Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Device fingerprint“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Device fingerprint" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Device fingerprint"
Arai, Fumihito, und Toshio Fukuda. „Fingerprint Image Sensing Using Micromechanical Key and Extraction Algorithm for Sensed Fingerprint Image“. Journal of Robotics and Mechatronics 13, Nr. 5 (20.10.2001): 458–63. http://dx.doi.org/10.20965/jrm.2001.p0458.
Der volle Inhalt der QuelleGabryel, Marcin, Konrad Grzanek und Yoichi Hayashi. „Browser Fingerprint Coding Methods Increasing the Effectiveness of User Identification in the Web Traffic“. Journal of Artificial Intelligence and Soft Computing Research 10, Nr. 4 (01.10.2020): 243–53. http://dx.doi.org/10.2478/jaiscr-2020-0016.
Der volle Inhalt der QuelleKurtz, Andreas, Hugo Gascon, Tobias Becker, Konrad Rieck und Felix Freiling. „Fingerprinting Mobile Devices Using Personalized Configurations“. Proceedings on Privacy Enhancing Technologies 2016, Nr. 1 (01.01.2016): 4–19. http://dx.doi.org/10.1515/popets-2015-0027.
Der volle Inhalt der QuelleSzweda, Roy. „Holographic fingerprint security device“. Network Security 1997, Nr. 7 (Juli 1997): 7. http://dx.doi.org/10.1016/s1353-4858(97)89874-1.
Der volle Inhalt der QuelleSzczepański, Tomasz, Urszula Więckiewicz, Barbara Konior und Patryk Pucułek. „Vacuum metal deposition (VMD) – characteristics of the method“. Issues of Forensic Science 308 (2020): 40–46. http://dx.doi.org/10.34836/pk.2020.308.1.
Der volle Inhalt der QuelleMeretukov, Gaysa Mosovich, Vitaliy Viktorovich Pomazanov und Sergei Ivanovich Gritsaev. „Some issues of using iodine vapour and ozone-air mixture in law-enforcement intelligence operations for finding fingerprints for the purpose of crimes investigation“. Полицейская и следственная деятельность, Nr. 1 (Januar 2020): 21–25. http://dx.doi.org/10.25136/2409-7810.2020.1.31344.
Der volle Inhalt der QuelleDrake, Marvin D. „Waveguide hologram fingerprint entry device“. Optical Engineering 35, Nr. 9 (01.09.1996): 2499. http://dx.doi.org/10.1117/1.600843.
Der volle Inhalt der QuelleLalovic, Komlen, Milan Milosavljevic, Ivan Tot und Nemanja Macek. „Device for biometric verification of maternity“. Serbian Journal of Electrical Engineering 12, Nr. 3 (2015): 293–302. http://dx.doi.org/10.2298/sjee1503293l.
Der volle Inhalt der QuelleSubpratatsavee, Puchong, und Narinwat Pubpruankun. „A Design and Implementation of Attendance System Using Smallest Wireless Fingerprint with Arduino Yún Embedded Board“. Applied Mechanics and Materials 752-753 (April 2015): 1057–61. http://dx.doi.org/10.4028/www.scientific.net/amm.752-753.1057.
Der volle Inhalt der QuelleCOLI, PIETRO, GIAN LUCA MARCIALIS und FABIO ROLI. „FINGERPRINT SILICON REPLICAS: STATIC AND DYNAMIC FEATURES FOR VITALITY DETECTION USING AN OPTICAL CAPTURE DEVICE“. International Journal of Image and Graphics 08, Nr. 04 (Oktober 2008): 495–512. http://dx.doi.org/10.1142/s0219467808003209.
Der volle Inhalt der QuelleDissertationen zum Thema "Device fingerprint"
Baral, Prashant. „DEVICE IDENTIFICATION USING DEVICE FINGERPRINT AND DEEP LEARNING“. OpenSIUC, 2021. https://opensiuc.lib.siu.edu/theses/2866.
Der volle Inhalt der QuelleVondráček, Tomáš. „Získávání informací o uživatelích na webových stránkách“. Master's thesis, Vysoké učení technické v Brně. Fakulta informačních technologií, 2021. http://www.nusl.cz/ntk/nusl-445554.
