Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Diagram of fracture strain“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Diagram of fracture strain" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Diagram of fracture strain"
Vilotic, Dragisa, Sergei Alexandrov, Aljosa Ivanisevic und Mladomir Milutinovic. „Reducibility of Stress-Based Workability Diagram to Strain-Based Workability Diagram“. International Journal of Applied Mechanics 08, Nr. 02 (März 2016): 1650022. http://dx.doi.org/10.1142/s1758825116500228.
Der volle Inhalt der QuelleBudden, P. J. „Failure assessment diagram methods for strain-based fracture“. Engineering Fracture Mechanics 73, Nr. 5 (März 2006): 537–52. http://dx.doi.org/10.1016/j.engfracmech.2005.09.008.
Der volle Inhalt der QuelleLomunov, A. K., T. N. Yuzhina, L. Kruszka und W. W. Chen. „DEFORMING AND FRACTURE OF LINDEN AND PINE UNDER INTENSIVE DYNAMIC IMPACTS“. Problems of strenght and plasticity 82, Nr. 1 (2020): 43–51. http://dx.doi.org/10.32326/1814-9146-2020-82-1-43-51.
Der volle Inhalt der QuelleMironov, Vladimir I., Olga A. Lukashuk und Ivan S. Kamantsev. „Experimental Study of Strain-Softening Stage in Materials“. Materials Science Forum 946 (Februar 2019): 276–81. http://dx.doi.org/10.4028/www.scientific.net/msf.946.276.
Der volle Inhalt der QuelleLi, Fei-Fan, Gang Fang und Ling-Yun Qian. „Forming limit analysis of Mg-2Zn-1.2Al-0.2Ca-0.2RE alloy sheet using ductile fracture models“. International Journal of Damage Mechanics 29, Nr. 8 (09.06.2019): 1181–98. http://dx.doi.org/10.1177/1056789519855763.
Der volle Inhalt der QuelleMohamed, M. Jinnah Sheik, und N. Selvakumar. „Studies on Formability Behaviour of Aluminium Alloy Sheets with Ceramic Nanocoatings“. Advanced Materials Research 984-985 (Juli 2014): 482–87. http://dx.doi.org/10.4028/www.scientific.net/amr.984-985.482.
Der volle Inhalt der QuellePark, Namsu, Hoon Huh und Jeong Whan Yoon. „Anisotropic fracture forming limit diagram considering non-directionality of the equi-biaxial fracture strain“. International Journal of Solids and Structures 151 (Oktober 2018): 181–94. http://dx.doi.org/10.1016/j.ijsolstr.2018.01.009.
Der volle Inhalt der QuelleLyamina, Elena, Alexander Pirumov und Yeong Maw Hwang. „An Approach for Predicting the Initiation of Ductile Fracture in Plane Strain Rolling“. Key Engineering Materials 827 (Dezember 2019): 379–84. http://dx.doi.org/10.4028/www.scientific.net/kem.827.379.
Der volle Inhalt der QuelleQian, Z., Guang Ye, Erik Schlangen und Klaas van Breugel. „3D Lattice Fracture Model: Application to Cement Paste at Microscale“. Key Engineering Materials 452-453 (November 2010): 65–68. http://dx.doi.org/10.4028/www.scientific.net/kem.452-453.65.
Der volle Inhalt der QuelleKovar, Martin, und Marek Foglar. „Design and Evaluation of the Method of Parameterization of the Force-Deflection Diagram of FRC“. Advanced Materials Research 1106 (Juni 2015): 98–101. http://dx.doi.org/10.4028/www.scientific.net/amr.1106.98.
Der volle Inhalt der QuelleDissertationen zum Thema "Diagram of fracture strain"
Dubravec, Kristián. „Elastoplastická analýza napětí a deformace a stanovení lomových parametrů při tahovém namáhání těles s koncentrátory napětí“. Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2021. http://www.nusl.cz/ntk/nusl-443729.
Der volle Inhalt der QuelleZhou, Qing 1964. „Analysis of plane strain necking and fracture in strain hardening materials“. Thesis, Massachusetts Institute of Technology, 1994. http://hdl.handle.net/1721.1/11636.
Der volle Inhalt der QuelleMahmood, K. „Influence of strain rate on oxide fracture“. Thesis, Cranfield University, 1988. http://dspace.lib.cranfield.ac.uk/handle/1826/11358.
Der volle Inhalt der QuelleAlinaghian, Yaser. „The Effect of Pre-strain and Strain Path Changes on Ductile Fracture“. Thèse, Université d'Ottawa / University of Ottawa, 2013. http://hdl.handle.net/10393/23917.
