Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Dielectric thin layer“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Dielectric thin layer" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Dielectric thin layer"
Lee, Sangwoo, Joonbong Lee, Jaeyoung Yang und Taekjib Choi. „Study of Etch Stop Layer on Characteristics of Amorphous Aluminum Oxide Thin Film“. ECS Meeting Abstracts MA2022-01, Nr. 21 (07.07.2022): 2433. http://dx.doi.org/10.1149/ma2022-01212433mtgabs.
Der volle Inhalt der QuelleGagarin, Alexander, Diana Tsyganova, Andrey Altynnikov, Andrey Komlev und Roman Platonov. „An Adaptation of the Split-Cylinder Resonator Method for Measuring the Microwave Properties of Thin Ferroelectric Films in a “Thin Film—Substrate” Structure“. Sensors 24, Nr. 3 (24.01.2024): 755. http://dx.doi.org/10.3390/s24030755.
Der volle Inhalt der QuelleShih-Chang Shei, Shih-Chang Shei, und Yichu Wang Shih-Chang Shei. „以三氧化二鋁為閘極絕緣層之銦鎵鋅氧薄膜電晶體之研究“. 理工研究國際期刊 13, Nr. 1 (April 2023): 1–10. http://dx.doi.org/10.53106/222344892023041301001.
Der volle Inhalt der QuelleSun, Xiao Hua, Ping Feng, Jun Zou und Min Wu. „Dielectric Tunable Properties of Ba0.6Sr0.4TiO3 Thin Films with and without LSCO Buffer Layer“. Advanced Materials Research 97-101 (März 2010): 504–9. http://dx.doi.org/10.4028/www.scientific.net/amr.97-101.504.
Der volle Inhalt der QuelleNiu, Jia Qi, Zhen Kun Xie, Zhen Xing Yue und Wei Qiang Wang. „Using Ferroelectric Thin Film as the Dielectric for Electrowetting-on-Dielectric“. Key Engineering Materials 697 (Juli 2016): 227–30. http://dx.doi.org/10.4028/www.scientific.net/kem.697.227.
Der volle Inhalt der QuelleKovalchuk, N. S., A. A. Omelchenko, V. A. Pilipenko, V. A. Solodukha, S. V. Demidovich, V. V. Kolos, V. A. Filipenia und D. V. Shestovski. „Research of Electrophysical Properties of Thin Gate Dielectrics Obtained by Rapid Thermal Processing Method“. Doklady BGUIR 20, Nr. 4 (29.06.2022): 44–52. http://dx.doi.org/10.35596/1729-7648-2022-20-4-44-52.
Der volle Inhalt der QuelleBazarova, Sayana B., Ivan G. Simakov, Chingis Zh Gulgenov und Tumen Ch Ochirov. „Determination of the dielectric properties of water in a thin layer“. Himičeskaâ fizika i mezoskopiâ 26, Nr. 1 (2024): 85–94. http://dx.doi.org/10.62669/17270227.2024.1.8.
Der volle Inhalt der QuelleSenior, Thomas B. A., und John L. Volakis. „Sheet simulation of a thin dielectric layer“. Radio Science 22, Nr. 7 (Dezember 1987): 1261–72. http://dx.doi.org/10.1029/rs022i007p01261.
Der volle Inhalt der QuelleBrosseau, C. „Breakdown of a thin dielectric liquid layer“. IEEE Transactions on Electrical Insulation 27, Nr. 6 (1992): 1217–21. http://dx.doi.org/10.1109/14.204875.
Der volle Inhalt der QuelleSvetovoy, Vitaly B. „Casimir Forces between a Dielectric and Metal: Compensation of the Electrostatic Interaction“. Physics 5, Nr. 3 (25.07.2023): 814–22. http://dx.doi.org/10.3390/physics5030051.
Der volle Inhalt der QuelleDissertationen zum Thema "Dielectric thin layer"
STRICKER, JEFFERY T. „ORGANIC ELECTRONIC DEVICES USING CROSSLINKED POLYELECTROLYTE MULTILAYERS AS AN ULTRA-THIN DIELECTRIC MATERIAL“. University of Cincinnati / OhioLINK, 2006. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1157640369.