Der volle Inhalt der QuelleDerakhshani, Reza. „Determination of vitality from a non-invasive biomedical measurement for use in integrated biometric devices“. Morgantown, W. Va. : [West Virginia University Libraries], 1999. http://etd.wvu.edu/templates/showETD.cfm?recnum=1035.
Der volle Inhalt der QuelleTitle from document title page. Document formatted into pages; contains x, 126 p. : ill. (some col.). Includes abstract. Includes bibliographical references (p. [72]-75).
Sjöbro, Linus. „Automatic retrieval of data for industrial machines with handheld devices : Positioning in indoor environments using iBeacons“. Thesis, Mittuniversitetet, Institutionen för informationssystem och –teknologi, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:miun:diva-42742.
Der volle Inhalt der QuelleRadspinner, David Andrew 1965. „Developments in atomic analysis and imaging utilizing scientific charge-transfer devices: Axial viewing of the inductively coupled plasma, advanced hollow cathode designs, and latent fingerprint imaging“. Diss., The University of Arizona, 1997. http://hdl.handle.net/10150/282524.
Der volle Inhalt der QuelleNishibe, Caio Arce. „Central de confrontos para um sistema automático de identificação biométrica: uma abordagem de implementação escalável“. Universidade Tecnológica Federal do Paraná, 2017. http://repositorio.utfpr.edu.br/jspui/handle/1/3142.
Der volle Inhalt der QuelleWith the popularization of biometrics, personal identification is an increasingly common activity in several contexts: physical and logical access control, border control, criminal and forensic identification, payments. Thus, there is a growing demand for faster and accurate Automatic Biometric Identification Systems (ABIS) capable to handle a large volume of biometric data. This work presents an approach to implement a scalable cluster-based matching platform for a large-scale ABIS using an in-memory computing framework. We have conducted some experiments that involved a database with more than 50 million captured fingerprints, in a cluster up to 16 nodes. The results have shown the scalability of the proposed solution and the capability to handle a large biometric database.
Kai-Jen, Chang, und 張凱然. „Design of Optical System in Fingerprint Recognition Device“. Thesis, 2004. http://ndltd.ncl.edu.tw/handle/76171355540134101243.
Der volle Inhalt der Quelle輔仁大學
物理學系
92
Fingerprint Recognition System is an important event of analyze and develop in recent years. Including of Solid-State Fingerprint Sensor and Indirect-Contact Optical Collection are the two types usually seen. This article belongs to the second kind of Indirect-Contact Optical Collection. It takes images by using Optical System to contact Fingerprints. In order to let the irradiated area on fingers is big enough ,we choose Kingbright L-7676CSYC SUPER BRIGHT YELLOW which light source Viewing Angle (2θ/2) is 70°. It’s Dominate Wavelength is 588 nm and it’s Peak Wavelength is 590 nm. Then the sensor CCD is choose to use SONY ICX259AL. We use regular triangle prism when design optical system, so as to calculate the light incidence and outgoing one, and we choose plastic for material to reduce the cost. At our designing ,we try to detect the scattering light from the range of normal direction to 26 degrees by the normal on the detecting surface of a prism as after the incident light go through that prism with once refraction and once reflection to on the detecting surface . Then focus that what we get from the touching surface on the detector after that we got experience once reflection and refraction again inside the prism used. In the aspect of lens imaging, we use ZEMAX formula to calculate lens’ curvature and Aspherical parameter.
Sang, Mao-Yang, und 桑茂洋. „Fingerprint Assisted Resource Allocation for Device-to-Device Communication Underlaying Cellular Networks“. Thesis, 2014. http://ndltd.ncl.edu.tw/handle/e7xhak.
Der volle Inhalt der Quelle國立中正大學
通訊工程研究所
102
Device-to-Device (D2D) communication is a brand-new fashion that allows mobile station communicating directly with each other using existing licensed band in cellular networks. D2D communication is considered as the technology to more efficiently utilize the licensed band for the next evolution in mobile communication networks. Most licensed band allocation methods were based on the assumption of eNodeB knowing measured channel gain of every links between all mobile stations. However, the measurement would be a huge expense when there were many mobile stations in a cell. Aiming the obstacle, this thesis proposes a fingerprint technique for eNodeB to estimate the degree of interference between mobile stations without measuring every channel gain, and therefore to determine which radio resource block can be reused. This fingerprint technique can significantly reduce the number of channel gain measurement between mobile stations. Moreover, by simulating D2D communication in LTE network, this study shows that fingerprint assisted resource allocation does not only more effectively raise system sum rate than random allocation do, but also performs closer to a sub-optimal solution derived by a costly greedy algorithm that depends on the knowledge of every channel gain.
