Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Device for testing differentials“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Device for testing differentials" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Device for testing differentials"
Willoughby, Kim A., Jeff S. Uhlmeyer, Joe P. Mahoney, Keith W. Anderson und Linda M. Pierce. „Construction-Related Variability in Pavement Mat Density due to Temperature Differentials“. Transportation Research Record: Journal of the Transportation Research Board 1849, Nr. 1 (Januar 2003): 166–73. http://dx.doi.org/10.3141/1849-18.
Der volle Inhalt der QuelleGiridharan, Guruprasad A., Michael A. Sobieski, Mickey Ising, Mark S. Slaughter und Steven C. Koenig. „Blood Trauma Testing For Mechanical Circulatory Support Devices“. Biomedical Instrumentation & Technology 45, Nr. 4 (01.07.2011): 334–39. http://dx.doi.org/10.2345/0899-8205-45.4.334.
Der volle Inhalt der QuelleWang, Zhe, Yuan-hua Yu, Zhan-jiang Yu und Qi-meng Chen. „Blood coagulation dynamic testing sensor based on electromagnetic vibration“. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine 233, Nr. 6 (12.04.2019): 611–20. http://dx.doi.org/10.1177/0954411919837308.
Der volle Inhalt der QuelleLi, Rui, Shu Yong Song, Hui Ping Zheng, Zhen Guo Ma, Hui Yong Li und Tong Yu Zhang. „Design on Synchronize Debugging Device for Extra High Voltage Transmission Line Longitudinal Protection“. Advanced Materials Research 805-806 (September 2013): 926–29. http://dx.doi.org/10.4028/www.scientific.net/amr.805-806.926.
Der volle Inhalt der QuellePan, Xiaodong, Guanghui Wei, Xinfu Lu, Lisi Fan und Xing Zhou. „Research on Wideband Differential-Mode Current Injection Testing Technique Based on Directional Coupling Device“. International Journal of Antennas and Propagation 2014 (2014): 1–13. http://dx.doi.org/10.1155/2014/143068.
Der volle Inhalt der QuelleWang, Yu Jun, Li Jie Wang, Zhen Zhou, Yong Qing und Jin Ying Yin. „Research of Detecting System on Aneroid Capsule of Height Control Module of Automatic Unlocking Device“. Applied Mechanics and Materials 513-517 (Februar 2014): 3536–42. http://dx.doi.org/10.4028/www.scientific.net/amm.513-517.3536.
Der volle Inhalt der QuelleYue, Mingming, Weimin Zhang und Xin Jin. „Eddy current testing device for detecting pipeline defects based on the principle of differential excitation“. Insight - Non-Destructive Testing and Condition Monitoring 60, Nr. 6 (01.06.2018): 306–10. http://dx.doi.org/10.1784/insi.2018.60.6.306.
Der volle Inhalt der QuelleXie, Xinwu, Zhen Cheng, Youchun Xu, Ran Liu, Qi Li und Jing Cheng. „A sheath-less electric impedance micro-flow cytometry device for rapid label-free cell classification and viability testing“. Analytical Methods 9, Nr. 7 (2017): 1201–12. http://dx.doi.org/10.1039/c6ay03326a.
Der volle Inhalt der QuelleOthman, Norazila, Mohd Zarhamdy Md. Zain, Iskandar Shah Ishak, Abdul Rahim Abu Bakar, Mastura Ab Wahid und Maziah Mohamad. „A colour recognition device for the visually disabled people“. Indonesian Journal of Electrical Engineering and Computer Science 17, Nr. 3 (01.03.2020): 1322. http://dx.doi.org/10.11591/ijeecs.v17.i3.pp1322-1329.
Der volle Inhalt der QuelleRediniotis, Othon K. „A Computer-Controlled Pressure Standard“. Journal of Fluids Engineering 121, Nr. 1 (01.03.1999): 210–12. http://dx.doi.org/10.1115/1.2822006.
Der volle Inhalt der QuelleDissertationen zum Thema "Device for testing differentials"
Odložilík, Daniel. „Zařízení pro testování diferenciálů“. Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2021. http://www.nusl.cz/ntk/nusl-445172.
Der volle Inhalt der QuelleMuto, Andrew (Andrew Jerome). „Device testing and characterization of thermoelectric nanocomposites“. Thesis, Massachusetts Institute of Technology, 2008. http://hdl.handle.net/1721.1/44915.
Der volle Inhalt der QuelleThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Includes bibliographical references (p. 67-68).
