Auswahl der wissenschaftlichen Literatur zum Thema „Dicaffeoylquinic acid“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Dicaffeoylquinic acid" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Zeitschriftenartikel zum Thema "Dicaffeoylquinic acid"

1

Prakash, N. S., Devendra Reddy, R. Sundaram, U. V. Babu, L. Sharath, I. Bindu und Chennu Surendra. „Identification and quantification of cinnamic acid derivatives in Cichorium intybus seed and its extract by High- Performance Liquid Chromatography with Diode-Array Detector (HPLC-DAD) and Electrospray Ionization Mass Spectrophotometry (LC-MS/MS)“. Universities' Journal of Phytochemistry and Ayurvedic Heights I, Nr. 34 (24.06.2023): 1–16. http://dx.doi.org/10.51129/ujpah-2022-34-1(1).

Der volle Inhalt der Quelle
Annotation:
A sensitive method coupling high-performance liquid chromatography (HPLC) with diode –array detector (DAD) and electrospray ionization mass spectrometry (MS) was optimized for separation, identification, and quantification of cinnamic acid derivatives in Cichorium intybus seed and its extract. Cinnamic acid derivatives such as chlorogenic acid, caffeic acid and Chicoric acid were quantified using respective standards. Apart from 4-o-Caffeoylqunic acid, other cinnamic acid derivative such as 3-o-caffeoylquinic acid was also identified and quantified by UV and MS/MS spectra and calculated as total caffeoylquinic acids using 4-o-caffeoylqunic acid as standard in the seed and its extract. Other cinnamic acid derivatives such as 1,3-dicaffeoylqunic acid, 1,4-dicaffeoylquinic acid, 3,5-dicaffeoylquinic acid, 3, 4-dicaffeoylquinic acid, dicaffeoylquinic acid-1 and dicaffeoylquinic acid-2 (two unknown) were identified and quantified by UV and MS spectra and calculated as total dicaffeoylquinic acids using chlorogenic acid standard in the seed and its extract. The total cinnamic acids were quantified by calculating the sum of chlorogenic acid, caffeic acid, chicoric acid, total caffeoylquinic acids(4-o-caffeoylquinic acid and 3-o-caffeoylqunic acid) and total dicaffeoyl-quinic acids(1,3-dicaffeoylqunic acid, 1,4-dicaffeoylquinic acid, 3,5-dicaffeoyl-quinic acid, 3, 4-dicaffeoylquinic acid, dicaffeoylquinic acid-1 and dicaffeoyl-quinic acid-2). The Phytochemical screening of C. intybus seed and its extract revealed that this plant is a rich source of cinnamic acid derivatives so, these markers (cinnamic acid derivatives) can used for routine quality control of Cichorium intybus seed and its extract.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Kamarauskaite, Justina, Rasa Baniene, Lina Raudone, Gabriele Vilkickyte, Rimanta Vainoriene, Vida Motiekaityte und Sonata Trumbeckaite. „Antioxidant and Mitochondria-Targeted Activity of Caffeoylquinic-Acid-Rich Fractions of Wormwood (Artemisia absinthium L.) and Silver Wormwood (Artemisia ludoviciana Nutt.)“. Antioxidants 10, Nr. 9 (01.09.2021): 1405. http://dx.doi.org/10.3390/antiox10091405.