Chang, Kai-Shun, und 張凱舜. „Architecture Design and Implementation of Wireless Fingerprint Reader Device“. Thesis, 2000. http://ndltd.ncl.edu.tw/handle/65892221139558843040.
Der volle Inhalt der Quelle國立清華大學
電機工程學系
88
Biometrics of human begins are widely used as personal identification in order to substitute for the defects of passwords, personal identification numbers, credit cards, keys, …etc. The use of biometrics on security systems enjoys the superiority of high security. Among all biometric features, fingerprint verification is the most reliable technology. The procedures of a fingerprint identification system can be divided into three stages that are fingerprint capture, image pre-processing and feature matching. The performance of a fingerprint identification system may be influenced by the procedures of each stage. In the past, infrared technology was merely used on military applications. Recently, applications of infrared technology are extended to other areas such as data communications and medical applications. Infrared data communications enjoy much merit of the high data privacy, low complexity and low cost over RF. Till now, the widespread use of infrared technology on computer, communications and consumer electronic products provide users with tools for universal connectivity. Therefore, we design and develop a wireless fingerprint identification and authentication system through the combination of fingerprint verification and infrared data communication technology. And we aim at the wireless communication of our system to propose some requirements for transmission speeds, capabilities of data link control, multiplexing, …etc. For that, we refer to a suit of standards defined by Infrared Data Association for development of the communication part. Further, in order to provide the system with entity authenticity for preventing unauthorized access, we use the challenge-response protocol to design a secure link connection protocol. In addition, we have a discussion with certain concern for the design and hardware implementation of wireless fingerprint reader that plays an important role in our proposed system. With these efforts, we start to concern application areas of our proposed system. The chief application areas are physical access control and authentication. And the main focus of this work is to design an access system on the basis of our system architecture. After that, we will implement it as a real-work access system for the proof of feasibility and practicability.
WU, CHIAO-YU, und 鄔喬妤. „The Application of Fingerprint Recognition on Mobile Device in Internet of Vehicles“. Thesis, 2016. http://ndltd.ncl.edu.tw/handle/5b5xm4.
Der volle Inhalt der Quelle國立臺灣科技大學
電機工程系
105
With the rapid progress of mobile wireless communication technology, cell phone is not only a handheld mobile device but also a platform for data exchanging. Therefore, it is a vital issue how to authenticate identity while dealing with large amounts of data. This thesis focuses on the biometric authentication and proposed a “Taxi Safety Certification System”. Through wireless communication, this study transfers the fingerprints to machine without biometrics identification technology and authenticate user identity on device. There is no need to equip biometrics identification system for safety and convenience benefits. The main process of the proposed system focuses on the identity authentication of the driver. It allows drivers to steer a taxi via smartphones, which includes both locking and unlocking the vehicle. This system is used to unlock the car door by near field communication technology which combines car keys with the fingerprint identification system. Even though the smartphone is lost, the car isn't under the risk of theft. From a practical point of view, compared with remote key, the action speed and operating time in report of passing fingerprint to lock/unlock car door by NFC are both slightly longer, but in terms of effect, it can get more control methods and more freedom with safety guaranteed.
Bücher zum Thema "Device fingerprint"
Zofka, Adam, Maria Chrysochoou, Iliya Yut, Chad Johnston, Montgomery Shaw, Shih-Po Sun, James Mahoney, Stuart Farquharson und Michael Donahue. Evaluating Applications of Field Spectroscopy Devices to Fingerprint Commonly Used Construction Materials. Washington, D.C.: Transportation Research Board, 2013. http://dx.doi.org/10.17226/22770.
Der volle Inhalt der QuelleChrysochoou, Maria, Chad Johnston und Iliya Yut. Evaluating Applications of Field Spectroscopy Devices to Fingerprint Commonly Used Construction Materials (Phase IVâ€"Implementation). Washington, D.C.: Transportation Research Board, 2014. http://dx.doi.org/10.17226/22308.