It has become evident in recent years that developing clean, sustainable energy technologies will be one of the world's greatest challenges in the 21st century. Thermoelectric materials can potentially make a contribution by increasing energy efficiency of some systems. Thermoelectric materials may play a role in the large scale energy industry, specifically in the applications of refrigeration and waste heat recovery. In this work a novel thermoelectric material will be tested for conversion efficiency. A Bi₂Te₃ nanocomposite has been developed by the joint effort of Prof. Gang Chen's group at MIT and Prof. Zhifeng Ren's group at Boston College. The material exhibits enhanced thermoelectric properties from optimized nanoscale structures and can be easily manufactured in large quantities. In order to better characterize its performance a novel power conversion measurement system has been developed that can measure the conversion efficiency directly. The measurement system design will be described in detail; important design considerations will be addressed such as measuring heat flux, optimizing the load matching condition and reducing electrical contact resistance. Finally the measured efficiency will be compared to the calculated efficiency from a temperature-dependent properties model. It will be shown that a Ni layer must be attached to the nanocomposite to allow soldering and power conversion testing. Results of this work will show that the nanocomposite efficiency is higher than the commercial standard. Electrical contact remains a challenge in realizing the potential efficiency.
by Andrew Muto.
S.M.
Reid, Richard A. „Triaxial permeability device“. Thesis, Georgia Institute of Technology, 1987. http://hdl.handle.net/1853/20036.
Der volle Inhalt der QuelleOttosson, Jan Benjamin. „Development and Evaluation of a Small Punch Testing Device“. Thesis, Linköping University, Engineering Materials, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-59285.
Der volle Inhalt der QuelleThong, John Thiam Leong. „Electron beam testing technology for high-speed device characterisation“. Thesis, University of Cambridge, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.316815.
Der volle Inhalt der QuelleHopkins, Rachel. „Design and investigation into a novel aerosol testing device“. Thesis, University of Bath, 2002. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.760821.
Der volle Inhalt der QuelleEnnefors, William. „Netconf Device Simulator : Developing a NETCONF based testing platform“. Thesis, Luleå tekniska universitet, Institutionen för system- och rymdteknik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-69999.
Der volle Inhalt der QuelleLindström, Hannes, und Gustav Marstorp. „Security Testing of an OBD-II Connected IoT Device“. Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-239367.
Der volle Inhalt der QuelleFält, Gustav. „Shear strenght test device : Design of a device for testing shear strenght on winter roads“. Thesis, Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-78394.
Der volle Inhalt der QuelleRigby, Douglas Bertrand 1956. „Cyclic shear device for interfaces and joints with pore water pressure“. Thesis, The University of Arizona, 1988. http://hdl.handle.net/10150/276922.
Der volle Inhalt der QuelleBücher zum Thema "Device for testing differentials"
Schroder, Dieter K. Semiconductor material and device characterization. Hoboken, N.J: John Wiley, 2005.
Den vollen Inhalt der Quelle findenSemiconductor material and device characterization. 2. Aufl. New York: Wiley, 1998.
Den vollen Inhalt der Quelle findenSemiconductor material and device characterization. New York: Wiley, 1990.
Den vollen Inhalt der Quelle findenSemiconductor material and device characterization. 3. Aufl. [Piscataway, NJ]: IEEE Press, 2006.
Den vollen Inhalt der Quelle findenSchroder, Dieter K. Semiconductor Material and Device Characterization. New York: John Wiley & Sons, Ltd., 2006.
Den vollen Inhalt der Quelle findenHebner, R. E. Report of tests on Joseph Newman's device. Gaithersburg, MD: U.S. Dept. of Commerce, National Bureau of Standards, 1986.
Den vollen Inhalt der Quelle findenJywe, W. A computer-aided accuracy testing device for machine tools. Manchester: UMIST, 1992.
Den vollen Inhalt der Quelle findenC, Church James. Device for in situ measurement of coal cutting forces. Avondale, Md: U.S. Dept. of the Interior, Bureau of Mines, 1985.
Den vollen Inhalt der Quelle findenPappas, Deno M. Evaluation of a punch shear test device. Phg [Pittsburgh], PA: U.S. Dept. of the Interior, Bureau of Mines, 1990.
Den vollen Inhalt der Quelle findenMulroy, William J. Evaluation of a standard device for calibrating calorimeter test rooms. Gaithersburg, MD: U.S. Dept. of Commerce, National Bureau of Standards, 1986.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Device for testing differentials"
Karlsteen, Magnus, Johan Samuelsson und Christian Finnsgård. „Testing and Evaluation of a Differential GNSS Tracking Device for Alpine- and Cross-Country Skiing“. In Communications in Computer and Information Science, 36–54. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-14526-2_3.
