Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Deposited thin films“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Deposited thin films" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Deposited thin films"
Verde, M. „EPD-deposited ZnO thin films: a review“. Boletín de la Sociedad Española de Cerámica y Vidrio 53, Nr. 4 (30.08.2014): 149–61. http://dx.doi.org/10.3989/cyv.192014.
Der volle Inhalt der QuelleKim, Sun Kyu, und Vuong Hung Pham. „Cell Adhesion on Cathodic Arc Plasma Deposited ZrAlSiN Thin Films“. Korean Journal Metals and Materials 51, Nr. 12 (05.12.2013): 907–12. http://dx.doi.org/10.3365/kjmm.2013.51.12.907.
Der volle Inhalt der QuelleM. A. Barote, M. A. Barote. „Structural and morphological properties of spray deposited CdO thin films“. Indian Journal of Applied Research 3, Nr. 9 (01.10.2011): 514–16. http://dx.doi.org/10.15373/2249555x/sept2013/156.
Der volle Inhalt der QuelleStudenyak, I. P. „Optical studies of as-deposited and annealed Cu7GeS5I thin films“. Semiconductor Physics Quantum Electronics and Optoelectronics 19, Nr. 2 (06.07.2016): 192–96. http://dx.doi.org/10.15407/spqeo19.02.192.
Der volle Inhalt der QuelleChang, Chin Chuan, Shu Ling Wang, Wen Chi Tseng und Meng Jiy Wang. „Plasma Polymerized Thin-Films for Biosensors“. Advanced Materials Research 47-50 (Juni 2008): 1367–70. http://dx.doi.org/10.4028/www.scientific.net/amr.47-50.1367.
Der volle Inhalt der QuelleSpassova, E. „Vacuum deposited polyimide thin films“. Vacuum 70, Nr. 4 (April 2003): 551–61. http://dx.doi.org/10.1016/s0042-207x(02)00783-2.
Der volle Inhalt der QuelleJelínek, M., L. Jastrabík, V. Olšan, L. Soukup, M. Šimečková, R. Černý, E. Kluenkov und L. Mazo. „Laser deposited YBaCuO thin films“. Czechoslovak Journal of Physics 43, Nr. 6 (Juni 1993): 661–69. http://dx.doi.org/10.1007/bf01591540.
Der volle Inhalt der QuelleSindhu, H. S., Sumanth Joishy, B. V. Rajendra und P. D. Babu. „Influence of Precursor Solution Concentration on Structure and Magnetic Properties of Zinc Oxide Thin Films“. Key Engineering Materials 724 (Dezember 2016): 43–47. http://dx.doi.org/10.4028/www.scientific.net/kem.724.43.
Der volle Inhalt der QuelleSHUR, MICHAEL S., SERGEY L. RUMYANTSEV und REMIS GASKA. „SEMICONDUCTOR THIN FILMS AND THIN FILM DEVICES FOR ELECTROTEXTILES“. International Journal of High Speed Electronics and Systems 12, Nr. 02 (Juni 2002): 371–90. http://dx.doi.org/10.1142/s0129156402001320.
Der volle Inhalt der QuelleKim, Sun Kyu, und Vuong Hung Pham. „Osteoblast Adhesion on Cathodic Arc Plasma Deposited Nano-Multilayered TiCrAlSiN Thin Films“. Korean Journal of Metals and Materials 52, Nr. 3 (05.03.2014): 243–48. http://dx.doi.org/10.3365/kjmm.2014.52.3.243.
Der volle Inhalt der QuelleDissertationen zum Thema "Deposited thin films"
Poulter, Neil. „Novel antimicrobial plasma deposited films“. Thesis, University of Bath, 2010. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.518294.
Der volle Inhalt der QuelleSeveral novel antimicrobial monomer systems were synthesised and characterised based on silver, copper and zinc as the active constituent with phosphines, phosphites, maleimide and a novel Schiff base among the ligand systems. All monomers were found to greatly inhibit the growth of P. aeruginosa and S. aureus in solution and on solid media. Successful monomers were deposited onto suitable substrates (glass, gold, plastics, non-woven polypropylene) using continuous wave and pulse plasma, with the films characterised and low levels of active metal found in analysis using XPS and SIMS. Films were tested against solutions of pathogenic bacteria using a number of traditional and modern microbiological techniques and found to inhibit growth under a range of conditions, potentially due to the synergistic action of metal and ligand on bacterial cells. Effective control of bacteria was exhibited at times varying from 1h to 24h+. Highly volatile compounds were produced which allowed quick deposition of plasma films, which showed excellent activity against bacteria (99.9%+ growth reduction), indicating viability for potential application. All films tested showed no inhibition or toxicity to eukaryotic cells.