Der volle Inhalt der Quelle
Annotation:
Caffeoylquinic acids are some of the chemophenetically significant specialized metabolites found in plants of the family Asteraceae Dumort., possessing a broad spectrum of biological activities. As they might be potential mitochondria-targeted antioxidants, effective preparation methods—including extraction, isolation, and purification of caffeoylquinic acids from plant sources—are in great demand. The aim of this study was to fractionate the caffeoylquinic acids from cultivated wormwood (Artemisia absinthium L.) and silver wormwood (Artemisia ludoviciana Nutt.) herb acetone extracts and evaluate their phytochemical profiles, antioxidant activity (radical scavenging and reducing activities), effects on kidney mitochondrial functions, and cytochrome-c-reducing properties. The main findings of our study are as follows: (1) Aqueous fractions purified from wormwood and silver wormwood herb acetone extracts are rich in monocaffeoylquinic acids (chlorogenic acid, neochlorogenic acid, 4-O-caffeoylquinic acid), while methanolic fractions purified from wormwood and silver wormwood herb acetone extracts are rich in dicaffeoylquinic acids (4,5-dicaffeoylquinic acid, 3,4-dicaffeoylquinic acid, 3,5-dicaffeoylquinic acid). Aqueous fractions purified from wormwood and silver wormwood herb acetone extracts were solely composed of monocaffeoylquinic acids. Methanolic fractions purified from wormwood and silver wormwood herb acetone extracts contained only dicaffeoylquinic acids. (2) Fractions purified from silver wormwood herb acetone extracts stood out as having the greatest content of caffeoylquinic acids. (3) The greatest radical scavenging activity was determined in the dicaffeoylquinic-acid-rich fraction purified from silver wormwood herb acetone extract; the greatest reducing activity was determined in the dicaffeoylquinic-acid-rich fraction purified from wormwood herb acetone extract. (4) The effect of both fractions on mitochondrial functions was dose-dependent; lower concentrations of caffeoylquinic-acid-rich fractions had no effect on mitochondrial functions, whereas higher concentrations of caffeoylquinic-acid-rich fractions reduced the state 3 respiration rate (with the complex-I-dependent substrate glutamate/malate). (5) Both monocaffeoylquinic- and dicaffeoylquinic-acid-rich fractions possessed cytochrome-c-reducing properties; the greatest cytochrome c reduction properties were determined in the dicaffeoylquinic-acid-rich fraction purified from wormwood herb acetone extract. In summary, these findings show that caffeoylquinic acids might be beneficial as promising antioxidant and cytochrome-c-reducing agents for the modulation of mitochondria and treatment of various mitochondrial-pathway-associated pathologies.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Wang, Li, und Douglas H. Sweet. „Interaction of Natural Dietary and Herbal Anionic Compounds and Flavonoids with Human Organic Anion Transporters 1 (SLC22A6), 3 (SLC22A8), and 4 (SLC22A11)“. Evidence-Based Complementary and Alternative Medicine 2013 (2013): 1–7. http://dx.doi.org/10.1155/2013/612527.

Der volle Inhalt der Quelle
Annotation:
Active components of complementary/alternative medicines and natural supplements are often anionic compounds and flavonoids. As such, organic anion transporters (OATs) may play a key role in their pharmacokinetic and pharmacological profiles, and represent sites for adverse drug-drug interactions. Therefore, we assessed the inhibitory effects of nine natural products, including flavonoids (catechin and epicatechin), chlorogenic acids (1,3- and 1,5-dicaffeoylquinic acid), phenolic acids (ginkgolic acids (13 : 0), (15 : 1), and (17 : 1)), and the organic acids ursolic acid and 18β-glycyrrhetinic acid, on the transport activity of the human OATs, hOAT1 (SLC22A6), hOAT3 (SLC22A8), and hOAT4 (SLC22A11). Four compounds, 1,3- and 1,5-dicaffeoylquinic acid, ginkgolic acid (17 : 1), and 18β-glycyrrhetinic acid, significantly inhibited hOAT1-mediated transport (50 μM inhibitor versus 1 μM substrate). Five compounds, 1,3- and 1,5-dicaffeoylquinic acid, ginkgolic acids (15 : 1) and (17 : 1), and epicatechin, significantly inhibited hOAT3 transport under similar conditions. Only catechin inhibited hOAT4. Dose-dependency studies were conducted for 1,3-dicaffeoylquinic acid and 18β-glycyrrhetinic acid on hOAT1, and IC50values were estimated as 1.2 ± 0.4 μM and 2.7 ± 0.2 μM, respectively. These data suggest that 1,3-dicaffeoylquinic acid and 18β-glycyrrhetinic acid may cause significant hOAT1-mediated DDIsin vivo; potential should be considered for safety issues during use and in future drug development.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Konczak, Izabela, Shigenori Okuno, Makoto Yoshimoto und Osamu Yamakawa. „Caffeoylquinic Acids Generated In Vitro in a High-Anthocyanin-Accumulating Sweet potato Cell Line“. Journal of Biomedicine and Biotechnology 2004, Nr. 5 (2004): 287–92. http://dx.doi.org/10.1155/s1110724304404069.

Der volle Inhalt der Quelle
Annotation:
Accumulation of phenolic compounds has been monitored in a suspension culture of anthocyanin-accumulating sweet potato cell line grown under the conditions of modified Murashige and Skoog high-anthocyanin production medium (APM) over a period of 24 days. Tissue samples extracted with 15% acetic acid were analysed using HPLC at a detection wavelength of 326 nm. Among others, the following derivatives of caffeoylquinic acids were detected: 4,5-dicaffeoylquinic acid, 3,5-dicaffeoylquinic acid, 3,4-dicaffeoylquinic acid, and 3,4,5-tricaffeoylquinic acid. Their total amount reached a maximum of 110 mg/gFW between the 4th and the 15th day of culture growth on APM. The major compound of the phenolic mixture was 3,5-dicaffeoylquinic acid with maximum accumulation level of 80 mg/100 gFW. The potential effects of targeted phenolic compounds on the nutraceutical qualities ofin vitroproduced anthocyanin-rich extracts are discussed.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Chen, Fujia, Xiaohua Long, Zhaopu Liu, Hongbo Shao und Ling Liu. „Analysis of Phenolic Acids of Jerusalem Artichoke (Helianthus tuberosusL.) Responding to Salt-Stress by Liquid Chromatography/Tandem Mass Spectrometry“. Scientific World Journal 2014 (2014): 1–8. http://dx.doi.org/10.1155/2014/568043.

