Dissertationen zum Thema „Design de Molécules“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit Top-29 Dissertationen für die Forschung zum Thema "Design de Molécules" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Sehen Sie die Dissertationen für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.
Côté, Simon. „Design, synthèse et caractérisation de molécules peptidiques fonctionnelles“. Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp03/MQ38055.pdf.
Der volle Inhalt der QuelleSperandio, Olivier. „Applications et développements informatiques de protocoles de drug design et criblage virtuel“. Paris 5, 2007. http://www.theses.fr/2007PA05P612.
Der volle Inhalt der QuelleThis thesis in structural bioinformatics and chemoinformatics concentrates on the optimization of the therapeutics compounds identification process. It relies on the three main components of the chemical compounds virtual screening: preparation of a computational version of the chemical library to be screened; identification of novel active compounds using chemical similarity with respect to known active molecules (LBVS); and identification of novel active compounds using the 3D structure of the target binding site (SBVS). This work implied: to develop a computer program (MED-3DMC) that generates conformation ensembles of small molecules ; then to create a LBVS program (MED-SuMoLig) that can screen thousands of chemical compounds using their pharmaco-topological profile; and finally to use a hierarchical SBVS procedure to identify novel inhibitors for protein-membrane interaction using the coagulation factor Va as a proof of concept
Florian, Maria Carmen. „Design, synthèse et analyse structurale de nouvelles molécules hôtes : Macrocycles et cyclophanes“. Rouen, 2006. http://www.theses.fr/2006ROUES034.
Der volle Inhalt der QuelleIn the first part, we reported the synthesis of new dispiro-1. 3-dioxane compounds as syn and anti isomers. The synthesis of new macromolecules embedding semiflexible dispiro-1. 3-dioxane units was performed by high-dilution technique and using the template effect. The design of these macrocyclic compounds is based on the stereochemistry of the precursors which show a favourable pre-organization for the incorporation in macrocycle systems. In the second part, we reported the synthesis and the stereochemistry of new 1. 3. 5-triacetylbenzene derivatives and the attempts to obtain new “cage” molecules from these derivatives
Taboureau, Olivier. „Bioinformatique et drug design : contribution à l'exploitation de grandes bases de données chimiques“. Orléans, 2001. http://www.theses.fr/2001ORLE2061.
Der volle Inhalt der QuelleRayar, Anita-Marie. „In silico drug design et chimie médicinale : développement de nouvelles molécules coumariniques, sélectives de la cyclooxygénase-2“. Thesis, Paris, CNAM, 2017. http://www.theses.fr/2017CNAM1085/document.
Der volle Inhalt der QuelleInflammation is a phenomenon affecting millions of people throughout the world. There is a broad range of inflammatory mediators implied in different biological functions including the cyclooxygenase-2. Although many selective inhibitors selective of COX-2 have been developed and marketed, they have displayed diverse side effects leading, in some cases, to their with drawal from the market. Nowadays, in silico methods are more and more used in the drug discovery process. In this project, we have used pharmacophoric models and docking methods to guide and prioritize the synthesis of molecules, presenting different and original structures, with enhanced affinity for the biological target. Thus, predictions realized with the TOMOCOMD-CARDD software together with biological tests enable to identify the cyclocoumarol as a potential anti-inflammatory molecule. As part of these works, the synthesis of and the study of cyclocoumarol analogues as selective inhibitors of COX-2 have been realized. Pharmacomodulation of cyclocoumarol and development of synthesis strategies led to a serie of cyclocoumarol analogues. Several bioinformatics tools have been used: selective COX-2 pharmacophores were elucidated using LigandScout and docking studies (Surflex) were conducted to understand the binding mode of different compounds. Finally, SeeSAR enabled to predict the affinity of the molecules the most susceptible to inhibit selectively COX-2. Biological tests confirmed their inhibitory activity against COX-2 and showed no significant inhibition for COX-1. Among the synthesized molecules, the 4-OMe cyclocoumarol has demonstrated an activity and a selectivity very interesting, similar to NS-398, a known selective COX-2 inhibitor.Based on the biological results obtained, a pharmacomodulation study of cyclocoumarol derivatives has been realized using in silico tools in order to predict the affinity of new compounds and to discover new selective inhibitors of COX-2.Keywords : cyclocoumarol, benzalacetones, warfarines, pharmacophores, docking, virtual screening, COX-2, repositioning
Mouhsine, Hadley. „Développement de nouveaux inhibiteurs du TNFα identifiés par Drug Design“. Thesis, Paris, CNAM, 2012. http://www.theses.fr/2012CNAM0842/document.
Der volle Inhalt der QuelleMonoclonal antibodies have been a revolution for the treatment of chronicinflammatory diseases but present several drawbacks (secondary effects, prohibitive costs,resistance)Our team develops TNFα inhibitors using two approaches : active immunizationagainst cytokine peptides and small compounds having a direct inhibition on TNFα.I have evaluated in vitro the best compounds selected after in silico screening of achemical library and I have identified a small molecule which was protective in two animalmodels (septic shock and DSS induced colitis). I have also analyzed chemical analogues ofthe best compounds found in vitro.I have also tested the immunogenicity of TNFα peptides but they did not yieldneutralizing antibodies in vitro, and we thus did not test them in vivo.My work was at the interface of bioinformatics, chemistry and biology, and this hasenabled me to understand the key issues in the modern development of drugs
Chakchouk, Mohamed. „Conceptiοn d'un détecteur de système mécatronique mobile intelligent pour observer des molécules en phase gazeuse en ΙR“. Electronic Thesis or Diss., Normandie, 2024. http://www.theses.fr/2024NORMIR06.