Der volle Inhalt der QuelleBuchteile zum Thema "Device fingerprint"
Zhang, David, und Guangming Lu. „3D Fingerprint Acquisition Device“. In 3D Biometrics, 171–94. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-7400-5_10.
Der volle Inhalt der QuelleCheng, Xiaochun, Andreas Pitziolis und Aboubaker Lasebae. „Implementing Fingerprint Recognition on One-Time Password Device to Enhance User Authentication“. In Cyberspace Safety and Security, 448–61. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-37352-8_39.
Der volle Inhalt der QuelleKhan, Muhammad Khurram, Saru Kumari, Mridul K. Gupta und Fahad T. Bin Muhaya. „Cryptanalysis of Truong et al.’s Fingerprint Biometric Remote Authentication Scheme Using Mobile Device“. In Advances in Brain Inspired Cognitive Systems, 271–77. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-38786-9_31.
Der volle Inhalt der QuelleValussi, Silvia, und Andreas Manz. „Electric Field Assisted Extraction and Focusing of Fingerprint Residues by Means of A Microfluidic Device“. In Micro Total Analysis Systems 2002, 865–67. Dordrecht: Springer Netherlands, 2002. http://dx.doi.org/10.1007/978-94-010-0504-3_88.
Der volle Inhalt der QuelleCiere, Michael, Carlos Gañán und Michel van Eeten. „Partial Device Fingerprints“. In Machine Learning and Knowledge Discovery in Databases, 222–37. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-71246-8_14.
Der volle Inhalt der QuelleChen, Dajiang, Xufei Mao, Zhen Qin, Weiyi Wang, Xiang-Yang Li und Zhiguang Qin. „Wireless Device Authentication Using Acoustic Hardware Fingerprints“. In Big Data Computing and Communications, 193–204. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-22047-5_16.
Der volle Inhalt der QuelleSigg, Stephan, Matthias Budde, Yusheng Ji und Michael Beigl. „Entropy of Audio Fingerprints for Unobtrusive Device Authentication“. In Modeling and Using Context, 296–99. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-24279-3_31.
Der volle Inhalt der QuelleAnushka Swarup, Kottapalli Dheeraj und Adesh Kumar. „Fingerprint-Based Attendance System Using MATLAB“. In Proceeding of International Conference on Intelligent Communication, Control and Devices, 999–1004. Singapore: Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-1708-7_117.
Der volle Inhalt der QuelleTuveri, Pierliugi, L. Ghiani, Mikel Zurutuza, V. Mura und G. L. Marcialis. „Interoperability Among Capture Devices for Fingerprint Presentation Attacks Detection“. In Handbook of Biometric Anti-Spoofing, 71–108. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-319-92627-8_4.
Der volle Inhalt der QuellePrabhu, Pravin, Ameen Akel, Laura M. Grupp, Wing-Kei S. Yu, G. Edward Suh, Edwin Kan und Steven Swanson. „Extracting Device Fingerprints from Flash Memory by Exploiting Physical Variations“. In Trust and Trustworthy Computing, 188–201. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-21599-5_14.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Device fingerprint"
Aneja, Sandhya, Nagender Aneja und Md Shohidul Islam. „IoT Device Fingerprint using Deep Learning“. In 2018 IEEE International Conference on Internet of Things and Intelligence System (IOTAIS). IEEE, 2018. http://dx.doi.org/10.1109/iotais.2018.8600824.
Der volle Inhalt der QuelleYin, Xinming, Zhengliang Hu, Guoliang Chen, Haiye Huang und Zhiwei Cao. „Research and Application of Device Fingerprint“. In 2017 International Conference on Mechanical, Electronic, Control and Automation Engineering (MECAE 2017). Paris, France: Atlantis Press, 2017. http://dx.doi.org/10.2991/mecae-17.2017.87.
Der volle Inhalt der QuelleSadasivuni, Kishor Kumar, Mohammad Talal Houkan, Mohammad Saleh Taha und John-John Cabibihan. „Anti-spoofing device for biometric fingerprint scanners“. In 2017 IEEE International Conference on Mechatronics and Automation (ICMA). IEEE, 2017. http://dx.doi.org/10.1109/icma.2017.8015898.