Skillen, Norman William. „Thin films of zirconia deposited by MOCVD“. Thesis, University of Salford, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.258342.
Der volle Inhalt der QuelleSeok, Jin Woo. „SPUTTER DEPOSITED CR/CRN NANOCRYSTALLINE THIN FILMS“. University of Cincinnati / OhioLINK, 2001. http://rave.ohiolink.edu/etdc/view?acc_num=ucin985901057.
Der volle Inhalt der QuelleAnutgan, Mustafa. „Investigation Of Plasma Deposited Boron Nitride Thin Films“. Master's thesis, METU, 2007. http://etd.lib.metu.edu.tr/upload/12608611/index.pdf.
Der volle Inhalt der QuelleKandasamy, Ispran S. „Metalorganic chemical vapour deposited titanium dioxide thin films“. Thesis, Brunel University, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.235909.
Der volle Inhalt der QuellePetruczok, Christy D. (Christy Danielle). „Enabling integration of vapor-deposited polymer thin films“. Thesis, Massachusetts Institute of Technology, 2014. http://hdl.handle.net/1721.1/89947.
Der volle Inhalt der QuelleCataloged from PDF version of thesis.
Includes bibliographical references.
Initiated Chemical Vapor Deposition (iCVD) is a versatile, one-step process for synthesizing conformal and functional polymer thin films on a variety of substrates. This thesis emphasizes the development of tools to further enable the use of iCVD for industrial applications. The ability to pattern polymer thin films is a prerequisite for device fabrication. Two methods were developed for patterning iCVD polymers. The first technique facilitated patterning of nano- and microscale features of any iCVD thin film on planar surfaces. Retention of polymer functionality was demonstrated by incorporating the features into high-resolution resistive sensors. The second method adapted photolithographic techniques to achieve patterning on highly curved surfaces. Non-planar substrates were coated with a uniform layer of a functionalized, photoreactive iCVD polymer and exposed to ultraviolet light through a flexible mask. Exposed regions became insoluble in a developing solvent. The resolution and sensitivity of this iCVD-based negative photoresist were comparable to those of commercial products. Additionally, the patterned polymer was used as a mask for patterning metal on planar and curved surfaces. iCVD is typically a semi-continuous process. A batch process was investigated in order to minimize the use of expensive and corrosive reactants. The chemical functionality and conformality of the films were unaffected by the change in processing mode. Reaction yield was improved by one to two orders of magnitude for several film chemistries. iCVD is also unique in that it enables the deposition of cross-linked polymer films, which are difficult to create using conventional, solution-based methods. To potentially enhance durability, cross-linked poly(divinylbenzene) and poly(4-vinylpyridine-co-divinylbenzene) films were synthesized via iCVD. This is the first vapor-phase synthesis of the copolymer, which is a major component of many commercial ion exchange membranes. The degree of cross-linking was quantified using spectroscopic methods and was tightly controlled by adjusting the flow rate of divinylbenzene. Corresponding changes in the elastic moduli of the films were confirmed using nanoindentation. The first vapor-phase synthesis of poly(vinyl cinnamate) was also demonstrated. The cross-linking density of this polymer increases upon exposure to ultraviolet light and is readily quantifiable. Vinyl cinnamate was incorporated into a copolymer with N-isopropylacrylamide, yielding a temperature and light-responsive thin film.
by Christy D. Petruczok.
Ph. D.
Peterson, Sarah M. „Influence of scale, geometry, and microstructure on the electrical properties of chemically deposited thin silver films /“. Connect to title online (ProQuest), 2007. http://proquest.umi.com/pqdweb?did=1453183211&sid=2&Fmt=2&clientId=11238&RQT=309&VName=PQD.
Der volle Inhalt der QuelleTypescript. Includes vita and abstract. Includes bibliographical references (leaves 95-101). Also available online in ProQuest, free to University of Oregon users.
Hajjar, Jean-Jacques Joseph. „Characterization of chemical vapor deposited polycrystalline silicon thin films“. Thesis, Massachusetts Institute of Technology, 1985. http://hdl.handle.net/1721.1/15006.