Der volle Inhalt der QuelleThis work anticipates that, in an ever-expanding digital technology world, technological breakthroughs in the analysis of data collected by spectroscopic devices will allow the almost instantaneous identification of known species observed in-situ in a specific environment, leaving the necessary in-depth analysis of unobserved species. The method derived from RBDO (Reliability Based Design Optimization) technology will be used to implement an artificial intelligence procedure to identify observed species from a mobile IR sensor. To successfully analyze the obtained data, it is necessary to appropriately assign molecular species from the observed IR data using appropriate theoretical models. This work focuses on the observation from mobile devices equipped with appropriate sensors, antennas, and electronics to capture and send raw or analyzed data from an interesting IR spectroscopic environment. It is therefore interesting if not essential to focus on symmetry-based theoretical tools for the spectroscopic analysis of molecules, which allows to identify the IR windows to be chosen for observation in the design of the device. Then, by fitting the theoretical spectroscopic parameters to the observed frequencies, the spectrum of a molecular species can be reconstructed. A deconvolution of the observed spectra is necessary before the analysis in terms of intensity, width and line center characterizing a line shape. Therefore, an adequate strategy is needed in the design to include data analysis during the observation phase, which can benefit from an artificial intelligence algorithm to account for differences in the IR spectral signature. In this regard, the analytical power of the instrument data can be improved by using the reliability-based design optimization (RBDO) methodology. Based on the multi-physics behavior of uncertainty propagation in the hierarchical system tree, RBDO uses probabilistic modeling to analyze the deviation from the desired output as feedback parameters to optimize the design in the first place. The goal of this thesis is to address IR observation window parameters to address reliability issues beyond mechatronic design to include species identification through analysis of collected data
Douguet, Dominique. „Etude des interactions protéine-protéine et protéine-ligand par bio- et chimie-informatique structurale : Identification de petites molécules bio-actives“. Habilitation à diriger des recherches, Université de Nice Sophia-Antipolis, 2007. http://tel.archives-ouvertes.fr/tel-00320089.
Der volle Inhalt der QuelleLa modélisation par homologie permet d'obtenir un modèle tridimensionnel d'une protéine lorsque sa structure n'a pas été déterminée expérimentalement. Ma contribution dans ce domaine fut la réalisation du serveur @TOME avec le soutien de la GENOPOLE Languedoc-Roussillon (accessible à l'adresse http://bioserver.cbs.cnrs.fr). Ce serveur était le premier de ce type à avoir été développé en France. Le serveur @TOME rassemble et traite d'une manière automatique toutes les étapes nécessaires à la construction d'un modèle 3D d'une protéine. Cela inclut la reconnaissance du repliement, la construction des modèles protéiques et leur évaluation. Les résultats du CASP5 en 2005 (session internationale d'évaluation des méthodes de prédiction de la structure des protéines ; http://predictioncenter.llnl.gov/) ont montré que notre serveur utilisé en mode automatique propose des modèles très proches de la structure expérimentale lorsque l'identité de séquence avec la structure support est supérieure à 30%. Le serveur a été classé 26ième sur 187 groupes inscrits.
Dans un second temps, mes recherches m'ont permis de réaliser une base de données de complexes protéiques co-cristallisés, base fondatrice du projet DOCKGROUND. Ce projet de grande envergure, soutenu par le NIH depuis 2005, vise à établir un système intégré et dynamique de bases de données dédié à l'étude et à la prédiction des interactions entre protéines et permettre ainsi d'améliorer nos connaissances des interactions et de développer des outils de prédiction plus fiables. Ce travail a été effectué au sein de l'équipe du Pr. Ilya Vakser à l'Université de Stony Brook, NY, USA. Dans la réalisation de cette première base de données, un ensemble de programmes collectent, classent et annotent les complexes protéiques qui ont été co-cristallisés (données sur la séquence, la fonction, le repliement 3D, les particularités telles qu'une fixation à de l'ADN, ...). Ensuite, j'ai mis en œuvre une sélection dynamique des représentants des complexes contenus dans cette base. Les représentants sont essentiels pour éviter une surreprésentation de certaines familles de protéines. Cette base de donnée est accessible par Internet et est régulièrement mise à jour (http://dockground.bioinformatics.ku.edu). Le projet DOCKGROUND va être poursuivi par la réalisation de 3 autres bases de données qui s'ancreront sur la présente appelée ‘Bound-Bound'.
L'objectif principal de mes travaux est d'identifier de nouveaux composés bio-actifs afin de comprendre le fonctionnement de leur cible dans un contexte biologique. Les méthodes que j'utilise se basent sur la chémoinformatique, le criblage virtuel et le de novo ‘drug design'. Dans le cadre de ce dernier, j'ai mis au point un programme propriétaire LEA3D (‘Ligand by Evolutionary Algorithm' 3D). Le programme génère des petites molécules à partir de la combinaison de fragments moléculaires issus de drogues et de molécules ‘bio' (substrats ou produits de réactions enzymatiques). Le criblage virtuel basé sur la structure protéique et le de novo ‘drug design' par LEA3D, ont été appliqués avec succès à la thymidine monophosphate kinase (TMPK) de Mycobacterium tuberculosis dans le cadre d'une collaboration avec une équipe de chimistes et de biologistes de l'Institut Pasteur. De nouvelles familles d'inhibiteurs ont été identifiées dont un inhibiteur synthétique trois fois plus affin que le substrat naturel. Plusieurs publications et une demande de brevet couvrent les résultats de ces recherches. Dans la continuité de ces travaux, je m'intéresse maintenant, plus particulièrement, à développer des stratégies de criblages de fragments (molécules de petit poids moléculaire). Il a été montré que de petites chimiothèques contenant des petites molécules polaires sont plus efficaces pour identifier des touches. Ce travail doit être réalisé conjointement avec des criblages structuraux expérimentaux comme la RMN ou la diffraction des rayons X. Ces derniers se posent comme une alternative aux tests in vitro avec pour avantage de donner une information détaillée, au niveau atomique, des interactions entre le ligand et sa cible. S'ensuit une étape d'optimisation/maturation des touches en ligands plus élaborés et plus affins par l'utilisation d'outils de chémoinformatique.
Panei, Francesco Paolo. „Advanced computational techniques to aid the rational design of small molecules targeting RNA“. Electronic Thesis or Diss., Sorbonne université, 2024. http://www.theses.fr/2024SORUS106.