Der volle Inhalt der QuelleLemenager, Maxime. „Atomic Layer Deposition of thin dielectric films for high density and high reliability integrated capacitors“. Thesis, Lyon, 2019. http://www.theses.fr/2019LYSEI085.
Der volle Inhalt der QuelleEnergy storage in embedded systems is still the subject of major R&D efforts as it requires a constant decrease in the volume of electronic components. It appears that the size of the discrete components, such as capacitors, is one of the brakes to the miniaturization of the final devices. Although technologies mainly based on silicon deep etching at the micrometric scale have made considerable progresses, they are now limited in terms of integration density. As a result, Murata IPS is developing a new 3D technology enabling a higher developed surface area. The use of such a matrix requires a MIM stack deposition technique such as ALD which is adapted to high aspect ratios. The aim of this thesis has been thus to integrate the MIM structure into the new 3D matrix while respecting the constraints inherent to the industry in order to give rise to the fifth generation of PICS™ technologies. The first challenge has been the achievement of sufficient step coverage of the films with an industrial equipment. A capacitance density greater than 1µF/mm² using a 10nm alumina film has been demonstrated. It also turns out that the TiN electrodes integration plays an important role on the 3D structure. Indeed, the mechanical stress had to be reduced to ensure the mechanical robustness of the structure, in particular by playing on the NH3 pulse. The metal-dielectric interfaces have also been the subject of an in-depth study where the influence of TiN oxidation during dielectric deposition has been shown and electrically characterized. This study has then led to the integration of an additional barrier material at the interfaces, producing capacitors with a 10-year lifetime under the intended voltage and temperature conditions
Castillo, Solis Maria De los angeles. „Dielectric resonator antennas and bandwidth enhancement techniques“. Thesis, University of Manchester, 2015. https://www.research.manchester.ac.uk/portal/en/theses/dielectric-resonator-antennas-and-bandwidth-enhancement-techniques(44b64ce4-dc73-496a-b656-dc4b9c910291).html.
Der volle Inhalt der QuelleMahadevegowda, Amoghavarsha. „Processing, microstructure and properties of polymer-based nano-composite dielectrics for capacitor applications“. Thesis, University of Oxford, 2014. http://ora.ox.ac.uk/objects/uuid:fb974b13-2ec5-4104-9f80-45d1cb97eb48.
Der volle Inhalt der QuelleAygun, Ozyuzer Gulnur. „Growth And Characterization Of Thin Sio2 And Ta2o5 Dielectric Layers By Nd:yag Laser Oxidation“. Phd thesis, METU, 2005. http://etd.lib.metu.edu.tr/upload/3/12605968/index.pdf.
Der volle Inhalt der Quelle748 K). It was found that better film quality is obtained at higher substrate temperatures and laser power greater than 3.36 J/cm2. Second, rf-sputtered Ta films were oxidized by laser, because Ta2O5 appears to be a good promising candidate to replace SiO2 because of its high dielectric constant, high breakdown voltage and relevant small leakage current values. It was found that the substrate temperature is an important parameter to obtain denser layers with reduced amount of suboxides and the most suitable substrate temperature range is around 350 C to 400 C. &
#946
-orthorhombic crystal structure was obtained when the substrate temperature is 350 &ndash
400 C for thinner films (up to 20 &ndash
25 nm) and 300 &ndash
350 C for thicker films (40 nm). The refractive index values of laser grown thin tantalum oxide films were between ~1.9 and 2.2 being close to those of bulk Ta2O5 (2.0 &ndash
2.2). Oxide thicknesses in uniform Gaussian&ndash
like shapes were measured as around the twice of those initial Ta films. Effective dielectric constant values reached ~26 when the substrate temperature was increased from 250 C to around 400 C. It was shown that the leakage current density level decreases with increasing substrate temperature. However, the refractive index values of the films were smaller than those of thermally grown films. Porous structure formed during laser oxidation might be the reason for lower refractive indices and can be improved by post&ndash
oxidation annealing.
DeSandre, Lewis Francis. „LASER DAMAGE MEASUREMENTS ON ALL-DIELECTRIC NARROW-BAND FILTERS“. Thesis, The University of Arizona, 1985. http://hdl.handle.net/10150/275258.