Der volle Inhalt der Quelle
Annotation:
Plant phenolics can have applications in pharmaceutical and other industries. To identify and quantify the phenolic compounds inHelianthus tuberosusleaves, qualitative analysis was performed by a reversed phase high-performance liquid chromatography coupled with tandem mass spectrometry (HPLC-MS/MS) and quantitative analysis by HPLC. Ten chlorogenic acids (CGAs) were identified (3-o-caffeoylquinic acid, two isomers of caffeoylquinic acid, caffeic acid,p-coumaroyl-quinic acid, feruloylquinic acid, 3,4-dicaffeoyquinic acid, 3,5-dicaffeoylquinic acid, 1,5-dicaffeoylquinic acid, and 4,5-dicaffeoylquinic acid) by comparing their retention times, UV-Vis absorption spectra, and MS/MS spectra with standards. In addition, four other phenolic compounds, including caffeoyl glucopyranose, isorhamnetin glucoside, kaempferol glucuronide, and kaempferol-3-o-glucoside, were tentatively identified inHelianthus tuberosusleaves for the first time. The 3-o-caffeoylquinic acid (7.752 mg/g DW), 4,5-dicaffeoylquinic acid (5.633 mg/g DW), and 3,5-dicaffeoylquinic acid (4.900 mg/g DW) were the major phenolic compounds in leaves ofHelianthus tuberosuscultivar NanYu in maturity. The variations in phenolic concentrations and proportions inHelianthus tuberosusleaves were influenced by genotype and plant growth stage. Cultivar NanYu had the highest concentration of phenolic compounds, in particular 3-o-caffeoylquinic acid and 4,5-dicaffeoylquinic acid compared with the other genotypes (wild accession and QingYu). Considering various growth stages, the concentration of total phenolics in cultivar NanYu was higher at flowering stage (5.270 mg/g DW) than at budding and tuber swelling stages. Cultivar NanYu ofHelianthus tuberosusis a potential source of natural phenolics that may play an important role in the development of pharmaceuticals.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Tian, Fang, Qun-Jia Ruan, Ying Zhang, Hui Cao, Zhi-Guo Ma, Gai-Lian Zhou und Meng-Hua Wu. „Quantitative Analysis of Six Phenolic Acids in Artemisia capillaris (Yinchen) by HPLC-DAD and Their Transformation Pathways in Decoction Preparation Process“. Journal of Analytical Methods in Chemistry 2020 (23.04.2020): 1–8. http://dx.doi.org/10.1155/2020/8950324.

Der volle Inhalt der Quelle
Annotation:
We aimed to establish a quantitative analysis method of six constituents (5-caffeoylquinic acid, 3-caffeoylquinic acid, 4-caffeoylquinic acid, 1,3-dicaffeoylquinic acid, 3,4-dicaffeoylquinic acid, and 4,5-dicaffeoylquinic acid) in Artemisia capillaris (Yinchen) and its decoction by using HPLC coupled with DAD. Besides, the transformation paths of the six constituents were analyzed in decoction preparation processing. The analytical method was fully validated in terms of linearity, sensitivity, precision, repeatability, and recovery and applied to assess the transformation trend and quantitative analysis of the six constituents in Yinchen decoction. The contents of six constituents varied greatly in Yinchen herb and Yinchen decoction, and there were inextricable internal relationships between them. Presumably 3-caffeoylquinic acid was isomerized to generate 5-caffeoylquinic acid and 4-caffeoylquinic acid. Similarly, 1,3-dicaffeoylquinic acid and 3,4-dicaffeoylquinic acid were produced by isomerization of 4,5-dicaffeoylquinic acid. In conclusion, this study provides a chemical basis for quality control of Yinchen decoction, and the changes of selected markers in decoction could give us some novel perspectives to study the relationship between substances and drug efficacy.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Padda, Malkeet S., und David H. Picha. „(184) Phenolic Composition and Antioxidant Activity of Sweetpotato Cultivars Marketed in the European Union“. HortScience 41, Nr. 4 (Juli 2006): 1017D—1018. http://dx.doi.org/10.21273/hortsci.41.4.1017d.