Der volle Inhalt der QuelleRNA molecules have recently gained huge relevance as therapeutic targets. The direct targeting of RNA with small molecule drugs emerges for its wide applicability to different classes of RNAs. Despite this potential, the field is still in its infancy and the number of available RNA-targeted drugs remains limited. A major challenge is constituted by the highly flexible and elusive nature of the RNA targets. Nonetheless, RNA flexibility also presents unique opportunities that could be leveraged to enhance the efficacy and selectivity of newly designed therapeutic agents. To this end, computer-aided drug design techniques emerge as a natural and comprehensive approach. However, existing tools do not fully account for the flexibility of the RNA. The project of this PhD work aims to build a computational framework toward the rational design of compounds targeting RNA. The first essential step for any structure-based approach is the analysis of the available structural knowledge. However, a comprehensive, curated, and regularly updated repository for the scientific community was lacking. To fill this gap, I curated the creation of HARIBOSS ("Harnessing RIBOnucleic acid - Small molecule Structures"), a database of all the experimentally-determined structures of RNA-small molecule complexes retrieved from the PDB database. HARIBOSS is available via a dedicated web interface (https://hariboss.pasteur.cloud), and is regularly updated with all the structures resolved by X-ray, NMR, and cryo-EM, in which ligands with drug-like properties interact with RNA molecules. Each HARIBOSS entry is annotated with physico-chemical properties of ligands and RNA pockets. HARIBOSS repository, constantly updated, will facilitate the exploration of drug-like compounds known to bind RNA, the analysis of ligands and pockets properties and, ultimately, the development of in silico strategies to identify RNA-targeting small molecules. In coincidence of its release, it was possible to highlight that the majority of RNA binding pockets are unsuitable for interactions with drug-like molecules, attributed to the lower hydrophobicity and increased solvent exposure compared to protein binding sites. However, this emerges from a static depiction of RNA, which may not fully capture their interaction mechanisms with small molecules. In a broader perspective, it was necessary to introduce more advanced computational techniques for an effective accounting of RNA flexibility in the characterization of potential binding sites. In this direction, I implemented SHAMAN, a computational technique to identify potential small-molecule binding sites in RNA structural ensembles. SHAMAN enables the exploration of the target RNA conformational landscape through atomistic molecular dynamics. Simultaneously, it efficiently identifies RNA pockets using small probe compounds whose exploration of the RNA surface is accelerated by enhanced-sampling techniques. In a benchmark encompassing diverse large, structured riboswitches as well as small, flexible viral RNAs, SHAMAN accurately located experimentally resolved pockets, ranking them as preferred probe hotspots. Notably, SHAMAN accuracy was superior to other tools working on static RNA structures in the realistic drug discovery scenario where only apo structures of the target are available. This establishes SHAMAN as a robust platform for future drug design endeavors targeting RNA with small molecules, especially considering its potential applicability in virtual screening campaigns. Overall, my research contributed to enhance our understanding and utilization of RNA as a target for small molecule drugs, paving the way for more effective drug design strategies in this evolving field
Wang, Shenming. „Design and synthesis of organic luminescent materials with a 2,2′-bipyrimidine scaffold for hybrid LED lighting“. Electronic Thesis or Diss., Institut polytechnique de Paris, 2024. http://www.theses.fr/2024IPPAX016.
Der volle Inhalt der QuelleOrganic luminescent materials possess a lot advantages over the inorganic analogues. By carefully designing, they can exhibit efficiency fluorescence in visible area with tunable emission color and strong absorption in near-UV and blue region. Due to this, they can be made in thin films for light-weight optoelectronic devices. They can be highly soluble in organic solvent which provide the possibility for the solution-processing techniques, such as spin-coating and slot-die coating. They are metal-free, which is desired for the sustainable development. In this case, the organic luminescent compound could be a promising alternative to the inorganic phosphor utilized in commercial white LEDs for the improvements of the light quality.In this work, we are aiming at designing and synthesizing greatly efficient organic luminescent materials for down-converting the near-UV or blue light from the light-emitting diodes (LEDs) based on inorganic semiconductors into visible light, ideally white light. Therefore, the target application is called hybrid LEDs. The frequently employed molecular design strategies include: (1) the donor-acceptor (D-A) approach, which can adjust the bandgap in order to tune the absorption wavelength and emission color; (2) aggregation-induced emission (AIE) is introduced for avoiding the significant quenching of the emission in solid state which is owing to the aggregates.Herein, we designed and synthesized a series of D-A molecules M1-M7 implementing new acceptors, 2,2′-bipyrimidine derivatives, as building block. They were purified and taken to the photophysical investigations in both diluted solutions and solid state. They showed tunable emission color, strong fluorescence and absorption, more importantly, high conversion rate from near -UV external source to visible light. We also inspected their photostabilities to estimate their lifespans. In the end, the blenders of different emitters are made for generating white light
Kravchenko, Anna. „Fragment-based modelling of protein-RNA complexes for protein design“. Electronic Thesis or Diss., Université de Lorraine, 2023. http://www.theses.fr/2023LORR0370.