Der volle Inhalt der QuelleMoore, Andrew J. „Strain analysis using ESPI applied to fracture mechanics“. Thesis, Loughborough University, 1993. https://dspace.lboro.ac.uk/2134/11889.
Der volle Inhalt der QuelleMillereau, Pierre Michel. „Large Strain and Fracture of Multiple Network Elastomers“. Thesis, Paris 6, 2017. http://www.theses.fr/2017PA066082/document.
Der volle Inhalt der QuelleWe investigated systematically the mechanical and fracture properties of multiple network elastomers synthesized by successive swelling/polymerization steps inspired by the molecular architecture of Gong’s double network gels. A more versatile synthesis method was used to vary continuously the isotropic degree of prestretching λ0 of the first network resulting in a wider range of mechanical behaviours, where λ0 controls the Young’s modulus at small strain and the strain hardening at large strain. If the first network is diluted enough (<10%) molecular bond breakage occurs in this prestretched network at high strain while avoiding sample failure. The degree of dilution controls the amount of damage and therefore the slope of the stress-strain curve. Finally, for the most diluted systems (<3%), a yield stress and a necking phenomenon was observed. Changing the degree of crosslinking of the first network or the monomers used led to the same qualitative mechanical behaviour. The fracture energy Γ was shown to be an increasing function of λ0 however different regimes could be distinguished with macroscopic fracture occurring before or after bulk damage was detected. Visualisation techniques such as Digital Image Correlation and embedded mechanoluminescent molecules were used to map a damage zone in front of the crack tip, the size of which increased with λ0. Finally, the toughening mechanism of the multiple network elastomers could be understood in a nearly quantitative way within the framework of Brown's model of fracture of double network gels
Fung, Kam-sang. „Fatigue crack propagation with strain energy density approach /“. [Hong Kong] : University of Hong Kong, 1989. http://sunzi.lib.hku.hk/hkuto/record.jsp?B12827204.
Der volle Inhalt der QuelleMartinsen, Vegard. „Micromechanical Modelling of Strain Localization and Fracture in Aluminium“. Thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for konstruksjonsteknikk, 2012. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-18812.
Der volle Inhalt der QuelleDabboussi, Wael. „High strain rate deformation and fracture of engineering materials“. Thesis, McGill University, 2003. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=79224.
Der volle Inhalt der QuelleVijayakumar, Vinod. „Stress/strain environments in healing human tibial fractures“. Thesis, University of Oxford, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.275202.
Der volle Inhalt der QuelleBücher zum Thema "Diagram of fracture strain"
Berger, John R. Study of static and dynamic fracture using strain measurements. Boulder, Colo: U.S. Dept. of Commerce, National Institute of Standards and Technology, 1990.
Den vollen Inhalt der Quelle findenMartínez Pañeda, Emilio. Strain Gradient Plasticity-Based Modeling of Damage and Fracture. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-63384-8.
Der volle Inhalt der QuelleBerger, John R. Study of static and dynamic fracture using strain measurements. Boulder, Colo: U.S. Dept. of Commerce, National Institute of Standards and Technology, 1990.
Den vollen Inhalt der Quelle findenKitamura, Takayuki. A nonlinear high temperature fracture mechanics basis for strainrange partitioning. [Washington, DC]: National Aeronautics and Space Administration, Office of Management, Scientific and Technical Information Division, 1990.
Den vollen Inhalt der Quelle findenKitamura, Takayuki. A nonlinear high temperature fracture mechanics basis for strainrange partitioning. Cleveland, Ohio: Lewis Research Center, 1989.
Den vollen Inhalt der Quelle findenWong, Louis Man Chu. Effect of formation on local strain fields and fracture of paper. Ottawa: National Library of Canada, 1995.
Den vollen Inhalt der Quelle findenTejchman, Jacek. Simulations of strain localization in plain and reinforced concrete with enhanced continuum models. Gdańsk: Wydawn. Politechniki Gdańskiej, 2010.
Den vollen Inhalt der Quelle findenWong, A. K. On the application of the strain energy density theory in predicting crack initiation and angle of growth. Melbourne, Australia: Aeronautical Research Laboratories, 1986.
Den vollen Inhalt der Quelle findenWhyatt, J. K. Numerical exploration of shear-fracture-related rock bursts using a strain-softening constitutive law. Washington: U.S. Dept. of the Interior, Bureau of Mines, 1991.