Der volle Inhalt der QuelleMICROFICHE COPY AVAILABLE IN ARCHIVES AND ENGINEERING
Bibliography: leaves 134-139.
by Jean-Jacques Joseph Hajjar.
M.S.
Cole, Matthew Thomas. „Dry-transfer of chemical vapour deposited nanocarbon thin films“. Thesis, University of Cambridge, 2012. https://www.repository.cam.ac.uk/handle/1810/241515.
Der volle Inhalt der QuelleFraser, Samuel Carroll. „Prediction of thin films obliquely deposited in rotating recessed cones“. Thesis, Georgia Institute of Technology, 1997. http://hdl.handle.net/1853/9340.
Der volle Inhalt der QuelleBücher zum Thema "Deposited thin films"
Skillen, Norman William. Thin films of Zirconia deposited by MOCVD. Salford: University of Salford, 1990.
Den vollen Inhalt der Quelle findenEzema, Fabian I., Chandrakant D. Lokhande und Rajan Jose, Hrsg. Chemically Deposited Nanocrystalline Metal Oxide Thin Films. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-68462-4.
Der volle Inhalt der QuelleKandasamy, Ispran S. Metalorganic chemical vapour deposited titanium dioxide thin films. Uxbridge: Brunel University, 1988.
Den vollen Inhalt der Quelle findenMilan, Paunovic, Ohno Izumi 1937-, Miyoshi Yasuhiko 1945- und Electrochemical Society Electrodeposition Division, Hrsg. Proceedings of the Symposium on Electrochemically Deposited Thin Films. Pennington, NJ: Electrochemical Society, 1993.
Den vollen Inhalt der Quelle findenSymposium on Electrochemically Deposited Thin Films (1994 Miami Beach, Fla.). Proceedings of the Second Symposium on Electrochemically Deposited Thin Films. Herausgegeben von Paunovic Milan und Electrochemical Society Electrodeposition Division. Pennington, NJ: Electrochemical Society, 1995.
Den vollen Inhalt der Quelle findenSymposium on Electrochemically Deposited Thin Films (1996 San Antonio, Tex.). Proceedings of the Third Symposium on Electrochemically Deposited Thin Films. Herausgegeben von Paunovic Milan, Scherson D, Electrochemical Society Electrodeposition Division und Electrochemical Society. Physical Electrochemistry Division. Pennington, NJ: Electrochemical Society, 1997.
Den vollen Inhalt der Quelle findenMiyoshi, Kazuhisa. Plasma-deposited amorphous hydrogenated carbon films and their tribological properties. Cleveland, Ohio: Lewis Research Center, 1989.
Den vollen Inhalt der Quelle findenMiyoshi, Kazuhisa. Plasma-deposited amorphous hydrogenated carbon films and their tribological properties. Cleveland, Ohio: Lewis Research Center, 1989.
Den vollen Inhalt der Quelle findenMiyoshi, Kazuhisa. Plasma-deposited amorphous hydrogenated carbon films and their tribological properties. Cleveland, Ohio: Lewis Research Center, 1989.
Den vollen Inhalt der Quelle findenMiyoshi, Kazuhisa. Plasma-deposited amorphous hydrogenated carbon films and their tribological properties. Cleveland, Ohio: Lewis Research Center, 1989.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Deposited thin films"
Ting, Jyh-Ming, und Yi-Hui Zhuo. „Sputter Deposited Nanostructured Coatings as Solar Selective Absorbers“. In Functional Thin Films Technology, 21–45. New York: CRC Press, 2021. http://dx.doi.org/10.1201/9781003088080-2.
Der volle Inhalt der QuelleYang, Weiqing. „Nanostructures and Thin Films Deposited with Sputtering“. In Advanced Nano Deposition Methods, 59–79. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2016. http://dx.doi.org/10.1002/9783527696406.ch3.
Der volle Inhalt der QuelleUngureanu, F., D. Predoi, R. V. Ghita, R. A. Vatasescu-Balcan und M. Costache. „Characteristics Of Vacuum Deposited Sucrose Thin Films“. In Springer Proceedings in Physics, 67–71. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-95930-4_11.
Der volle Inhalt der QuelleAdachi, C., S. Tokito, M. Morikawa, T. Tsutsui und S. Saito. „Electroluminescence in Vacuum-Deposited Organic Thin Films“. In Springer Proceedings in Physics, 358–61. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-93430-8_72.