Der volle Inhalt der QuelleProtein-RNA complexes play crucial roles in cell regulation. Predicting their 3D structure has applications in protein design and drug development. The ITN project RNAct aimed to combine experimental and computational methods to design new "RNA recognition motifs" (RRM) - protein domains interacting with single-stranded RNA (ssRNA) - for applications in synthetic biology and bioanalysis. Modelling protein-ssRNA complexes (docking) is an arduous task due to the flexibility of ssRNA, which lacks a proper structure in its free form. Traditional docking methods sample the relative positions (poses) of 2 molecular structures and score them to select the correct (near-native) ones. It is not directly applicable here due to the absence of free ssRNA structures, nor is deep learning due to the too low number of known structures for training. Fragment-based docking (FBD), the state-of-the-art approach for ssRNA, docks all possible conformations of RNA fragments onto a protein and assembles their best-scored poses combinatorially. ssRNA'TTRACT, our FBD method, uses the well-known ATTRACT docking software, with its coarse-grained representation that replaces atom groups by one bead. Yet the RNA-protein parameters of ATTRACT scoring function (ASF) are not ssRNA-specific and require optimisation. Additionally, RRM-specific features can be learned and used to guide the docking. With my colleague H. Dhondge, we have developed a data-driven FBD pipeline for RRM-ssRNA complexes, as an updated version of an existing strategy. RRMs have two aromatic amino acids (aa) in conserved positions, each stacking with a nucleotide of the bound ssRNA. H. Dhondge collected all known RRM-ssRNA structures with such stacking and clustered them to obtain a set of prototypes for the 3D coordinates of such interactions in RRM. I then set up a docking pipeline with as input the RRM and RNA sequences and the identification of the stacked nucleotides. The pipeline retrieves the RRM structure from AlphaFoldDB, identifies possible 3D positions of the stacked nucleotides and runs ssRNA'TTRACT with maximal distance restraints toward each position. In parallel, we addressed the weakness of ASF for ssRNA by deriving HIPPO (HIstogram-based Pseudo-POtential), a new scoring potential for ATTRACT poses of ssRNA on RRM, based on the frequency of bead-bead distances in near-native versus wrong poses. It combines 4 distinct parameter sets (four Η) into a consensus scoring, to better account for the diverse RRM-ssRNA binding modes. Tested in a leave-one-out approach, HIPPO reaches a 3-fold enrichment of near-natives in 20% top-scored poses for ½ of the ssRNA fragments, versus ¼ with ASF. It even reaches a 4-fold enrichment for ⅓ of the fragments, versus 7% of the fragments with ASF. Surprisingly, HIPPO performed better than ASF also on a benchmark of non-RRM proteins, while trained only on RRMs. Most FBD approaches encounter inherent scoring issues, probably due to some fragments binding more specifically/strongly than others. To address this point, we examined the best-scored fragment per complex and found that HIPPO consistently selects more near-natives than ASF for this fragment. This inspired an incremental docking approach: the top-ranked poses of one fragment are used as a starting point to build a full RNA chain incrementally. This strategy eliminates the need for known conserved contacts, which have been required so far to obtain accurate models, making it generalizable to non-RRM proteins. Future research aims to identify the best-performing Η for each fragment, potentially using (deep) machine learning. Our workflow to derive scoring parameters is in principle applicable to any protein/ligand type and we plan to expand it to other RNA-binding protein domains, as well as ssDNA and long peptides
N'Guessan, Cécilia. „La phosphatase PPM9 de Plasmodium : caractérisation moléculaire et fonctionnelle, structure 3D du site catalytique et découverte de nouvelles molécules antipaludiques“. Thesis, Lille, 2020. http://www.theses.fr/2020LILUS033.
Der volle Inhalt der QuelleMalaria today is one of the wide spread infectious diseases in the world. In 2018, 405 000 malaria deaths have been reported. RTS, S/A01 the only vaccine tested on a large scale does not fulfil its promises with a lack of efficiency. Plasmodium falciparum (Pf), the deadliest agent of malaria, has developed resistances to almost all chemotherapeutics. It is necessary to understand the biology of this parasite in order to develop new drugs. In Pf, extensive research has now been started to study the Pf kinome and to examine whether targeting kinases could represent an effective mean for the treatment of the infection, the study of its phosphatome is still under-investigated. Amino acid sequence comparative analyses of Plasmodium berghei (Pb), a rodent malaria species, revealed that 6 are Plasmodium specific. Among these phosphatases, the metalloprotein phosphatase 9 (PPM9), a Plasmodium specific serine/threonine phosphatase, was also suggested to be essential for blood stage parasites development. Besides in a high-throughput saturation mutagenesis method in Pf, PPM9 gene was also identified essential. The present project is focused on the molecular and functional characterization of the PPM9 and on the validation of this specific phosphatase as a new potential target for malaria. The gene has been cloned, annotated and expressed as a recombinant protein and its phosphatase function has been characterized. The enzymatic activity of PfPPM9 recombinant protein has been standardised using a malachite green phosphate assay kit and this activity is manganese dependant. Functional characterization was explored by conditional gene knock-out studies as well as by generating knock-in parasite lines to follow their trafficking during the parasite lifecycle (in Pf and Pb). PfPPM9 seems to be mainly localised in the parasite cytoplasm and could be exported in the cytoplasm of red blood cell. Among these studies, we employ CRISPR-Cas9 in Pf to facilitate use of the dimerisable Cre-recombinase (diCre) that is used to mediate the excision and loss of loxP-flanked DNA sequences in a rapamycin-controlled manner. Finally, we solved in silico the 3D structure of PfPPM9 by homology modelling and identified a new set of potential specific inhibitors. We screened in silico ZINC15 database and ICPAL base on the 3D structure. We have tested around 80 compounds for their anti-plasmodial in vitro activity. We have highlighted 3 hits: M19, M51 and M74. M19 has a half maximal inhibitory concentration (IC50) of 3,87 μM +/- 0,25 and a unique scaffold as antimalarial compound. Besides, via NMR studies (Waterlogsy and CPMG), we have shown a specific interaction between these hits and PfPPM9. As a perspective, PPM9 interactome will be carried out to determine its target/partner proteins in the parasite. In conclusion, this study will lead to a deeper understanding of the role of PPM9 in the parasite development and the discovery of new antimalarial compounds
Chen, Chunxiang. „Design, synthesis and characterization of new organic semi-conductors for photovoltaics“. Thesis, Toulouse 3, 2016. http://www.theses.fr/2016TOU30108/document.
Der volle Inhalt der QuelleOrganic solar cells appear as a promising technology to meet future energy requirements, owing to their low production costs, their great flexibility and their ability to be integrated into light devices. Currently, they exhibit modest performances in photoconversion, thus new active molecules with optimized structural properties need to be developed. This work comes in that aim: on the basis of theoretical calculations with density functional theory, new organic semiconductors have been designed and synthesized. For this, the more economical and cleaner syntheses techniques have been employed. Thus, the coupling of the benzothiadiazole with thiophene carboxhaldehyde via direct heteroarylation without additive nor ligand is performed with success for the first time. According to green chemistry techniques, five molecules are thus isolated in only two steps. The study of their optical and electronic properties by means of different spectroscopic techniques (UV/vis, fluorescence) and electrochemistry, of their thermal properties, and of their ability to self-organize have revealed their promising abilities for use in organic photovoltaics. A series of small molecules based on dithienosilole (DTS) core have also been designed via DFT computations. The calculations show their considerable low bandgap. Their syntheses have been conducted. It anticipates their promising potential for organic photovoltaic applications. Finally, a purely theoretical work has been completed on molecules derived from boron subphthalocyanines. The calculations predict interesting electronic properties for these new materials that may lead to promising performances in organic photovoltaics, paving the way for innovative materials
Julien-Laferriere, Alice. „Models and algorithms applied to metabolism : from revealing the responses to perturbations towards the design of microbial consortia“. Thesis, Lyon, 2016. http://www.theses.fr/2016LYSE1260/document.
