] Tromp und Ulrich K. [Akademischer Betreuer] Heiz. „The Design, Construction and Research Application of a Differential Electrochemical Mass Spectrometer (DEMS) / Sean Ashton. Gutachter: Matthias Arenz ; Moniek Tromp. Betreuer: Ulrich K. Heiz“. München : Universitätsbibliothek der TU München, 2011. http://d-nb.info/1015029949/34.
Der volle Inhalt der QuelleSubba, Rao Viruru Subbarao. „Electrochemical characterization of direct alcohol fuel cells using in-situ differential electrochemical mass spectrometry“. kostenfrei, 2008. http://mediatum2.ub.tum.de/doc/645809/645809.pdf.
Der volle Inhalt der QuelleRao, Vineet. „Electrochemical characterization of direct alcohol fuel cells using in-situ differential electrochemical mass spectrometry“. kostenfrei, 2008. http://mediatum2.ub.tum.de/doc/645809/645809.pdf.
Der volle Inhalt der QuelleTreufeld, Imre. „I. Polymer Films for High Temperature Capacitor ApplicationsII. Differential Electrochemical Mass Spectrometry“. Case Western Reserve University School of Graduate Studies / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=case1465503063.
Der volle Inhalt der QuelleVorms, Evgeniia. „Cinétique de l’oxydation de l’hydrate d’hydrazine et d’autres combustibles sans carbone sur électrode de nickel“. Electronic Thesis or Diss., Strasbourg, 2025. http://www.theses.fr/2025STRAF003.
Der volle Inhalt der QuelleElectrochemical energy production from carbon-free fuels has recently attracted much attention. This manuscript focuses on studying the mechanism of the hydrazine oxidation reaction (HHOR) on Ni electrodes and comparing it with the ones of the borohydride and ammonia-borane oxidation reactions (BOR, ABOR). Metallic Ni sites were identified as the catalytic sites for the HHOR, BOR, and ABOR, while the presence of Ni (hydr)oxide sites was found to negatively affect activity without a clear influence on the reaction mechanism. Based on the results of DFT calculations, microkinetic modelling, and online DEMS measurements, a mechanism for HHOR on Ni was proposed. It involves the direct reaction of dissolved hydrazine with adsorbed Ni-OH species forming N2Hx,ad (x<4) intermediate, which is subsequently electrochemically oxidized, leading to the formation of N2 and water
Ferreira, de Araújo Jorge Vicente [Verfasser], Peter [Akademischer Betreuer] Strasser, Helmut [Gutachter] Baltruschat und Matthias [Gutachter] Bickermann. „Differential electrochemical mass spectrometry – design, set up and application for kinetic isotope labeling studies of the electrocatalytic CO2 electroreduction / Jorge Vicente Ferreira de Araújo ; Gutachter: Helmut Baltruschat, Matthias Bickermann ; Betreuer: Peter Strasser“. Berlin : Technische Universität Berlin, 2020. http://d-nb.info/1211392236/34.
Der volle Inhalt der QuelleMachado, Eduardo Giangrossi. „Eletro-oxidação de ácido fórmico assistida por hidrazina“. Universidade de São Paulo, 2017. http://www.teses.usp.br/teses/disponiveis/75/75134/tde-15032017-111419/.
Der volle Inhalt der QuelleRecently, the mechanism by which formic acid is oxidized is a matter of debate on the literature. There is disagreement on the pathways that the process may occur as well as which would be the intermediates participating. In this sense, there are some work exploring another aspect of this reaction, such as its behavior facing the addition of an additive. Among them, hydrazine has been chosen as it is another molecule of interest for energy generation devices such as fuel cells. In this fashion, it is argued that the presence of hydrazine would not interfere in the electro-oxidation of formic acid and, therefore, would yield an additive current when being co-oxidized. The complex behavior of a system may display new and relevant information thus this methodology was employed to revisit this system. It was found that the system would behave, instead of the argued additive behavior, synergistically and that there are striking differences on the time-series of formic acid, such as an increase on the duration of the process and the alteration of some of its variables. Also, it was observed a change in the potentiostatic oscillations, showing a dependence of the process with the morphology of the surface employed. It was proposed that hydrazine would act reducing the accumulation of oxygenated species on the surface of the electrode, postponing the end of the time-series. Next, it was employed a spectrometric technique (DEMS) to evaluate the production of gaseous products (CO2) and it was found that, in the presence of hydrazine, formic acid gets oxidized in a more facile way, in lower overpotential values. It was proposed that, besides preventing the accumulation of oxygenated species, hydrazine would disturb the decomposition of formic acid to COads, allowing a direct oxidation in lower overpotentials. Finally, for deepening the understanding of the superficial processes it was employed an imaging technique (EMSI). It was discovered that the decomposition of formic acid to COads there is a reactional front that repeats itself cycle after cycle during the time-series and that it is possible to monitor changes in the coverage of adsorbates by changes in the intensity of the image. It was not possible to obtain data in the presence of hydrazine since it generates many bubbles that disrupt the experiment. As conclusion of this work it is presented the thesis that, with the amount of evidences herein presented, the interaction between formic acid and hydrazine is synergistical rather than additive, as stated on the literature.