Der volle Inhalt der QuelleMichalitsch, Richard, G. Kane Jennings, Seiichi Takami, Murray V. Baker und Paul E. Laibinis. „Functionalization of Underpotentially Deposited Metal Layers with Organics, Metals, and Ions“. In Thin Films: Preparation, Characterization, Applications, 69–81. Boston, MA: Springer US, 2002. http://dx.doi.org/10.1007/978-1-4615-0775-8_5.
Der volle Inhalt der QuellePauleau, Y., E. Mounier und P. Juliet. „Amorphous Carbon Solid Lubricant Films Deposited by Conventional and Unbalanced Magnetron Sputtering“. In Protective Coatings and Thin Films, 197–227. Dordrecht: Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-011-5644-8_16.
Der volle Inhalt der QuelleObayi, Camillus Sunday, und Paul Sunday Nnamchi. „Mixed Transition Metal Oxides for Photoelectrochemical Hydrogen Production“. In Chemically Deposited Nanocrystalline Metal Oxide Thin Films, 279–92. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-68462-4_11.
Der volle Inhalt der QuellePatil, U. M., V. V. Patil, A. S. Patil, S. J. Marje, J. L. Gunjakar und C. D. Lokhande. „Nanoporous Transition Metal Oxide-Based Electrodes for Supercapacitor Application“. In Chemically Deposited Nanocrystalline Metal Oxide Thin Films, 623–72. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-68462-4_24.
Der volle Inhalt der QuelleBulakhe, Ravindra N., Anuradha B. Bhalerao und Insik In. „Mixed Transition Metal Oxides for Energy Applications“. In Chemically Deposited Nanocrystalline Metal Oxide Thin Films, 405–29. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-68462-4_16.
Der volle Inhalt der QuelleIwueke, David C., Raphael M. Obodo, Chinedu Iroegbu, Ishaq Ahmad und Fabian I. Ezema. „Chemically Synthesized Novel Materials for Gas-Sensing Applications Based on Metal Oxide Nanostructure“. In Chemically Deposited Nanocrystalline Metal Oxide Thin Films, 807–20. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-68462-4_28.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Deposited thin films"
Jen, Yi-Jun, Wei-Chih Liu, Yu-Jie Huang und Yueh Weng Lin. „Deposited nanohelices on smooth surface: morphology and SERS application (Conference Presentation)“. In Nanostructured Thin Films IX, herausgegeben von Tom G. Mackay, Akhlesh Lakhtakia und Motofumi Suzuki. SPIE, 2016. http://dx.doi.org/10.1117/12.2238343.
Der volle Inhalt der QuellePhilip, Anu, Subin Thomas und K. Rajeev Kumar. „Compositional characterization of atomic layer deposited alumina“. In OPTOELECTRONIC MATERIALS AND THIN FILMS: OMTAT 2013. AIP Publishing LLC, 2014. http://dx.doi.org/10.1063/1.4862015.
Der volle Inhalt der QuelleLarruquert, Juan Ignacio, Luis V. Rodríguez-de Marcos, Nuria Gutiérrez-Luna, Lucía Espinosa-Yáñez, Carlos Honrado-Benítez, José Chavero-Royán und Belén Perea-Abarca. „Enhanced far-UV reflectance of Al mirrors protected with hot-deposited MgF2“. In Advances in Optical Thin Films VI, herausgegeben von Michel Lequime, H. Angus Macleod und Detlev Ristau. SPIE, 2018. http://dx.doi.org/10.1117/12.2313635.
Der volle Inhalt der QuelleLiu, Dandan, Huasong Liu, Yiqin Ji, Yugang Jiang, Yuzhe Xing, Jian Leng und Ke-wen Zhuang. „Research VIS-NIR optical constants of Si films deposited by different techniques“. In Advances in Optical Thin Films VI, herausgegeben von Michel Lequime, H. Angus Macleod und Detlev Ristau. SPIE, 2018. http://dx.doi.org/10.1117/12.2312052.
Der volle Inhalt der QuelleOliver, James B., Chris Smith, John Spaulding, Justin Foster, Brittany Hoffman, Semyon Papernov, Terry J. Kessler und Sara MacNally. „Fabrication of a glancing-angle-deposited distributed polarization rotator for ultraviolet applications“. In Advances in Optical Thin Films VI, herausgegeben von Michel Lequime, H. Angus Macleod und Detlev Ristau. SPIE, 2018. http://dx.doi.org/10.1117/12.2312646.