Der volle Inhalt der QuelleIn this PhD work, we proposed to model metabolism. Our focus was to develop generic models, that are not specific to one organism or condition, but are instead based on general assumptions that we tried to validate using data from the literature.We first present TOTORO that uses a qualitative measurement of concentrations in two steady-states to infer the reaction changes that lead to differences in metabolite pools in both conditions.TOTORO enumerates all sub-(hyper)graphs that represent a sufficient explanation for the observed differences in concentrations. We exploit a dataset of Yeast (Saccharomyces cerevisiae) exposed to cadmium and show that we manage to retrieve the known pathways used by the organisms. We then address the same issue, but using a constraint-based programming framework, called KOTOURA, that allows to infer more quantitatively the reaction changes during the perturbed state. We use in this case exact concentration measurements and the stoichiometric matrix, and show on simulated datasets that the overall variations of reaction fluxes can be captured by our formulation.Finally, we propose MULTIPUS, a method to infer microbial communities and metabolic roads to produce specific target compounds from a set of defined substrates. We use in this case a weighted directed hypergraph. We apply MULTIPUS to the production of antibiotics using a consortium composed of an archae and an actinobacteria and show hat their metabolic capacities are complementary. We then infer for another community the excretion of an inhibitory product (acetate) by a 1,3-propanediol (PDO) producer and its consumption by a methanogene archae
Fourches, Denis. „Modèles multiples en QSAR/QSPR : Développement de nouvelles approches et leurs applications au design "in silico" de nouveaux extractants de métaux, aux propriétés ADMETox ainsi qu'à différentes activités biologiques de molécules organiques“. Université Louis Pasteur (Strasbourg) (1971-2008), 2007. http://www.theses.fr/2007STR13119.
Der volle Inhalt der QuelleThis thesis work concerns the improvement of prediction performances of QSAR structureproperty models, using consensus modelling strategies based on fragment descriptors, and also, to their applications for « in silico » design of metal binders, ADMETox properties and different biological activities of organic compounds. In the first part, some important concepts and methodologies of chemoinformatics are described. In the second part, the ensemble of programs ISIDA (In Silico Design and Data Analysis) is introduced. During this thesis work, two consensus approaches have been suggested: the « Divide and Conquer » strategy and the Stepwise k- Nearest Neighbors approach. Applications of new strategies lead to significant improvement of predictions accuracy, compared to the conventional models. In the third part, all ISIDA methods have been successfully applied to model various chemical and biological properties. Experimentally proven predictions demonstrate the robustness of the methods
Barelier, Sarah. „Probing protein-small molecule interactions by Nuclear Magnetic Resonance : towards a better understanding of the Fragment-Based Drug Design methodology“. Thesis, Lyon 1, 2010. http://www.theses.fr/2010LYO10222.
Der volle Inhalt der QuelleFragment-Based Drug Design (FBDD) has been proposed in 1996 and has since been recognized as a tangible alternative to the more classical drug discovery methods such as High-Throuput Screening. FBDD consists of screening a small number (< 10 000) of low-molecular weight (< 300 Da) compounds and detect those that bind to the target (protein or nucleic acids). Because of their low complexity, fragment molecules usually display low affinities for their target, hence detecting fragment-protein interactions is mostly achieved using a biophysical technique (mostly Nuclear Magnetic Resonance (NMR), X-ray crystallography or Surface Plasmon Resonance). “Hit” fragments are then modified by addition of chemical substituents, or linked together, so as to elaborate a more complex molecule, forming more interactions with the target and hence displaying an improved affinity. As compared to the more classical High Throughput Screening method, fragment screening provides several advantages, including a better exploration of chemical space, highly ligand-efficient hits and easier optimization of the hits into more affine molecules. In this PhD project, several aspects of FDBB have been addressed : first, FBDD approaches were applied to the research of an inhibitor of the human peroxiredoxin 5 protein, using NMR not only as a screening method but also for the characterization of the protein-fragment interactions. The discovery of an inhibitor against this enzyme would allow to better understand its function. Next, methodological aspects of the FBDD method were addressed : Do fragments conserve their binding site, binding efficiency and mode of interaction upon optimization? Can the fragments display specificity towards a given target? Towards a given binding site? These issues, rarely studied, are yet essential to the understanding of the behavior of fragment molecules, and will be addressed firstly by defragmentating several Bcl-xL inhibitors into fragments and studying their behavior towards the protein in terms of a_nity and binding mode, secondly by screening a set of fragments against five different proteins (human peroxiredoxin 5, human serum albumin and three homologous proteins of the Bcl-2 family of proteins). More generally, this PhD project aims at studying less characterized aspects of the fragment methodology and proposing answers to better understand the behavior of fragment molecules towards their targets, both in the initial screening step and then during their optimization
Roucairol, Milo. „Monte-Carlo tree search applied to structure generation“. Electronic Thesis or Diss., Université Paris sciences et lettres, 2024. http://www.theses.fr/2024UPSLD029.