Den vollen Inhalt der Quelle findenW, Dally James, Hrsg. Experimental solid mechanics. Knoxville, Tenn: College House Enterprises, 2010.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Diagram of fracture strain"
Gooch, Jan W. „Stress–Strain Diagram“. In Encyclopedic Dictionary of Polymers, 705. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_11286.
Der volle Inhalt der QuellePapadopoulos, George A. „The Elastic Strain Energy Density“. In Fracture Mechanics, 207–12. London: Springer London, 1993. http://dx.doi.org/10.1007/978-1-4471-1992-0_5.
Der volle Inhalt der QuelleAifantis, E. C. „Strain gradient interpretation of size effects“. In Fracture Scaling, 299–314. Dordrecht: Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-011-4659-3_16.
Der volle Inhalt der QuelleGdoutos, Emmanuel E. „Strain Energy Density Failure Criterion: Mixed-Mode Crack Growth“. In Fracture Mechanics, 195–238. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-015-8158-5_7.
Der volle Inhalt der QuelleGdoutos, Emmanuel E. „Strain Energy Density Failure Criterion: Mixed-Mode Crack Growth“. In Fracture Mechanics, 215–57. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-35098-7_7.
Der volle Inhalt der QuelleAlderliesten, René. „Stress and Strain“. In Fatigue and Fracture of Fibre Metal Laminates, 59–76. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-56227-8_4.
Der volle Inhalt der QuelleMughrabi, Hael. „Cyclic Strain Localization in Fatigued Metals“. In Physical Aspects of Fracture, 271–81. Dordrecht: Springer Netherlands, 2001. http://dx.doi.org/10.1007/978-94-010-0656-9_20.
Der volle Inhalt der QuelleGdoutos, E. E. „Strain energy density failure criterion“. In Fracture Mechanics Criteria and Applications, 195–229. Dordrecht: Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-009-1956-3_6.
Der volle Inhalt der QuelleStüwe, H. P. „Examples of Strain Localisation“. In Localization and Fracture Phenomena in Inelastic Solids, 1–20. Vienna: Springer Vienna, 1998. http://dx.doi.org/10.1007/978-3-7091-2528-1_1.
Der volle Inhalt der QuelleRey, C., T. Hoc und Ph Erieau. „Strain Localization in Single Crystals and Polycrystals“. In Physical Aspects of Fracture, 225–41. Dordrecht: Springer Netherlands, 2001. http://dx.doi.org/10.1007/978-94-010-0656-9_17.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Diagram of fracture strain"
Budden, Peter J., und Michael C. Smith. „Numerical Validation of a Strain-Based Failure Assessment Diagram Approach to Fracture“. In ASME 2009 Pressure Vessels and Piping Conference. ASMEDC, 2009. http://dx.doi.org/10.1115/pvp2009-77377.
Der volle Inhalt der QuelleWatanabe, Shin-ichi, Koh-ichi Imamura, Osamu Watanabe und Akihiro Matsuda. „Effect of Strain Amplitudes and Mean Strain Values on Fatigue Life at Elevated Temperature“. In ASME 2013 Pressure Vessels and Piping Conference. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/pvp2013-97867.
Der volle Inhalt der QuelleVyas, N. S., Sidharth und J. S. Rao. „A Fracture Mechanics Approach to Life Prediction of Turbine Blades“. In ASME 1993 International Gas Turbine and Aeroengine Congress and Exposition. American Society of Mechanical Engineers, 1993. http://dx.doi.org/10.1115/93-gt-406.
Der volle Inhalt der QuelleHuang, Y., Y. J. Wang, J. Cao und M. Li. „Prediction of Forming Limit in Single Point Incremental Forming With the Ductile Fracture Criterion“. In ASME 2007 International Manufacturing Science and Engineering Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/msec2007-31129.
Der volle Inhalt der QuelleMinami, Fumiyoshi, Mitsuru Ohata, Daisuke Watanabe, Satoshi Igi, Takahiro Kubo und Nobuhisa Suzuki. „Crack Geometry Effect on Stress-Strain Fields for Crack Under Biaxial Loading“. In 2008 7th International Pipeline Conference. ASMEDC, 2008. http://dx.doi.org/10.1115/ipc2008-64457.
Der volle Inhalt der QuelleJang, Youn-Young, Ju-Yeon Kang, Nam-Su Huh, Ik-Joong Kim, Cheol-Man Kim und Young-Pyo Kim. „Predictions of Tensile Strain Capacity for Strain-Based Pipelines With a Circumferential and Internal Surface Flaw“. In ASME 2019 38th International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/omae2019-96480.