Rao, Vineet [Verfasser]. „Electrochemical characterization of direct alcohol fuel cells using in-situ differential electrochemical mass spectrometry / Vineet Rao“. 2008. http://d-nb.info/99056097X/34.
Der volle Inhalt der QuelleHeinen, Martin [Verfasser]. „Electrooxidation of small organic molecules studied by simultaneous in situ ATR-FTIRS and on-line differential electrochemical mass spectrometry / von Martin Heinen“. 2010. http://d-nb.info/1010525484/34.
Der volle Inhalt der QuelleBücher zum Thema "Differential electrochemical mass spectrometry (DEMS)"
Ashton, Sean James. Design, Construction and Research Application of a Differential Electrochemical Mass Spectrometer (DEMS). Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-30550-4.
Der volle Inhalt der QuelleDesign, Construction and Research Application of a Differential Electrochemical Mass Spectrometer (DEMS). Springer London, Limited, 2012.
Den vollen Inhalt der Quelle findenAshton, Sean James. Design, Construction and Research Application of a Differential Electrochemical Mass Spectrometer (DEMS). Springer Berlin / Heidelberg, 2014.
Den vollen Inhalt der Quelle findenDesign Construction and Research Application of a Differential Electrochemical Mass Spectrometer Dems Springer Theses. Springer, 2012.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Differential electrochemical mass spectrometry (DEMS)"
Ashton, Sean James. „Differential Electrochemical Mass Spectrometry“. In Design, Construction and Research Application of a Differential Electrochemical Mass Spectrometer (DEMS), 9–27. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-30550-4_2.
Der volle Inhalt der QuelleAshton, Sean James. „Practical Aspects of the DEMS Instrument“. In Design, Construction and Research Application of a Differential Electrochemical Mass Spectrometer (DEMS), 81–112. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-30550-4_4.
Der volle Inhalt der QuelleAshton, Sean James. „Design and Construction of the DEMS Instrument“. In Design, Construction and Research Application of a Differential Electrochemical Mass Spectrometer (DEMS), 29–80. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-30550-4_3.
Der volle Inhalt der QuelleAshton, Sean James. „The Electrochemical Oxidation of HSAC Catalyst Supports“. In Design, Construction and Research Application of a Differential Electrochemical Mass Spectrometer (DEMS), 153–203. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-30550-4_6.
Der volle Inhalt der QuelleAshton, Sean James. „Introduction“. In Design, Construction and Research Application of a Differential Electrochemical Mass Spectrometer (DEMS), 1–8. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-30550-4_1.
Der volle Inhalt der QuelleAshton, Sean James. „Methanol Oxidation on HSAC Supported Pt and PtRu Catalysts“. In Design, Construction and Research Application of a Differential Electrochemical Mass Spectrometer (DEMS), 113–51. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-30550-4_5.
Der volle Inhalt der QuelleAshton, Sean James. „Summary“. In Design, Construction and Research Application of a Differential Electrochemical Mass Spectrometer (DEMS), 205–8. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-30550-4_7.
Der volle Inhalt der QuelleZhao, Zhiwei, Long Pang, Zhi Yang, Yelong Zhang, Zhangquan Peng und Limin Guo. „Differential Electrochemical Mass Spectrometry for Lithium-Ion Batteries*“. In Microscopy and Microanalysis for Lithium-Ion Batteries, 251–76. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003299295-9.
Der volle Inhalt der QuelleShi, Boyu, Kewei Liu, Eungje Lee und Chen Liao. „Differential electrochemical mass spectrometry (DEMS) for batteries“. In Batteries. IOP Publishing, 2021. http://dx.doi.org/10.1088/978-0-7503-2682-7ch5.
Der volle Inhalt der QuelleCremers, C., und D. Bayer. „Differential electrochemical mass spectrometry (DEMS) technique for direct alcohol fuel cell characterization“. In Polymer Electrolyte Membrane and Direct Methanol Fuel Cell Technology, 65–86. Elsevier, 2012. http://dx.doi.org/10.1533/9780857095480.1.65.
Der volle Inhalt der Quelle