Der volle Inhalt der QuelleThis document gathers the articles published during my PhD thesis directed by Tristan Cazenave at LAMSADE. Monte Carlo search refers to a class of stochastic search algorithms that return a solution with a guarantee of time, but no guarantee of result. These algorithms use reinforcement learning techniques based on random or guided exploration. The capabilities of Monte Carlo algorithms are limited in recently highlighted application domains, such as image and text generation, where neural networks, LLM and other algorithms trained on large databases dominate. On the other hand,they excel in more classic, defined problems.The best-known use of a Monte Carlo search algorithm is its use in 2017 to beat a Go champion for the first time, somethingno other algorithm family had managed to do. But the uses of Monte Carlo search algorithms also extend far beyond gaming. Monte Carlo search algorithms are widely used in chemistry, operations research, transportation, mathematics,and gaming. They can be applied to any sequential decision and state-space search problem, as long as the functions for evaluating and modifying a state are defined. The definition of structure for this thesis is “a system defined by the elements that compose it and the interactions betweenthese elements”. This thesis explores several applications of Monte Carlo search in the context of structure generation.Many search spaces can be represented as structures outside of games, such as the circuit of the traveling sales man problem, but also molecules, crystals, coalitions, graphs, etc. The highlights of this thesis are: - Comparisons between algorithms on various problems showing the superiority of the“nested” family of algorithms. - A new variant of Nested Monte Carlo Tree Search (NMCS) with improved performance.- A library of Monte Carlo algorithms coded in Rust. - A project to refute graph conjectures. - An NMCS implementation for AiZynthFinder, AstraZeneca's open source retrosynthesis software. - A program for generating valid, synthesizable molecules. The topics covered can be divided into two groups. On the one hand, chemistry, with HP-model, retrosynthesis andmolecule generation. On the other, mathematics, with coalition structures, spectral graph theory, transport networks and nonograms. Although this thesis is devoted solely to applications of Monte Carlo search, it also provides more general insights: a comparison of algorithm families showing the superiority of “nested”, a new variant of NMCS, and heuristics and modifications generally useful with NP problems
Ruggieri, Francesca. „Putting nature back into drug discovery : selection, design and synthesis of bioinspired chemical libraries for the discovery of new antibacterials“. Electronic Thesis or Diss., Université de Lille (2022-....), 2024. http://www.theses.fr/2024ULILS013.
Der volle Inhalt der QuelleNatural products (NPs) have declined in popularity since the introduction of synthetic small molecules several years ago. Many are the reasons behind this choice, such as difficulties in access and supply, complexities of NP chemistry and the advent of combinatorial chemistry. However, NPs offer many interesting properties compared to conventional synthetic molecules, which confer both advantages and challenges for the drug discovery process. Usually, NPs are characterized by a higher number of sp3 carbons and stereogenic centres, large scaffold diversity and structural complexity. With half of the drugs approved by the FDA since 1994 being NPs or hemisynthetic derivatives and the recent stagnation in new drug research and development, it is becoming more and more evident that NPs should be reintroduced in the drug discovery process as a source of inspiration.Therefore, many strategies are now emerging for the construction of nature-inspired chemical libraries, such as “top-down” and “bottom-up” strategies. In “bottom-up” approaches, complexity is created starting from simple building blocks. On the other hand, “top-down” approaches are assumed to make structural modifications to an already complex NP.Our presented work describes two different approaches to enrich the chemical library of our research unit with NP-derived compounds. A “top-down” semisynthetic strategy was planned to obtain derivatives of lactucin and 11β,13-dihydrolactucin, two sesquiterpene lactones extracted from chicory roots. Thirty-six ester derivatives were synthesized in three steps (classical synthesis), together with two amine derivative libraries (using parallel synthesis). All the compounds were then tested against Mycobacterium tuberculosis and some promising hits were found (MICGFP < 1.2 μM). On the other hand, a “bottom-up” strategy allowed the synthesis of two analogues of the known natural antibiotic hygromycin A. This approach started from simple commercially available building blocks and employed a dearomatization strategy in the synthetic process.Together, we explored a broader chemical space, increased the structural diversity of our chemical library and discovered new potential antibacterial hits. Moreover, this work paves the way for the discovery of new antibacterial targets
Heintz, Juliette. „Systemic approach and decision process for sustainability in chemical engineering : Application to computer aided product design“. Thesis, Toulouse, INPT, 2012. http://www.theses.fr/2012INPT0087/document.
Der volle Inhalt der QuelleIn a context where environmental issues are increasingly taken into account, the chemical related industry faces situations imposing a chemical product substitution. Computer aided molecular design methods, which consist in finding molecules satisfying a set of constraints, are well adapted to these situations. Using a systemic analysis of the needs and uses linked to this context, we develop a computer aided product design tool implementing a genetic algorithm. It is able to explore a wider solution space thanks to a flexible molecular framework. Besides, by allowing a very flexible setting of the problem to be solved, it enables the search of molecules sourced from renewable resources. Based on concepts from system and enterprise engineering, we formalize a decision making process dedicated to the product substitution in an industrial context. This multi-criteria decision process includes the phases of the requirements definition, of the generation of alternative solutions, of the selection of the best alternative and of the product application. It uses a model driven approach and decision making techniques that guaranty an operational alignment in addition to the strategic alignment across the chemical enterprise. Through a case study, we expose how the combination of our computer aided product design tool and our decision making process enables an environmentally compliant approach of product substitution which is both efficient and in adequacy with enterprise context
Li, Haixia. „Design and characterization of new pyridazine materials for OLEDs and OSLs applications“. Electronic Thesis or Diss., Sorbonne université, 2021. http://www.theses.fr/2021SORUS227.
Der volle Inhalt der QuelleIn this work, new organic emitting materials have been developed for applications in the field of light emitting diodes or organic lasers. First of all, several molecules of the Donor-Acceptor type incorporating various electro-deficient nitrogenous hearts have been successfully prepared, their design being designed with the aim of obtaining TADF emitters. Their photophysical properties have been studied in solution and in the solid state. In these structures, intramolecular charge transfer is produced via intermolecular interactions between the D and A groups, and their study revealed that some of them exhibit a TADF character. The electroluminescence properties of the most promising compounds have also been studied in OLED configuration, even if to date the observed yields remain low. Then, a series of gain molecules based on pi-conjugated structures, still consisting of nitrogenous cores, have been successfully synthesized for laser applications. Their chemical structures have been characterized by nuclear magnetic resonance (NMR) and high-resolution mass spectroscopy (HRMS). Good luminescence properties such as high quantum photoluminescence yields (PLQY) and short fluorescence lifetimes have been demonstrated in solution and in the solid state for most derivatives. Finally, some emissive materials exhibit good amplified spontaneous emission (ASE) properties with low threshold values, and optically pumped laser devices could also be made from some of the derivatives of the series
Bakail, May. „Ciblage des chaperons d'histone par une stratégie peptidomimétique“. Thesis, Université Paris-Saclay (ComUE), 2016. http://www.theses.fr/2016SACLS388.