Der volle Inhalt der QuelleNolan, Godfrey, Onur Cinar und David Truxall. „Device Testing“. In Android Best Practices, 147–64. Berkeley, CA: Apress, 2013. http://dx.doi.org/10.1007/978-1-4302-5858-2_7.
Der volle Inhalt der QuelleLuppa, Peter B. „Device classes“. In Point-of-Care Testing, 19–25. Berlin, Heidelberg: Springer Berlin Heidelberg, 2018. http://dx.doi.org/10.1007/978-3-662-54497-6_3.
Der volle Inhalt der QuelleCollin, J. P., und B. Courtois. „Device Testing and Sem Testing Tools“. In Testing and Diagnosis of VLSI and ULSI, 469–506. Dordrecht: Springer Netherlands, 1988. http://dx.doi.org/10.1007/978-94-009-1417-9_18.
Der volle Inhalt der QuelleSpitzenberger, Folker, Claus Langer und Ulrich M. Gassner. „Medical device legislation and POCT“. In Point-of-Care Testing, 251–60. Berlin, Heidelberg: Springer Berlin Heidelberg, 2018. http://dx.doi.org/10.1007/978-3-662-54497-6_25.
Der volle Inhalt der QuelleKobayashi, Masahiro, und Takao Kaneda. „Reliability Testing of Planar InGaAs Avalanche Photodiodes“. In Semiconductor Device Reliability, 413–21. Dordrecht: Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-009-2482-6_23.
Der volle Inhalt der QuelleEdge, Charles, und Rich Trouton. „A Culture of Automation and Continual Testing“. In Apple Device Management, 471–544. Berkeley, CA: Apress, 2019. http://dx.doi.org/10.1007/978-1-4842-5388-5_9.
Der volle Inhalt der QuelleSteinbauer, P., und M. Valášek. „Mechatronic Lighting Pole Testing Device“. In Recent Advances in Mechatronics, 127–32. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-05022-0_22.
Der volle Inhalt der QuelleGlaros, N. A., und E. A. Kayafas. „Experimental Device For IC Testing“. In System Fault Diagnostics, Reliability and Related Knowledge-Based Approaches, 417–22. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-3931-8_32.
Der volle Inhalt der QuelleHalt, Gerald B., John C. Donch, Amber R. Stiles, Lisa Jenkins VanLuvanee, Brandon R. Theiss und Dana L. Blue. „FDA Meetings and Device Testing“. In FDA and Intellectual Property Strategies for Medical Device Technologies, 27–59. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-04462-6_3.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Device for testing differentials"
Wells, Dax B., Benjamin C. Groen und Robert H. Todd. „Investigation of Mechanical Differentials as Continuously Variable Transmissions“. In ASME 2011 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/detc2011-47479.
Der volle Inhalt der QuelleCao, Minghe, Weimin Zhang, Weiqin Zeng und Chengfeng Chen. „Research on the device of differential excitation type eddy current testing for metal defect detection“. In 2013 Far East Forum on Nondestructive Evaluation/Testing: New Technology & Application (FENDT). IEEE, 2013. http://dx.doi.org/10.1109/fendt.2013.6635547.
Der volle Inhalt der QuelleYamamoto, K., M. Suda und T. Okayasu. „2GS/s, 10ps Resolution CMOS Differential Time-to-Digital Converter for Real-Time Testing of Source-Synchronous Memory Device“. In 2007 IEEE 29th Custom Integrated Circuits Conference. IEEE, 2007. http://dx.doi.org/10.1109/cicc.2007.4405700.
Der volle Inhalt der QuelleFossati, Fabio, Ilmas Bayati, Sara Muggiasca, Ambra Vandone, Gabriele Campanardi, Thomas Burch und Michele Malandra. „Pressure Measurements on Yacht Sails: Development of a new system for wind tunnel and full scale testing“. In SNAME 22nd Chesapeake Sailing Yacht Symposium. SNAME, 2016. http://dx.doi.org/10.5957/csys-2016-007.
Der volle Inhalt der QuelleSantolucito, Mark. „Version space learning for verification on temporal differentials“. In ISSTA '17: International Symposium on Software Testing and Analysis. New York, NY, USA: ACM, 2017. http://dx.doi.org/10.1145/3092703.3098238.
Der volle Inhalt der QuelleRastegar, Jahangir, Dake Feng und Carlos Pereira. „Self-Powered Event Detection Sensors With Integrated Safety Electronics for Initiation and Switching in Munitions“. In ASME 2014 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/smasis2014-7693.