Der volle Inhalt der Quelle
Annotation:
Phenolic compounds and antioxidant activity were quantified in the principal sweetpotato cultivars marketed in the European Union. Total phenolic content, individual phenolic acids, and antioxidant activity in each cultivar were determined using Folin-Denis reagent, reversed-phase HPLC, and 1,1-diphenyl-2-picrylhydrazyl (DPPH) methods, respectively. Significant differences in phenolic composition and antioxidant activity were found between cultivars. A Jamaican-grown, white-fleshed cultivar had the highest total phenolic content [4.11 mg·g-1 chlorogenic acid (dry tissue weight)], while the highest antioxidant activity [3.60 mg·g-1 Trolox (dry tissue weight)] was observed in the orange-fleshed California-grown cultivar Diane. Chlorogenic acid and 3,5-dicaffeoylquinic acid were the predominant phenolic acids, while caffeic acid was the least abundant in most cultivars. The highest content of chlorogenic acid (0.42 mg·g-1 dry tissue weight); 3,5-dicaffeoylquinic acid (0.43 mg·g-1 dry tissue weight); and 3,4-dicaffeoylquinic acid (0.25 mg·g-1 dry tissue weight) was present in the white-fleshed Jamaican cultivar. The orange-fleshed cultivars Diane and Beauregard had the highest content of caffeic acid (0.13 mg·g-1 dry tissue weight) and 4,5-dicaffeoylquinic acid (0.32 mg·g-1 dry tissue weight), respectively.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Nemzer, Boris, Diganta Kalita und Nebiyu Abshiru. „Quantification of Major Bioactive Constituents, Antioxidant Activity, and Enzyme Inhibitory Effects of Whole Coffee Cherries (Coffea arabica) and Their Extracts“. Molecules 26, Nr. 14 (16.07.2021): 4306. http://dx.doi.org/10.3390/molecules26144306.

Der volle Inhalt der Quelle
Annotation:
Coffee cherry is a rich source of chlorogenic acids (CGAs) and caffeine. In this study we examined the potential antioxidant activity and enzyme inhibitory effects of whole coffee cherries (WCC) and their two extracts on α-amylase, α-glucosidase and acetylcholinesterase (AChE) activities, which are targets for the control of diabetes and Alzheimer’s diseases. Whole coffee cherry extract 40% (WCCE1) is rich in chlorogenic acid compounds, consisting of a minimum of 40% major isomers, namely 3-caffeoylquinic acids, 4-caffeoylquinic acids, 5-caffeoylquinic acids, 3,4-dicaffeoylquinic acid, 3,5-dicaffeoylquinic acid, 4,5-dicaffeoylquinic acid, 4-feruloylquinc acid, and 5-feruloylquinc acid. Whole coffee cherry extract 70% (WCCE2) is rich in caffeine, with a minimum of 70%. WCCE1 inhibited the activities of digestive enzymes α-amylase and α-glucosidase, and WCCE2 inhibited acetylcholinesterase activities with their IC50 values of 1.74, 2.42, and 0.09 mg/mL, respectively. Multiple antioxidant assays—including DPPH, ABTS, FRAP, ORAC, HORAC, NORAC, and SORAC—demonstrated that WCCE1 has strong antioxidant activity.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

El-Askary, Hesham, Heba H. Salem und Amira Abdel Motaal. „Potential Mechanisms Involved in the Protective Effect of Dicaffeoylquinic Acids from Artemisia annua L. Leaves against Diabetes and Its Complications“. Molecules 27, Nr. 3 (27.01.2022): 857. http://dx.doi.org/10.3390/molecules27030857.

Der volle Inhalt der Quelle
Annotation:
Diabetes mellitus is a chronic disease affecting the globe and its incidence is increasing pandemically. The use of plant-derived natural products for diabetes management is of great interest. Polar fraction of Artemisia annua L. leaves has shown antidiabetic activity in vivo. In the present study, three major compounds were isolated from this polar fraction; namely, 3,5-dicaffeoylquinic acid (1); 4,5-dicaffeoylquinic acid (2), and 3,4- dicaffeoylquinic acid methyl ester (3), using VLC-RP-18 and HPLC techniques. The potential protective effects of these compounds against diabetes and its complications were investigated by employing various in vitro enzyme inhibition assays. Furthermore, their antioxidant and wound healing effectiveness were evaluated. Results declared that these dicaffeoylquinic acids greatly inhibited DPPIV enzyme while moderately inhibited α-glucosidase enzyme, where compounds 1 and 3 displayed the most prominent effects. In addition, compound 3 showed pronounced inhibition of α-amylase enzyme. Moreover, these compounds markedly inhibited aldose reductase enzyme and exerted powerful antioxidant effects, among which compound 3 exhibited the highest activity implying a notable potentiality in impeding diabetes complications. Interestingly, compounds 2 and 3 moderately accelerated scratch wound healing. Our findings suggest that these dicaffeoylquinic acids can be promising therapeutic agents for managing diabetes and its complications.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Hordiei, Karyna, Tetiana Gontova, Sonata Trumbeckaite, Maksym Yaremenko und Lina Raudone. „Phenolic Composition and Antioxidant Activity of Tanacetum parthenium Cultivated in Different Regions of Ukraine: Insights into the Flavonoids and Hydroxycinnamic Acids Profile“. Plants 12, Nr. 16 (14.08.2023): 2940. http://dx.doi.org/10.3390/plants12162940.