Der volle Inhalt der QuellePompe, Wolfgang, und Andre A. Gorbunov. „Nanostructuring of laser-deposited thin films“. In Photonics West '96, herausgegeben von Jan J. Dubowski, Jyotirmoy Mazumder, Leonard R. Migliore, Chandrasekhar Roychoudhuri und Ronald D. Schaeffer. SPIE, 1996. http://dx.doi.org/10.1117/12.237756.
Der volle Inhalt der QuelleDave, V., P. Dubey, H. O. Gupta und R. Chandra. „Temperature dependent structural, optical and hydrophobic properties of sputtered deposited HfO2 films“. In OPTOELECTRONIC MATERIALS AND THIN FILMS: OMTAT 2013. AIP Publishing LLC, 2014. http://dx.doi.org/10.1063/1.4861972.
Der volle Inhalt der QuelleMotohiro, Tomoyoshi. „Study of self-shadowing effect as a simple means to realize nanostructured thin films and layers with special attentions to birefringent obliquely deposited thin films and photo-luminescent porous silicon“. In Nanostructured Thin Films XI, herausgegeben von Tom G. Mackay und Akhlesh Lakhtakia. SPIE, 2018. http://dx.doi.org/10.1117/12.2322702.
Der volle Inhalt der QuelleThomas, Titu, K. Rajeev Kumar, C. Sudha Kartha und K. P. Vijayakumar. „Deposition and characterization of CuInS2 thin films deposited over copper thin films“. In NANOFORUM 2014. AIP Publishing LLC, 2015. http://dx.doi.org/10.1063/1.4918144.
Der volle Inhalt der QuelleSatish, B., und M. K. Jayaraj. „Annealing effects on the structural and electrical properties of pulsed laser deposited BaPbO3 thin films“. In OPTOELECTRONIC MATERIALS AND THIN FILMS: OMTAT 2013. AIP Publishing LLC, 2014. http://dx.doi.org/10.1063/1.4862024.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Deposited thin films"
ADAMS, DAVID P., JUAN A. ROMERO, MARK A. RODRIGUEZ, JERROLD A. FLORO und PAUL G. KOTULA. Microstructure, Phase Formation, and Stress of Reactively-Deposited Metal Hydride Thin Films. Office of Scientific and Technical Information (OSTI), Mai 2002. http://dx.doi.org/10.2172/800984.
Der volle Inhalt der QuellePrater, W. Microstructural Comparisons of Ultra-Thin Cu Films Deposited by Ion-Beam and dc-Magnetron Sputtering. Office of Scientific and Technical Information (OSTI), November 2004. http://dx.doi.org/10.2172/839624.
Der volle Inhalt der QuelleDudney, N. J. CRADA Final Report: Properties of Vacuum Deposited Thin Films of Lithium Phosphorous Oxynitride (Lipon) with an Expanded Composition Range. Office of Scientific and Technical Information (OSTI), Dezember 2003. http://dx.doi.org/10.2172/885850.
Der volle Inhalt der QuelleEVIDENT TECHNOLOGIES TROY NY. High Performance Thermoelectric Materials Using Solution Phase Synthesis of Narrow Bandgap Core/Shell Quantum Dots Deposited Into Colloidal Crystal Thin Films. Fort Belvoir, VA: Defense Technical Information Center, Juni 2005. http://dx.doi.org/10.21236/ada434970.
Der volle Inhalt der QuelleSchmitz, P. The growth, structure, and thermal stability of vapor deposited ultra-thin metal films: Rh on Ag(100), Au on Pd(110), and Pt on Pd(110). Office of Scientific and Technical Information (OSTI), September 1990. http://dx.doi.org/10.2172/6566767.
Der volle Inhalt der QuelleIlias, S., F. G. King, Ting-Fang Fan und S. Roy. Separation of Hydrogen Using an Electroless Deposited Thin-Film Palladium-Ceramic Composite Membrane. Office of Scientific and Technical Information (OSTI), Dezember 1996. http://dx.doi.org/10.2172/419403.
Der volle Inhalt der QuelleFabiani, Andrea, Martha López, José-Luis Peydró, Paul E. Soto und Margaret Guerrero. Capital Controls, Domestic Macroprudential Policy and the Bank Lending Channel of Monetary Policy. Banco de la República, Juni 2021. http://dx.doi.org/10.32468/be.1162.
Der volle Inhalt der Quelle