Der volle Inhalt der QuelleASF1 is a histone H3-H4 chaperone implicated in several cancers. Like many proteins, this chaperone mediates its cellular functions through protein-protein interactions involving various protein partners. The present thesis focuses on the development of an original strategy to design inhibitory peptides targeting such disease-associated type of biological interactions. This rational and iterative strategy relies on the tethering of binding epitopes isolated from different partners, and stabilized by “anchor” residues that engage large number of atomic contacts with the target. The further progression of this approach toward a peptidomimetic strategy overcomes obstacles commonly associated to the therapeutic use of peptides such as biodisponibility and half-life. Applied for targeting ASF1, such method allowed the conception of a peptide, ip4, presenting a 3nM affinity for its target, which is 3000 fold higher than that of the natural partner H3. This peptide could be successfully mimicked by an oligourea structure, giving rise to the peptidomimetic if3. When coupled to a cleavable Cell Penetrating Peptide, these inhibitors displayed an on-target effect where they impeded cancerous cells proliferation, ultimately resulting in cells death
Rivière, Marie-Karelle. „Designs adaptifs de recherche de dose en oncologie dans le cadre de combinaisons de molécules et de molécules ciblées“. Paris 7, 2014. http://www.theses.fr/2014PA077131.
Der volle Inhalt der QuellePhases I are usually the first stage of testing a new drug on human subjects. Phase I clinical trials in oncology evaluate the safety of the treatment and identify its side effects on patients with advanced cancer due to the harmfulness these treatments. The aim is to select a dose with a toxicity probability closest to a given target. In recent years, unlike standard chemotherapy, targeted therapies have emerged as another type of anti-cancer agents with different action mechanism. In this context, we have developed a Phase VII dose-finding design for molecularly targeted agents where the efficacy increases and can plateau. Our method focus on selecting the optimal dose, that is the dose associated with highest efficacy and if the plateau is reached, the one with the lowest toxicity. Methods for single agent are not appropriate for combination phase I trials as they are not designed to take into account the mufti-dimensionality. We studied several existing methods specifically designed for combination, and compared their performance. Based on a simulation study, model-based methods have high operational characteristics and seemed to perform better than algorithm-based's in terms of percentage of correct selection. We proposed a Phase I dose-finding design for combination based on a logistic model with an interaction term which efficient in a large variety of realities. Finally a new challenge in cancer development is to combine both cytotoxic and targeted therapy. Indeed, their action can be complementary, reduce cancer growth and killing cells, but also skirt drug resistance. We studied both toxicity and efficacy of the combination in a Bayesiar Phase I/II design
Empereur-Mot, Charly. „Développement d’outils statistiques d’évaluation de méthodes de criblage virtuel : courbes de prédictivité & Screening Explorer“. Thesis, Paris, CNAM, 2017. http://www.theses.fr/2017CNAM1126/document.
Der volle Inhalt der QuelleVirtual screening methods are widely used in drug discovery processes in order to reduce the number of compounds to test experimentally. However, virtual screening results are only predictions and their reliability is not guaranteed. Evaluating these methods is crucial to guide the bioinformatician in the choice of the right tool and protocol according to the conditions of his experiment. In a first study, we developed a new metric to analyze the results of virtual screening: the Predictiveness Curve. This metric allows to finely analyze the relevance of binding scores for the detection of active compounds and complete existing metrics, allowing a better comprehension of screening results. In a following project, we facilitated the analysis process by integrating all of the virtuel screening metrics in an interactive tool: Screening Explorer. The second part of my thesis consisted in the research of novel HIV inhibitors. The genomic team of our laboratory identified several genes whose expression influence the development of AIDS, therefore revealing potential therapeutic targets. A bibliographic study allowed to identify compounds that can inhibit those targets. The company Peptinov, associated to our laboratory, is currently estimating the therapeutic potential of the compounds in vitro in assays of (i) HIV infection, (ii) viral proliferation and (iii) viral reactivation
Ejjoummany, Abdelaziz. „Design et fonctionnalisation d’hétérocycles originaux de type bicycliques [5-5] et tricycliques [6-5-6] à visée thérapeutique potentielle“. Thesis, Orléans, 2020. http://www.theses.fr/2020ORLE3141.
Der volle Inhalt der QuelleThe access to new original biologically active heterocyclic compounds, is one of the main objectives of our research group. In this context, the main purpose of this thesis is the design of three new families of heterocyclic compounds containing a pyrazolic motif that may exhibit biological activities, namely pyrido[1',2': 1.5]pyrazolo[4,3-d]pyrimidine, pyrrolo[3,4-c]pyrazole and pyrazolo[5,1-b]thiazole.This manuscript is essentially dedicated to a methodology work describing the different routes of access to these originals and potentially modular tricyclic and bicyclic precursors. The reactivity of these key synthons is then studied towards aromatic nucleophilic substitutions reactions and various pallado-catalyzed methods of functionalization (Activation with PyBrOP- (hetero) arylation, Liebeskind-Srogl, Suzuki-Miyaura, Buchwald-Hartwig, C-H arylation, aromatic nucleophilic substitution) to develop interesting libraries built around these unusual structures, thus opening numerous pharmacological perspectives
Voitovich, Iuliia. „Les inhibiteurs d'interaction protéine-protéine, une stratégie innovante en cancérologie“. Thesis, Aix-Marseille, 2018. http://www.theses.fr/2018AIXM0701.
Der volle Inhalt der QuelleBET-proteins, acting as epigenetic readers, play an essential role in cancer development. To date, numerous potent inhibitors disrupting BET functions have been discovered, including several of them that are undergoing clinical trials for the treatment of different types of cancer. The common drawback limiting their use in clinical practice is an inability to distinguish between BET-members that may cause side effects and resistances. The selective targeting of individual BET and the discrimination between BD1 and BD2 present an opportunity to achieve more selective transcriptional effect. A midthroughput screening of previously designed chemical library allowed identification of two molecules with unique profiles of selectivity that have never been observed. An undertaken structure-based program revealed a minimum scaffolds necessary for binding. Taking together with resolved X-Ray structures it allowed the development of more potent and selective BET inhibitors by DOTS (diversity oriented target focused synthesis) strategy, combining virtual screening and diversity oriented library design. This optimization led to a potent inhibitor with up to 100-fold improvement of affinity to the target and up to 300-fold selectivity toward BD1. Dose-response downregulation of c-Myc levels in low micromolar range in cell assays allowed the validation of the identified molecule as a chemical probe. Further comprehensive in vitro and in vivo evaluations of this compound will enable elucidating the biological role of each bromodomain and a validation of the interest toward the development of selective inhibitors in clinic
Déniel, Maxime. „Etude de la production de bio-huile par liquéfaction hydrothermale de résidus agroalimentaires et de leurs molécules modèles“. Thesis, Ecole nationale des Mines d'Albi-Carmaux, 2016. http://www.theses.fr/2016EMAC0009/document.