Der volle Inhalt der Quelle
Annotation:
Tanacetum parthenium, also known as feverfew, is rich in bioactive compounds, namely sesquiterpene lactones, flavonoids, and volatile oils. Sesquiterpene lactones possess anti-migraine activity, while phenolic compounds possess anti-inflammatory and antioxidant action. Phytochemical composition determines the pharmacological activity and so profiling is essential in quality assessment. The study aimed to evaluate cultivated feverfew plants’ phenolic profiles and antioxidant activity. Eleven phenolic compounds were identified in the samples of feverfew in Ukraine. Hydroxycinnamic acids predominate in the quantitative content of all the samples, namely chlorogenic acid, 3,5-dicaffeoylquinic acid, 3,4-dicaffeoylquinic acid and 4,5-dicaffeoylquinic acid. The total content of flavonoids ranged from 0.8 to 2.6%; the content of hydroxycinnamic acids varied from 3.3 to 6.5%. The obtained data testify to the prospects of using Ukrainian feverfew as a raw material with a significant content of phenolic substances to develop new herbal medicines.
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Dissertationen zum Thema "Dicaffeoylquinic acid"

1

Raheem, Kolawole Saki. „Studies on the synthesis of dicaffeoylquinic acid conjugates“. Thesis, University of St Andrews, 2011. http://hdl.handle.net/10023/2009.

Der volle Inhalt der Quelle
Annotation:
Dicaffeoylquinic acid (DCQA) is a natural polyphenolic compound widely distributed in plants such as coffee beans, which possesses a range of pharmacological activities. Herein, is reported studies undertaken towards the first total synthesis of 3,5-DCQA conjugates. Two synthetic routes were investigated. The first route involves a seven step sequence beginning from quinic acid. The overall yield via this synthetic approach was 30%. The key steps involved in the sequence were a regioselective benzylation of the C-3-hydroxyl group followed by silyl protection of the C-1 and C-4 hydroxyl groups. Deprotection of the benzyl group by hydrogenolysis and opening of the lactone afforded the 3,5-diol. Esterification of the 3,5-diol with 3,4-tert-butyldimethylsilyl caffeoyl chloride afforded the di-ester. Removal of the protecting groups afforded 3,5-DCQA. The second route involved selective protection of the C-3-hydroxyl group with silyl followed by benzylation of the C-1 and C-3 hydroxyl groups. Saponification of the lactone ring followed by benzylation of the carboxylic acid gave the benzyl ester. Silyl deprotection afforded the 3,5-diol. The 3,5-diol was subsequently esterified by refluxing in toluene with commercially available Meldrum’s acid. In the final step, the synthesis of 3,5-DCQA was achieved by a Knoevenagel condensation of 3,4-dihydroxybenzaldehyde and a malonate ester of quinic acid. An efficient method for the synthesis of possible metabolites of quinic acid conjugates was also described. This protocol employs N-(4-methoxyphenyl)-trifluoroacetimidate glucuronyl as the donor. The key reaction in this sequence was the coupling of N-(4-methoxyphenyl)-trifluoroacetimidate glucuronyl with 4-hydroxy-3-methoxy-benzaldehyde.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Diemer, Étienne. „Intensification du procédé d’extraction, de purification et de fonctionnalisation des acides caféoylquiniques à partir de coproduits de la culture de l’endive“. Electronic Thesis or Diss., Compiègne, 2024. http://www.theses.fr/2024COMP2821.