Der volle Inhalt der QuelleRichie, Aaron Paul, und Lannie Laroy Dietle. „Sealing Advancements for Rotating Control Devices“. In Offshore Technology Conference. OTC, 2021. http://dx.doi.org/10.4043/31159-ms.
Der volle Inhalt der QuelleFeenstra, Joel, Jonathan Granstrom und Henry A. Sodano. „Amplified Piezoelectric Stack Actuators for Harvesting Electrical Energy From a Backpack“. In ASME 2007 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/detc2007-35813.
Der volle Inhalt der QuelleZhao, Fan, Delu Chen, Zhe Pu und Jielu Wang. „A New Research Method for Corrosion Defect in Metal Pipeline by Using Pulsed Eddy Current“. In ASME 2020 Pressure Vessels & Piping Conference. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/pvp2020-21322.
Der volle Inhalt der QuelleCaguiat, Daniel E., Jennifer Connor, Edward Duckless und Richard J. DeCorso. „Inlet Air Salt Concentration Detection on U.S. Navy Ship Service Gas Turbine Generator Sets“. In ASME Turbo Expo 2004: Power for Land, Sea, and Air. ASMEDC, 2004. http://dx.doi.org/10.1115/gt2004-53984.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Device for testing differentials"
Ye, Z., D. Finney, R. Zhou, M. Dame, B. Premerlani, B. Kroposki und S. Englebretson. Testing of GE Universal Interconnection Device. Office of Scientific and Technical Information (OSTI), August 2003. http://dx.doi.org/10.2172/15004477.
Der volle Inhalt der QuelleStanton, Brian C., Mary Frances Theofanos, Susanne M. Furman, John M. Libert, Shahram Orandi und John D. Grantham. Usability testing of a contactless fingerprint device: part 1. Gaithersburg, MD: National Institute of Standards and Technology, Dezember 2016. http://dx.doi.org/10.6028/nist.ir.8158.
Der volle Inhalt der QuelleStanton, Brian C., Mary Frances Theofanos, Susanne M. Furman und Patrick J. Grother. Usability testing of a contactless fingerprint device: part 2. Gaithersburg, MD: National Institute of Standards and Technology, Dezember 2016. http://dx.doi.org/10.6028/nist.ir.8159.
Der volle Inhalt der QuelleRetsky, Michael. Testing a Display Device Invention for Digital Mammography Workstations. Fort Belvoir, VA: Defense Technical Information Center, Juli 2002. http://dx.doi.org/10.21236/ada415994.
Der volle Inhalt der QuelleMitkova, Maria, Darryl Butt, Michael Kozicki und Hugo Barnaby. Chalcogenide Glass Radiation Sensor; Materials Development, Design and Device Testing. Office of Scientific and Technical Information (OSTI), April 2013. http://dx.doi.org/10.2172/1082961.
Der volle Inhalt der QuelleKavianpour Isfahani, Zahra. Statistical Analysis of Stormwater Device Testing Protocols in Portland, Oregon. Portland State University Library, Januar 2000. http://dx.doi.org/10.15760/etd.676.
Der volle Inhalt der QuelleTemple, Brian Allen, und David A. Pimentel. LANL12-RS-108J Report on Device Modeler Testing of the Device Modeler Tool Kit. DMTK in FY14. Office of Scientific and Technical Information (OSTI), September 2014. http://dx.doi.org/10.2172/1158829.
Der volle Inhalt der QuelleVan Stryland, Eric W., und David Hagan. Optical Source for Organic and Polymeric Nonlinear Device and Material Testing. Fort Belvoir, VA: Defense Technical Information Center, Februar 1999. http://dx.doi.org/10.21236/ada379874.
Der volle Inhalt der QuelleJohnson, Terry A., Staats, Wayne Lawrence,, Michael Thomas Leick, Mark D. Zimmerman, Reinhard Radermacher, Cara Martin, Dennis Nasuta, Paul Kalinowski und William Hoffman. Development and Testing of an Integrated Sandia Cooler Thermoelectric Device (SCTD). Office of Scientific and Technical Information (OSTI), Dezember 2014. http://dx.doi.org/10.2172/1165230.
Der volle Inhalt der QuelleHorst, John, Thomas Kramer, Keith Stouffer, Joseph Falco, Hui-Min Huang, Frederick Proctor und Albert Wavering. Distributed testing of a device-level interface specification for a metrology system. Gaithersburg, MD: National Institute of Standards and Technology, 2002. http://dx.doi.org/10.6028/nist.ir.6851.
Der volle Inhalt der Quelle