Der volle Inhalt der QuelleOda, Kazuo, Mitsuyoshi Nakatani, Tomohiro Tanaka, Masamitsu Abe, Yasuhito Takashima und Fumiyoshi Minami. „Evaluation of Bending Limit of 9Cr-1Mo-V Steel by Master Curve and Failure Assessment Diagram Method: Evaluation of Base Metal“. In ASME 2018 Pressure Vessels and Piping Conference. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/pvp2018-84944.
Der volle Inhalt der QuelleTronskar, Jens P., und Vebjørn Andresen. „Avoiding Local Brittle Zones in Offshore Pipeline Girth Welds for Reeling Installation Involving Large Plastic Strain“. In ASME 2013 32nd International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/omae2013-11094.
Der volle Inhalt der QuelleCarlucci, Antonio, und Kamel Mcirdi. „Limit Plastic Collapse on Remaining Ligament of Flawed Welds for ECA Application“. In ASME 2014 Pressure Vessels and Piping Conference. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/pvp2014-28800.
Der volle Inhalt der QuelleRossillon, Fre´de´rique, und Yves Me´zie`re. „Analysis of Fracture Specimen Failure of Inconel 600: Elastic-Plastic Calculations and Thermo-Plastic Energy Fracture Parameter“. In ASME 2010 Pressure Vessels and Piping Division/K-PVP Conference. ASMEDC, 2010. http://dx.doi.org/10.1115/pvp2010-25323.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Diagram of fracture strain"
Wierzbicki, Tomasz. Effect of Strain Rate on Fracture Initiation. Fort Belvoir, VA: Defense Technical Information Center, März 2011. http://dx.doi.org/10.21236/ada544809.
Der volle Inhalt der QuelleMiller, T. C. Modelling of Plane Strain Interfacial Fracture in Incompressible Materials. Fort Belvoir, VA: Defense Technical Information Center, Mai 1998. http://dx.doi.org/10.21236/ada409449.
Der volle Inhalt der QuelleBerger, John R., und James W. Dally. Study of static and dynamic fracture using strain measurements. Gaithersburg, MD: National Institute of Standards and Technology, 1990. http://dx.doi.org/10.6028/nist.ir.3952.
Der volle Inhalt der QuelleRudnicki, J. W. Shear strain localization and fracture evolution in rock. Progress report, April 15, 1993--February 15, 1994. Office of Scientific and Technical Information (OSTI), März 1994. http://dx.doi.org/10.2172/10134863.
Der volle Inhalt der QuelleLeedy, K., J. F. Stubbins und D. Krus. Investigation of the influence of grain boundary chemistry, test temperatures, and strain rate on the fracture behavior of ITER copper alloys. Office of Scientific and Technical Information (OSTI), August 1997. http://dx.doi.org/10.2172/543211.
Der volle Inhalt der QuelleHaggag, Fahmy M. Nondestructive and Localized Measurements of Stress-Strain Curves and Fracture Toughness of Ferritic Steels at Various Temperatures Using Innovative Stress-Strain Microprobe Technology. Final Report for Period 8/13/1996--06/16/1999. Office of Scientific and Technical Information (OSTI), Oktober 1999. http://dx.doi.org/10.2172/769202.
Der volle Inhalt der QuelleHolmquist, T. J. Strength and Fracture Characteristics of HY-80, HY-100, and HY-130 Steels Subjected to Various Strains, Strain Rates, Temperatures, and Pressures. Fort Belvoir, VA: Defense Technical Information Center, September 1987. http://dx.doi.org/10.21236/ada233061.
Der volle Inhalt der QuelleMorgan, Michael J. 2014 Accomplishments-Tritium aging studies on stainless steel: Fracture toughness properties of forged stainless steels-Effect of hydrogen, forging strain rate, and forging temperature. Office of Scientific and Technical Information (OSTI), Februar 2015. http://dx.doi.org/10.2172/1170524.
Der volle Inhalt der QuelleSparks, Paul, Jesse Sherburn, William Heard und Brett Williams. Penetration modeling of ultra‐high performance concrete using multiscale meshfree methods. Engineer Research and Development Center (U.S.), September 2021. http://dx.doi.org/10.21079/11681/41963.
Der volle Inhalt der QuelleSTUDY ON MICROMECHANICAL FRACTURE MODELS OF STRUCTURAL STEEL AND ITS WELDS. The Hong Kong Institute of Steel Construction, Juni 2021. http://dx.doi.org/10.18057/ijasc.2021.17.2.2.
Der volle Inhalt der Quelle