Der volle Inhalt der QuelleThis work presents a study of hydrothermal liquefaction of food processing residues using a batch reactor, to produce bio-oil. The objective is to study the influence of operating conditions on bio-oil production, and to contribute to the understanding of the reaction mechanisms occurring during hydrothermal conversion of biomass. Hydrothermal liquefaction of food processing residues was studied using blackcurrant pomace, a berry pressing residue, as an example. A parametric study evaluated the influence of temperature, holding time, biomass concentration and the use of sodium hydroxide as additive on the yields of products. This study allowed the identification of favorable operating conditions to produce bio-oil. The bio-oil yield can in particular benefit from recycling the aqueous phase as reaction solvent (maximum bio-oil yield: 31%). Physicochemical characterization of the bio-oil showed that it has some similarities with heavy crude oil and heavy oils, especially thanks to a lower oxygen content than pyrolysis oils. The bio-oil can be considered as a bio-heavy crude oil, but it still requires significant upgrading before any potential applications. Hydrothermal conversion of model molecules, selected from the characterization of blackcurrant pomace, was studied at a temperature of 300 °C and a holding time of 60 min. Five model monomers (glucose, xylose, glutamic acid, guaiacol and linoleic acid) and two model polymers (microcrystalline cellulose and alkali lignin) were chosen for this study. A mixture design of experiments methodology was followed, to combine reactivity studies with the elaboration of correlations describing the mass yields of products as a function of the initial mixture composition. Analysis of the products shows that hydrothermal conversion of food processing residues is mainly due to degradations of individual compounds and binary interactions between components of biomass. The correlations obtained from the model compounds describe with good accuracy the mass yields of the products from hydrothermal conversion of a model mixture and several food processing residues: brewer’s spent grains, grape marc and raspberry achenes
Asano, Marie. „Design, synthesis and single molecule force spectroscopy of biosynthetic polypeptides“. Thesis, Bordeaux, 2016. http://www.theses.fr/2016BORD0163/document.
Der volle Inhalt der QuelleProteins fold by the initial, preferential folding of secondarystructures 1, 2, however surprisingly little is known about the basic mechanicalproperties of isolated α-helices and β-sheets from an experimental standpoint.Previous investigations into studying the generic unfolding behaviour of α-heliceshave proved inconclusive 3-5, and to our knowledge the study of an isolated,intramolecular β-sheet is unprecedented.Bioinspired PEG114-b-poly(L-glutamic acid)85-(2-pyridyl disulphide),PEG114-b-poly(L-lysine)134-(2-pyridyl disulphide) and PEG114-b-poly(Llysine)134–b-PEG114 were designed, synthesized and utilized as model systems toprobe the mechanical properties of α-helix and β-sheet secondary motifs. Theobtained results were shown to be in good agreement with theoretical resultsobtained by utilizing a AGAGIR-based statistical mechanical model 6. Thedifference in unravelling force comparing the helices of poly(L-Lysine) ≈30 pNand poly(L-glutamic acid) ≈20 pN diblock copolymers was attributed to thediffering hydrophobicity of the side chains. The greater hydrophobicity of thelysine allowed greater interactions between the side chains and sterically hinderedrandom helix-coil fluctuations, which lead to a superior α-helix stability. Whenexperiments were conducted in conditions promoting the solubility of the lysineside chains, the interactions decreased to a force of ≈20 pN, similar to the force ofinteractions observed for the poly(L-glutamic acid). We infer that a minimum of≈20 pN is needed to rupture the hydrogen bonding maintaining the α-helix as thisforce was obtained in conditions where the side chain interactions wereminimized.The presence of constant force plateaus and corresponding inflectionsdemonstrates a length independent unfolding force, which supports a turn-by-turnunfolding mechanism for the α-helix.In addition, the greater hydrophobicity of the side chains was suggestedto not only stabilize the α-helix structure, but also to inhibit the formation of anintermediate metastable β-hairpin-like structure when entropic forces dominate.Preliminary studies were also conducted on the PEG114-b-poly(LLysine)134-(2-pyridyl disulphide) system after a α-β transition had been inducedby heat in basic conditions, where an inflection at a much higher force of ≈ 70 pNwas obtained suggesting the formation of a β-sheet interaction.A bottom-up, investigative strategy has thus been successfully proposeddemonstrating the potential of utilizing such artificial systems to simplify andexemplify real biological systems. The comprehension of these simpler isolatedmodels will no doubt aid the understanding of more complex systems
Fontaine, Fabien. „Development and applications of new 3D molecular descriptors“. Doctoral thesis, Universitat Pompeu Fabra, 2005. http://hdl.handle.net/10803/7080.
Der volle Inhalt der QuelleIn order to correlate the differences of structure with the differences of activity of series of compounds, it is important to use relevant molecular descriptors. The GRIND and VolSurf descriptors belong to the so-called alignment-free descriptors family. In other words, they do not require to align the compounds in order to compare its molecular interaction fields. In this study, we applied these descriptors to the selection of chemical reagent from a database of compounds. The selection has been done following a protocol which allows to maximize the diversity of the sample and so to obtain some compounds highly informative. In addition we developed new shape descriptors which are based on the changes of curvature of the molecular surface. The results obtained show that the new shape descriptors are well integrated in the original GRIND descriptors. Furthermore, we designed new alignment-free descriptors called 'anchor-GRIND' which use one atom of each molecule as a reference point for the comparison of the molecular interaction fields. The 'anchor-GRIND' descriptors allow a more precise and more simple description than the GRIND descriptors, which makes them more relevant for the analysis of some families of compounds.
Trio, Phoebe Zapanta. „Liquid chromatography tandem mass spectrometry analysis of arachidonic and eicosapentanoic acid metabolites by using experimental design and curve resolution approaches“. Master's thesis, 2010. http://hdl.handle.net/10400.1/10726.
Der volle Inhalt der Quelle