Der volle Inhalt der Quelle
Annotation:
La racine forcée d’endive est un coproduit de la culture de l’endive, produit caractéristique du Nord de la France, de la Belgique et des Pays-Bas. Actuellement sous utilisé en méthanisation ou en alimentation animale, ce coproduit contient pourtant des molécules d’intérêts à haute valeur ajoutée : les acides caféoylquiniques. Ces molécules possèdent des activités antioxydantes, anti-inflammatoires et permettent de limiter les maladies du désordre métabolique. Ce travail de thèse vise à intensifier le prétraitement, l’extraction, la purification et la fonctionnalisation des acides caféoylquiniques à partir des racines forcées pour développer de nouvelles molécules bioactives biosourcées potentiellement intéressantes pour le secteur cosmétique et nutraceutique. Une dernière partie de la thèse porte sur l’étude technico-économique du procédé pour estimer sa rentabilité économique en fonction du secteur d’application visé. La première partie porte sur l’effet des prétraitements conventionnels (découpe et séchage) ainsi que l’effet d’un prétraitement électrique par champs électriques pulsés sur les teneurs en acides caféoylquiniques dans la biomasse. L’effet de l’ajout d’une solution antioxydante lors de l’extraction est également étudié. Dans un deuxième temps, une optimisation de l’extraction est réalisée à partir de biomasse sèche et fraiche. L’influence de facteurs tels que la température, le ratio solide/liquide, ainsi que la nature du solvant a été étudiée. De plus, des cinétiques d’extraction ont été tracées pour étudier les paramètres cinétiques à l’aide d’un modèle empirique. La pureté de l’extrait obtenu étant faible, des étapes de purification sont donc nécessaires. Par la suite, les travaux se sont portés sur la purification de l’extrait brut à l’aide de résines macroporeuses ainsi que par extraction liquide/liquide. Pour la purification par résine, un screening de résines est réalisé suivi d’une optimisation des conditions opératoires de purification avec la résine choisie. Des modélisations des phénomènes d’adsorption sont réalisées pour déterminer les étapes limitantes ainsi que la capacité maximale d’adsorption. Pour l’extraction liquide/liquide, un screening de solvants verts est effectué à partir d’un milieu aqueux et hydro-éthanolique puis une optimisation des conditions opératoires avec le meilleur solvant est réalisée. La pénultième partie de la thèse cherche à fonctionnaliser par estérification les acides caféoylquiniques à partir d’une solution modèle puis d’un extrait réel. Les conditions d’estérification sont optimisées pour augmenter la vitesse de réaction ainsi que le taux de conversion. Des esters avec différentes longueurs de chaine sont obtenus et l’activité antioxydante ainsi que les propriétés anti-UV sont étudiées. La fonctionnalisation est par la suite effectuée sur un extrait réel. Une étude technico-économique conclut la thèse permettant d’ouvrir sur des perspectives quant aux conditions nécessaires à l’industrialisation du procédé de valorisation des racines forcées d’endive
Forced chicory root is a by-product of Belgian endive culture, a typical crop of northern France, Belgium and the Netherlands. Currently under-utilized in methanation or animal feed, this by-product contains molecules of interest: caffeoylquinic acids. These molecules have antioxidant and anti-inflammatory properties, and a potential for reducing metabolic disorders. This thesis aims to intensify the pre-treatment, extraction, purification and functionalization of caffeoylquinic acids from forced chicory roots to develop new bioactive biosourced molecules of potential interest to the cosmetics and nutraceutical sectors. The final part of the thesis deals with a technico-economical study of the process to estimate its economic profitability in relation to the targeted application sector. The first part focuses on the effect of conventional pretreatments (cutting and drying) and the effect of pulsed electric field pretreatment on caffeoylquinic acid content in biomass. The effect of adding an antioxidant solution during extraction is also investigated. Secondly, extraction optimization is carried out using dry or fresh biomass. The influence of factors such as temperature, solid/liquid ratio and solvent type were studied. In addition, extraction kinetics were performed to study kinetic parameters using empirical models. As the purity of the extract obtained is low, purification steps are needed. The thesis then focused on purifying the crude extract obtained using macroporous resins and liquid/liquid extraction. For resin purification, resin screening was carried out, followed by optimization of the purification operating conditions with the chosen resin. Models of adsorption phenomena are carried out to identify the limiting stages and the maximum adsorption capacity. For liquid/liquid extraction, green solvent screening is carried out on aqueous and hydro-ethanolic media, followed by optimization of operating conditions with the best solvent. The penultimate part of the thesis seeks to functionalize caffeoylquinic acids by esterification, starting with a model solution and then a real extract. Esterification conditions are optimized to increase both reaction speed and conversion rate. Esters with different chain lengths were obtained, and biological activities such as antioxidant activity and anti-UV properties were studied. Functionalization is also performed with real extract. A technico-economic study concludes the thesis, opening up prospects for the industrialization of the forced chicory roots valorization process
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Jasinski, Vanesssa Cristina Godoy. „Óleos essenciais e compostos fenólicos de espécimes masculinos e femininos de Baccharis uncinella DC“. UNIVERSIDADE ESTADUAL DE PONTA GROSSA, 2010. http://tede2.uepg.br/jspui/handle/prefix/2082.