Der volle Inhalt der QuelleAnders, Jason Christopher. „Thin Film Growth of Dielectric Materials by Pulsed Laser Deposition“. Wright State University / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=wright1401681886.
Der volle Inhalt der QuelleGuerboukha, Mohamed-Amine. „Etude de l'auto-assemblage et des propriétés électroniques de monocouches moléculaires sur germanium“. Electronic Thesis or Diss., Aix-Marseille, 2021. http://www.theses.fr/2021AIXM0020.
Der volle Inhalt der QuelleIn the field of microelectronics, due to its high intrinsic carrier mobility, germanium (Ge) is emerging as a promising alternative material to replace silicon in the next generation of high-mobility and high-frequency transistors. However, unlike silicon dioxide, Ge oxide is neither stable nor of good quality. Thus, the preparation of interfacial layers to passivate and isolate Ge is necessary but still problematic. A promising approach is the use of SAMs with a high dielectric constant. In this perspective, during this work we have focused on the preparation and characterization of new SAMs based on organothiols grafted on Ge, exhibiting potential application as grid insulators. We have used hydro- and fluoro-carbonated alkyl chains, and novel bithiophene-based non-charged push-pull chromophores (PP) specially synthesized with the motivation to prepare layers with high dielectric constants by the presence of dipoles. We have adapted and developed the deoxidation/grafting technique in hydro-alcoholic solution and shown that it provides better results than the acid treatment. Indeed, such method has allowed us to obtain less rough functionalized Ge surfaces. XPS and FTIR analyses demonstrate the removal of oxide. We have measured I-V characteristics of the various SAMs using E-GaIn contacts. PP SAMs have allowed to decrease the current by a factor of 105 compared to Ge and of 104 compared to a twelve carbon atoms alkyl SAM. Statistical analyses of the electrical characteristics have been performed using TVS, and correlated with molecular levels, using IPES for probing the unoccupied levels, determination of the valence band occupied levels by XPS, and DFT calculations
El, Hajjam Khalil. „Ingénierie de jonctions tunnel pour améliorer les performances du transistor mono-électronique métallique“. Thèse, Université de Sherbrooke, 2016. http://hdl.handle.net/11143/8508.
Der volle Inhalt der QuelleAbstract: Today, several technological barriers and physical limitations arise against the miniaturization of the CMOS: leakage current, short channel effects, hot carrier effect and the reliability of the gate oxide. The single electron transistor (SET) is one of the emerging components most capable of replacing CMOS technology or provide it with complementary technology. The work of this thesis deals with the improvement of the electrical characteristics of the single electron transistor by optimizing its tunnel junctions. This optimization initially starts with a study of conduction modes through the tunnel junction. It concludes with the development of an optimized tunnel junction based on a stack of dielectric materials (mainly Al[subscript 2]O[subscript 3], H[florin]O[subscript 2] and TiO[subscript 2]), having different properties in terms of barrier heights and relative permittivities. This document, therefore, presents the theoretical formulation of the SET’s requirements and of its tunnel junctions, the development of appropriate simulation tools - based on the transmission matrix model- for the simulation of the SET tunnel junctions current, the identification of tunnel junctions optimization strategies from the simulations results and finally the experimental study and technological integration of the optimized tunnel junctions into the metallic SET fabrication process using the atomic layer deposition (ALD) technique. This work allowed to démonstrate the significance of SET tunnel junctions engineering in order to increase its operating current while reducing leakage and improving its operation at higher temperatures.
Talisa, Noah Brodzik. „Laser-Induced Damage and Ablation of Dielectrics with Few-Cycle Laser Pulses“. The Ohio State University, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=osu1609243476481238.
Der volle Inhalt der QuelleBücher zum Thema "Dielectric thin layer"
Flemming, M. A., G. N. Plested und Philip Crellin. The Analysis of Microwave Reflections from Imperfect Dielectrics and Its Application to the Detection of Thin Solvent Layers. AEA Technology Plc, 1987.
Den vollen Inhalt der Quelle findenBuchwald, Jed Z. Electrodynamics from Thomson and Maxwell to Hertz. Herausgegeben von Jed Z. Buchwald und Robert Fox. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780199696253.013.20.
Der volle Inhalt der QuelleBasu, Prasanta Kumar, Bratati Mukhopadhyay und Rikmantra Basu. Semiconductor Nanophotonics. Oxford University PressOxford, 2022. http://dx.doi.org/10.1093/oso/9780198784692.001.0001.
Der volle Inhalt der QuelleBuchteile zum Thema "Dielectric thin layer"
Mandal, Suman, und Dipak K. Goswami. „Flexible Organic Field-Effect Transistors Using Barium Titanate as Temperature-Sensitive Dielectric Layer“. In Surfaces and Interfaces of Metal Oxide Thin Films, Multilayers, Nanoparticles and Nano-composites, 113–35. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-74073-3_5.
Der volle Inhalt der QuelleSingh, Richa, und Shweta Tripathi. „Refractive Index and Dielectric Constant Evaluation of RF Sputtered Few Layer MoS2 Thin Film“. In Lecture Notes in Electrical Engineering, 647–54. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-32-9775-3_59.
Der volle Inhalt der QuelleAhn, Seung Joon, S. Ahn und Chul Geun Park. „Investigation on the LPCVD LTO Thin Film as a New Dielectric Layer for the Future ULSI Devices“. In The Mechanical Behavior of Materials X, 1549–52. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-440-5.1549.
Der volle Inhalt der QuelleKapshai, Valery, Anton Shamyna und Anton Talkachov. „Analysis of the Spatial Distribution of the Second-Harmonic Radiation Generated in a Thin Surface Layer of a Spheroidal Dielectric Particle“. In Research and Education: Traditions and Innovations, 361–67. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-0379-3_38.
Der volle Inhalt der QuelleTeranishi, Takashi, Takakiyo Harigai, Hirofumi Kakemoto, Song Min Nam, Satoshi Wada und Takaaki Tsurumi. „Measurements of Microwave Dielectric Property of Dielectric Thin Layers Using Micro-Sized Planar Electrodes“. In Electroceramics in Japan VIII, 121–24. Stafa: Trans Tech Publications Ltd., 2006. http://dx.doi.org/10.4028/0-87849-982-2.121.
Der volle Inhalt der QuelleHeyns, M. M., und A. V. Schwerin. „Charge Trapping, Degradation and Wearout of Thin Dielectric Layers During Electrical Stressing“. In Crucial Issues in Semiconductor Materials and Processing Technologies, 279–97. Dordrecht: Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-011-2714-1_28.
Der volle Inhalt der QuelleVenkatesan, T., S. Bhattacharya, C. Doughty, A. Findikoglu, C. Kwon, Qi Li, S. N. Mao, A. Walkenhorst und X. X. Xi. „Pulsed Laser Deposited Metal-Oxide Based Superconductor, Semiconductor and Dielectric Heterostructures and Superlattices“. In Multicomponent and Multilayered Thin Films for Advanced Microtechnologies: Techniques, Fundamentals and Devices, 209–38. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-1727-2_13.
Der volle Inhalt der QuelleElsayad, Kareem, und Katrin G. Heinze. „Fluorescence Excitation, Decay, and Energy Transfer in the Vicinity of Thin Dielectric/Metal/Dielectric Layers near Their Surface Plasmon Polariton Cutoff Frequency“. In Surface Plasmon Enhanced, Coupled and Controlled Fluorescence, 111–20. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2017. http://dx.doi.org/10.1002/9781119325161.ch6.
Der volle Inhalt der QuelleGronenberg, Ole, Georg Haberfehlner, Finn Zahari, Richard Marquardt, Christian Kübel, Gerald Kothleitner und Lorenz Kienle. „Critical Discussion of Ex situ and In situ TEM Measurements on Memristive Devices“. In Springer Series on Bio- and Neurosystems, 129–57. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-36705-2_5.