Der volle Inhalt der QuelleOstberg, Anna, Mohamed Sheik-Nainar und Nada Matic. „Using a Mobile Device Fingerprint Sensor as a Gestural Input Device“. In CHI'16: CHI Conference on Human Factors in Computing Systems. New York, NY, USA: ACM, 2016. http://dx.doi.org/10.1145/2851581.2892419.
Der volle Inhalt der QuelleXue, Juntao, Shiming Wang und Jie Shi. „Serial fingerprint device driver development based on EFI“. In Mechanical Engineering and Information Technology (EMEIT). IEEE, 2011. http://dx.doi.org/10.1109/emeit.2011.6022929.
Der volle Inhalt der QuelleDeelaka Ranasinghe, R. M. Nipuna, und Guan Zhen Yu. „RFID/NFC device with embedded fingerprint authentication system“. In 2017 8th IEEE International Conference on Software Engineering and Service Science (ICSESS). IEEE, 2017. http://dx.doi.org/10.1109/icsess.2017.8342911.
Der volle Inhalt der QuelleMaurizfa und Trio Adiono. „Smart Attendance Recording Device Based on Fingerprint Identification“. In 2021 International Symposium on Electronics and Smart Devices (ISESD). IEEE, 2021. http://dx.doi.org/10.1109/isesd53023.2021.9501823.
Der volle Inhalt der QuelleHuang, Qiang, Yubo Song, Junjie Yang, Ming Fan und Aiqun Hu. „A Booting Fingerprint of Device for Network Access Control“. In 2019 3rd International Conference on Circuits, System and Simulation (ICCSS). IEEE, 2019. http://dx.doi.org/10.1109/cirsyssim.2019.8935595.
Der volle Inhalt der QuelleRaspopoulos, Marios, Christos Laoudias, Loizos Kanaris, Akis Kokkinis, Christos G. Panayiotou und Stavros Stavrou. „Cross device fingerprint-based positioning using 3D Ray Tracing“. In 2012 8th International Wireless Communications and Mobile Computing Conference (IWCMC 2012). IEEE, 2012. http://dx.doi.org/10.1109/iwcmc.2012.6314193.
Der volle Inhalt der QuelleLin, Yun, Jicheng Jia, Sen Wang, Bin Ge und Shiwen Mao. „Wireless Device Identification Based on Radio Frequency Fingerprint Features“. In ICC 2020 - 2020 IEEE International Conference on Communications (ICC). IEEE, 2020. http://dx.doi.org/10.1109/icc40277.2020.9149226.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Device fingerprint"
Stanton, Brian C., Mary Frances Theofanos, Susanne M. Furman, John M. Libert, Shahram Orandi und John D. Grantham. Usability testing of a contactless fingerprint device: part 1. Gaithersburg, MD: National Institute of Standards and Technology, Dezember 2016. http://dx.doi.org/10.6028/nist.ir.8158.
Der volle Inhalt der QuelleStanton, Brian C., Mary Frances Theofanos, Susanne M. Furman und Patrick J. Grother. Usability testing of a contactless fingerprint device: part 2. Gaithersburg, MD: National Institute of Standards and Technology, Dezember 2016. http://dx.doi.org/10.6028/nist.ir.8159.
Der volle Inhalt der QuelleFurman, Susanne M., Brian C. Stanton, Mary Frances Theofanos, John M. Libert und John D. Grantham. Contactless fingerprint devices usability test. Gaithersburg, MD: National Institute of Standards and Technology, März 2017. http://dx.doi.org/10.6028/nist.ir.8171.
Der volle Inhalt der QuelleJansen, Wayne, Ronan Daniellou und Nicolas Cilleros. Fingerprint identification and mobile handheld devices :. Gaithersburg, MD: National Institute of Standards and Technology, 2006. http://dx.doi.org/10.6028/nist.ir.7290.
Der volle Inhalt der QuelleLibert, John, John Grantham, Bruce Bandini, Stephen Wood, Michael Garris, Kenneth Ko, Fred Byers und Craig Watson. Guidance for evaluating contactless fingerprint acquisition devices. Gaithersburg, MD: National Institute of Standards and Technology, Juli 2018. http://dx.doi.org/10.6028/nist.sp.500-305.
Der volle Inhalt der Quelle