Der volle Inhalt der Quelle
Annotation:
Made available in DSpace on 2017-07-24T19:38:03Z (GMT). No. of bitstreams: 1 Vanessa Cristina Godoy Jasinski.pdf: 3849900 bytes, checksum: f8ecb7e08b0fac6fae8e4aec5fe4c1e3 (MD5) Previous issue date: 2010-03-12
This study aimed to: develop methodological sequences for the collection and analysis of essential oils and phenolic compounds of B. uncinella, applicable to the study of other species of the genus Baccharis; determined by techniques of gas chromatography-mass spectrometry, the chemical composition of essential oils from the leaves of male and female specimens of B. uncinella from different populations of the plant growing in nature; isolate and determine the chemical structure of phenolic compounds present in leaves using mainly chromatographic and spectroscopic methods. In the Campos Gerais of Paraná, it was observed the occurrence of two supposed varieties of B. uncinella, Bu1 and Bu2, with markedly different sizes and quite different flowering times. For the first time the leaves were collected from male and female specimens of two populations of B. uncinella, proceed to the extraction and analysis of essential oils by GC-MS techniques. The essential oils of four samples had very similar compositions, as opposed to frequently published data indicating no difference between the compositions of oils of male and female specimens of the same species of Baccharis. The results obtained in this study are due to the care in collections of male and female specimens (in the same place and time), in the preparation of material (careful separation of the leaves), using the same conditions in the hydrodestillation and analysis by CG-EM . All four samples had low levels of monoterpenes and the following sesquiterpenes as the main components: caryophyllene (Bu1 10.03% and Bu1 7.64%; Bu2 6.06% and Bu2 7.96%); spathulenol (Bu1 28.99% and Bu1 29.68%; Bu2 24.30% and Bu2 16.94%), caryophyllene oxide (Bu1 12.98% and Bu2 14.24%; Bu2 9.75% and Bu2 23.52%). These results also confirmed the botanical identifications that were made based on the morphology of flowers, indicating the inexistence of the supposed sub-species. The water remaining after the hydrodestillation was extracted with CHCl3 and then with AcOEt, yielding four extracts containing mainly 3.5-dicaffeoylquinic and 3.4-dicaffeoylquinic acids, as demonstrated by analysis of their 1H and 13C NMR spectra. The leaves were also extracted in Sohxlet using three solvents in sequence: CHCl3, AcOEt and MeOH. Part of the methanol extract was purified by dissolving it in water, removing the precipitates formed by a cold rest and extracting it with AcOEt. The extract thus obtained with ethyl acetate was subjected to several vacuum chromatography steps leading to the isolation and identification of 3,5- dicaffeoylquinic acid by the analysis of its 1H and 13C NMR spectra. This route to the phenolic compounds was improved by obtaining extracts with ethyl acetate from aqueous solution at pH 8 and pH 3. The extract made in slightly alkaline conditions contained mainly flavonoids, while the one obtained at pH 3 contained derivatives of quinic acid. The AcOEt extract at pH 8 was fractionated on silica gel column under pressure leading to the isolation of three flavonoids identified by their UV, 1H and 13C NMR spectra (quercetin, luteolin and apigenin). The AcOEt extract at pH 4 was fractionated on a silica gel column leading to the isolation and identification of 3,4-dicaffeoylquinic acid by the 1H and 13C NMR spectra.
Este estudo teve como objetivos: desenvolver seqüências metodológicas para a obtenção e análise de óleos essenciais e compostos fenólicos de B. uncinella, aplicáveis ao estudo de outras espécies do gênero Baccharis; determinar por técnicas de cromatografia gasosa acoplada à espectrometria de massas, a composição química dos óleos essenciais das folhas de espécimes masculinos e femininos de B. uncinella procedentes de diferentes populações da planta crescendo in natura; isolar e determinar a estrutura química de compostos fenólicos presentes nas folhas utilizando, principalmente, métodos cromatográficos e espectrométricos. Nos Campos Gerais do Paraná, foi observada a ocorrência de duas supostas variedades de B. uncinella, Bu1 e Bu2, com portes acentuadamente diferentes e épocas de floração bem distintas. Pela primeira vez foram coletadas as folhas de espécimes masculinos e femininos de duas populações de B. uncinella, procedendo-se à extração e análise de seus óleos essenciais por técnicas de CG-EM. Os óleos essenciais das quatro amostras apresentaram composições muito semelhantes, em contraposição a dados frequentemente publicados, que indicam haver diferenças entre as composições de óleos de espécimes masculinos e femininos da mesma espécie de Baccharis. O resultado obtido na presente pesquisa se deve aos cuidados tomados nas coletas dos espécimes masculinos e femininos (mesmo local e horário), na preparação do material (separação minuciosa das folhas), no uso das mesmas condições nas hidrodestilações e nas análises por CG-EM. Todas as quatro amostras apresentaram baixos teores de monoterpenos e os seguintes sesquiterpenos como principais componentes: cariofileno (Bu1 10,03% e Bu1 7,64%; Bu2 6,06% e Bu2 7,96%); espatulenol (Bu1 28,99% e Bu1 29,68%; Bu2 24,30 %e Bu2 16,94%); cariofileno óxido (Bu1 12,98% e Bu2 14,24%; Bu2 9,75% e Bu2 23,52%). Estes resultados também confirmaram as identificações botânicas feitas com base na morfologia das flores, indicando a inexistência da suposta variedade. As águas restantes após as hidrodestilações foram extraídas com CHCl3 e em seguida com AcOEt, obtendo-se quatro extratos contendo principalmente os ácidos 3,5- dicafeoilquínico e 3,4-dicafeoilquínico, como demonstrado por análises dos seus espectros de RMN de 1H e 13C. As folhas foram também extraídas em Sohxlet por solventes em sequência:CHCl3, AcOEt e MeOH. Parte do extrato metanólico foi purificado dissolvendo-se em água, eliminando os precipitados formados por repouso a frio e extraindo-se com AcOEt. O extrato obtido desta forma com acetato de etila foi submetido a diversas cromatografias a vácuo, sendo isolado e identificado o ácido 3,5-dicafeoilquínico pela análise dos espectros de RMN de 1H e 13C. Esta rota para os compostos fenólicos foi melhorada através da obtenção de extratos com acetato de etila a partir da solução aquosa em pH 8 e em pH 3. O extrato feito em meio levemente alcalino continha principalmente flavonóides, enquanto que o que foi obtido em pH 3 continha os derivados do ácido quínico. O extrato AcOEt em pH 8 foi fracionado em coluna de silica gel sob pressão, levando ao isolamento e identificação de três flavonóides, identificados pelos seus espectros de UV, RMN 1H e 13C (quercetina, luteolina e apigenina). O extrato AcOEt em pH 4 foi fracionado em coluna de sílica gel, isolando-se e identificando-se o ácido 3,4-dicafeoilquínico pelo seus espectros de RMN de 1H e de 13C.
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Buchteile zum Thema "Dicaffeoylquinic acid"