Der volle Inhalt der QuelleRana, Paramjit, S. K. Mishra, Jaya Mukherjee und V. S. Rawat. „Multilayer Dielectric Thin Film Optical Coating Design for Single Wavelength Operation of Inherently Dual Wavelength Copper Vapor Laser“. In Springer Proceedings in Physics, 849–53. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-9259-1_196.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Dielectric thin layer"
Fitio, Volodymyr M., und Yaroslav V. Bobitski. „Transmission peculiarities of dielectric layer/thin metallic film/dielectric layer structure, with or without periodicity in the dielectric layers“. In SPIE Proceedings, herausgegeben von Igor A. Sukhoivanov, Vasily A. Svich und Yuriy S. Shmaliy. SPIE, 2008. http://dx.doi.org/10.1117/12.793384.
Der volle Inhalt der QuelleKrupenko, S. A., und E. L. Ryazanova. „Thin-layer dielectric structure for laser diagnostics of microwave radiation“. In Aerospace Sensing, herausgegeben von Shi-Kay Yao und Brian M. Hendrickson. SPIE, 1992. http://dx.doi.org/10.1117/12.138382.
Der volle Inhalt der QuelleMahodaux, C., H. Rigneault, H. Giovannini und P. Morreti. „Mechanical properties of dielectric thin films“. In Optical Interference Coatings. Washington, D.C.: Optica Publishing Group, 1997. http://dx.doi.org/10.1364/oic.1998.tug.1.
Der volle Inhalt der QuelleKong, Weijin, Maojin Yun, Cuichun Ling, Xin Sun, Jianda Shao und Zhengxiu Fan. „High diffraction efficiency for multi-layer dielectric gratings with rectangular groove“. In Sixth International Conference on Thin Film Physics and Applications. SPIE, 2008. http://dx.doi.org/10.1117/12.792247.
Der volle Inhalt der QuellePelikanova, Ivana Beshajova, und Jakub Cinert. „The sputtered dielectric thin film layer and their properties“. In 2009 32nd International Spring Seminar on Electronics Technology (ISSE). IEEE, 2009. http://dx.doi.org/10.1109/isse.2009.5207055.
Der volle Inhalt der QuelleKumar, Arvind, Sandip Mondal und K. S. R. Koteswara Rao. „Zirconium doped TiO2 thin films: A promising dielectric layer“. In INTERNATIONAL CONFERENCE ON CONDENSED MATTER AND APPLIED PHYSICS (ICC 2015): Proceeding of International Conference on Condensed Matter and Applied Physics. Author(s), 2016. http://dx.doi.org/10.1063/1.4946633.
Der volle Inhalt der QuelleBovard, Bertrand G. „Derivation of a new matrix for an inhomogeneous dielectric thin film“. In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1986. http://dx.doi.org/10.1364/oam.1986.mc4.
Der volle Inhalt der QuelleTemme, Julian, Thorsten Meyers, Julia Reker, Fábio F. Vidor, Joachim Vollbrecht, Heinz Kitzerow, Jan Paradies und Ulrich Hilleringmann. „Improved organic thin-film transistor performance by dielectric layer patterning“. In Fifth Conference on Sensors, MEMS, and Electro-Optic Systems, herausgegeben von Monuko du Plessis. SPIE, 2019. http://dx.doi.org/10.1117/12.2500286.
Der volle Inhalt der QuelleKong, Weijin, Cuichun Ling, Maojin Yun, Xin Sun, Jianda Shao und Zhengxiu Fan. „Rigorous coupled-wave analysis for the optical character of multi-layer dielectric thin film“. In Sixth International Conference on Thin Film Physics and Applications. SPIE, 2008. http://dx.doi.org/10.1117/12.792248.
Der volle Inhalt der QuelleCampabadal, F., J. M. Rafi, M. B. Gonzalez, M. Zabala, O. Beldarrain, M. C. Acero und M. Duch. „Thin dielectric films grown by atomic layer deposition: Properties and applications“. In 2013 Spanish Conference on Electron Devices (CDE). IEEE, 2013. http://dx.doi.org/10.1109/cde.2013.6481327.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Dielectric thin layer"
Al-Qadi, Imad, Qingqing Cao, Lama Abufares, Siqi Wang, Uthman Mohamed Ali und Greg Renshaw. Moisture Content and In-place Density of Cold-Recycling Treatments. Illinois Center for Transportation, Mai 2022. http://dx.doi.org/10.36501/0197-9191/22-007.
Der volle Inhalt der Quelle