1

Crosby, David C., und W. Edward Robinson. „Dicaffeoyltartaric Acid and Dicaffeoylquinic Acid HIV Integrase Inhibitors“. In HIV-1 Integrase, 341–62. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2011. http://dx.doi.org/10.1002/9781118015377.ch23.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Chammas, Sergio M., Juliana F. Sanchez, Rosely C. B. Alves, Lucas A. Giovannini und Durvanei A. Maria. „Bioactive compounds of rosemary from the field: a review of the biological effects“. In COLLECTION OF INTERNATIONAL TOPICS IN HEALTH SCIENCE- V1. Seven Editora, 2023. http://dx.doi.org/10.56238/colleinternhealthscienv1-068.

Der volle Inhalt der Quelle
Annotation:
The medicinal plants are currently part of the sociocultural scenario in several countries, although their use has been described since the Egyptian peoples. Thus, in their most varied forms of use, medicinal plants play a fundamental role in people's lives, besides being used in the prospection of new molecules with biological action, and can be used as new therapeutic routes in disease treatments. Besides the recognition in popular medicine, research indicates that rosemary (Baccharis dracunculifolia) can be an ally for the treatment of numerous diseases due to its biological activities, such as antitumor, antibacterial, antiviral, antifungal, antiprotozoal, anti-inflammatory, antioxidant, immunomodulatory, and analgesic properties. Considering its high pharmacotherapeutic potential, it is important to analyze and compile knowledge about the bioactive compounds of rosemary and its biomedical applications. In this study, a bibliographical survey was carried out in order to collect data and information on the identification and description of the rosemary field bioactives, as well as their biological activities. Thus, some compounds stand out for their actions, such as p-coumaric, caffeic, chrysinic, 3,5-diprenyl-4-hydroxycinnamic, agathic, cuprésic, betuletol, 15-acetoxyisocuprésic, prenylated coumaric, 3,5 and 4,5-dicaffeoylquinic acids. These compounds have important biological actions, responsible for promising researches for innumerous treatments of diseases, with potential antitumor effect for several cell lines, promoting alterations in the cellular metabolism, in the respiratory chain, in the distribution and progression of the cell cycle and in the proliferation of tumor cells.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie