Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Demonstrativní panel“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Demonstrativní panel" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Demonstrativní panel"
Cheshire, David, Robert Edmondson und Paul Savidge. „Façade Optimisation Using a Point Equilibrium Methodology“. Key Engineering Materials 572 (September 2013): 601–4. http://dx.doi.org/10.4028/www.scientific.net/kem.572.601.
Der volle Inhalt der QuelleFrank C. Fan, Frank C. Fan, Sam Choi Sam Choi und and C. C. Jiang and C. C. Jiang. „Demonstration of full-parallax three-dimensional holographic display on commercial 4 K flat-panel displayer“. Chinese Optics Letters 14, Nr. 1 (2016): 010007–10011. http://dx.doi.org/10.3788/col201614.010007.
Der volle Inhalt der QuellePark, Byoung-Jik, Yong-Ho Yoo, Yangkyun Kim, Jin-Ouk Park und Hwi-Seong Kim. „Development of Flame Spread Prevention Systems for Combustible Composite Panels Using Water Screen Technology“. Fire Science and Engineering 34, Nr. 6 (31.12.2020): 31–36. http://dx.doi.org/10.7731/kifse.49e0be70.
Der volle Inhalt der QuelleBhattarai, Shankar, Ji-Seong Go, Hongrae Kim und Hyun-Ung Oh. „Development of a Novel Deployable Solar Panel and Mechanism for 6U CubeSat of STEP Cube Lab-II“. Aerospace 8, Nr. 3 (05.03.2021): 64. http://dx.doi.org/10.3390/aerospace8030064.
Der volle Inhalt der QuelleWei, Heming, Angeline Lai, Ee Shien Tan, Mark Jean Aan Koh, Ivy Ng, Teck Wah Ting, Terrence Thomas et al. „Genetic landscape of congenital disorders in patients from Southeast Asia: results from sequencing using a gene panel for Mendelian phenotypes“. Archives of Disease in Childhood 106, Nr. 1 (25.09.2020): 38–43. http://dx.doi.org/10.1136/archdischild-2020-319177.
Der volle Inhalt der QuelleAbbasloo, Aslan, und Mohamad Reza Maheri. „On the mechanisms of modal damping in FRP/honeycomb sandwich panels“. Science and Engineering of Composite Materials 25, Nr. 4 (26.07.2018): 649–60. http://dx.doi.org/10.1515/secm-2015-0444.
Der volle Inhalt der QuellePiquette, Jean C. „Analytical backplate removal in panel tests: An experimental demonstration“. Journal of the Acoustical Society of America 97, Nr. 3 (März 1995): 1978–79. http://dx.doi.org/10.1121/1.413049.
Der volle Inhalt der QuelleSugawara, Yoshiki, Hironori Sahara, Shinichi Nakasuka, Stephen Greenland, Takeshi Morimoto, Kanichi Koyama, Chisato Kobayashi, Hideaki Kikuchi, Takanori Okada und Hidenori Tanaka. „A satellite for demonstration of Panel Extension Satellite (PETSAT)“. Acta Astronautica 63, Nr. 1-4 (Juli 2008): 228–37. http://dx.doi.org/10.1016/j.actaastro.2007.12.016.
Der volle Inhalt der QuelleLIEW, K. M., X. ZHAO und T. Y. NG. „THE ELEMENT-FREE kp-RITZ METHOD FOR VIBRATION OF LAMINATED ROTATING CYLINDRICAL PANELS“. International Journal of Structural Stability and Dynamics 02, Nr. 04 (Dezember 2002): 523–58. http://dx.doi.org/10.1142/s0219455402000701.
Der volle Inhalt der Quelledos Santos Martins Padoan, Flavia Carla, Pier Giorgio Schiavi, Gianmaria Belardi, Pietro Altimari, Antonio Rubino und Francesca Pagnanelli. „Material Flux through an Innovative Recycling Process Treating Different Types of End-of-Life Photovoltaic Panels: Demonstration at Pilot Scale“. Energies 14, Nr. 17 (04.09.2021): 5534. http://dx.doi.org/10.3390/en14175534.
Der volle Inhalt der QuelleDissertationen zum Thema "Demonstrativní panel"
Mitrenga, Michal. „Realizace demonstrativního panelu inteligentní elektroinstalace KNX“. Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2021. http://www.nusl.cz/ntk/nusl-442454.
Der volle Inhalt der QuelleKhanna, Amit. „Development and Demonstration of a Performance Test Protocol For Radiant Floor Heating Systems“. Thesis, Virginia Tech, 2006. http://hdl.handle.net/10919/30987.
Der volle Inhalt der QuelleMaster of Science
Jesus, Douglas Lisboa Santos de. „O papel demonstrativo dos diagramas na geometria euclidiana“. Faculdade de Filosofia e Ciências Humanas, 2017. http://repositorio.ufba.br/ri/handle/ri/24921.
Der volle Inhalt der QuelleApproved for entry into archive by Biblioteca Isaías Alves (reposiufbat@hotmail.com) on 2018-01-08T13:01:12Z (GMT) No. of bitstreams: 1 De Jesus (2017) - O papel demonstrativo dos diagramas na geometria euclidiana (Dissertação).pdf: 1380214 bytes, checksum: c54e315d51423c3db9da71096989f547 (MD5)
Made available in DSpace on 2018-01-08T13:01:12Z (GMT). No. of bitstreams: 1 De Jesus (2017) - O papel demonstrativo dos diagramas na geometria euclidiana (Dissertação).pdf: 1380214 bytes, checksum: c54e315d51423c3db9da71096989f547 (MD5)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
A recente literatura em historiografia e filosofia da prática matemática apresenta um novo cenário sobre o estatuto epistemológico dos diagramas. Resgatam-se aí algumas das principais discussões sobre a maneira como um sujeito pode obter conhecimento através de justificativas diagramáticas. Dentro deste quadro intelectual, apresenta-se nesta investigação uma defesa dum modelo de prova matemática parcialmente baseado em diagramas. Como caso de estudo paradigmático, adota-se aqui os Elementos de Euclides sob a perspectiva metodológica da análise retórica. O principal argumento apresentado pretende demonstrar a seguinte tese: uma correta análise das provas euclidianas deve reconsiderar a prática matemática prescrita pelos Elementos num modelo de justificativa que incorpore não apenas a análise lógica de estruturas dedutivas, como também sua dimensão normativa, dependente, portanto, da audiência. Uma objeção frequente às provas euclidianas decorre da correta observação que o diagrama é uma instância física imperfeita, donde se seguiria que também uma prova diagramática é, de um ponto de vista lógico, imperfeita. É comum entre comentadores e filósofos a alegação de que as provas euclidianas possuem “lacunas” inferenciais, cuja correção deveria ser feita mediante novos axiomas dentro duma concepção formal de prova. Assim, cada passo em uma prova seria autorizado se, e somente se, é uma fórmula bem formada que, ou é um axioma, ou segue-se da aplicação duma regra de inferência. Em réplica, fica demonstrado que a principal deficiência deste argumento reside numa significativa negligência da prática matemática euclidiana. Mais ainda: não oferece uma explicação satisfatória para a estabilidade da teoria engendrada pelos Elementos. Isso é verificado a partir dum estudo mais detalhado acerca do Postulado 2. Através duma aclaração sobre o seu suposto uso não uniforme nos Livros I-VI pode-se constatar que a geometria euclidiana, no tocante às suas provas, é estável e racionalmente controlada. Para além da geometria de Euclides, mostra-se como a análise retórica poderia ser pensada como um método investigativo na filosofia da ciência.
The recent literature on historiography and philosophy of mathematical practice presents a new scenario about the epistemological status of diagrams. Some of the main discussions about the way a subject can obtain knowledge through diagrammatic justifications are rescued. Within this intellectual framework, it is presented here a defense of a mathematical proof model partially based on diagrams. As a paradigmatic case study, Euclid’s Elements are adopted here from the methodological perspective of the rhetorical analysis. The main argument through this text tries to prove the follow thesis: a correct analysis of the Euclidean proofs should reconsider the mathematical practice prescribed by the Elements in a justification model that incorporates not only the logical analysis of deductive structures, but also their normative dimension, therefore, dependent on the audience. A frequent objection to the Euclidean proofs stems from the correct observation that the diagram is an imperfect physical instance, from which it would follow that a diagrammatic proof, from a logical point of view, is also imperfect. It is common among commentators and philosophers the claim that the Euclidean proofs have inferential “gaps”, which should be corrected by new axioms within a formal conception of proof. Thus, each step in a proof would be allowed if, and only if, it is a well-formed formula which is either an axiom or follows from the application of an inference rule. In reply, it is demonstrated that the main deficiency of this argument lies in a significant neglect of Euclidean mathematical practice. Moreover, it does not offer a satisfactory explanation for the stability of the theory engendered by Elements. This is verified from a more detailed study of Postulate 2. Through a clarification on its supposed non-uniform use in Books I-VI it can be seen that Euclidean geometry, in relation to its proofs, is stable and rationally controlled. Beyond the geometry of Euclid, it is shown how rhetorical analysis could be thought of as an investigative method in the philosophy of science.
Chen, Qiao. „Modeling, design and demonstration of through-package-vias in panel-based polycrystalline silicon interposers for high performance, high reliability and low cost“. Diss., Georgia Institute of Technology, 2015. http://hdl.handle.net/1853/53568.
Der volle Inhalt der QuelleLima, Marcella Luanna da Silva. „Sobre pensamento geomátrico, provas e demonstrações matemáticas de alunos do 2º ano do Ensino Médio nos ambientes Lápis e Papel e Geogebra“. Universidade Estadual da Paraíba, 2015. http://tede.bc.uepb.edu.br/tede/jspui/handle/tede/2336.
Der volle Inhalt der QuelleApproved for entry into archive by Secta BC (secta.csu.bc@uepb.edu.br) on 2016-07-21T20:47:00Z (GMT) No. of bitstreams: 1 PDF - Marcella Luanna da Silva Lima.pdf: 5051111 bytes, checksum: 2d6c0143b6e358e6f301609c3154d1f0 (MD5)
Approved for entry into archive by Secta BC (secta.csu.bc@uepb.edu.br) on 2016-07-21T20:47:11Z (GMT) No. of bitstreams: 1 PDF - Marcella Luanna da Silva Lima.pdf: 5051111 bytes, checksum: 2d6c0143b6e358e6f301609c3154d1f0 (MD5)
Made available in DSpace on 2016-07-21T20:47:11Z (GMT). No. of bitstreams: 1 PDF - Marcella Luanna da Silva Lima.pdf: 5051111 bytes, checksum: 2d6c0143b6e358e6f301609c3154d1f0 (MD5) Previous issue date: 2015-12-21
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES
Our research work aimed to investigate what type of proof, mathematical demonstration and level of geometrical thinking can occur from a didactic proposal within pencil, paper and GeoGebra environments. As qualitative research and study case, we used as instruments essays with Mathematical Proof and Demonstration themes, a didactic proposal developed by a team of five people who inserted worked collaboratively in the CAPES/OBEDUC/UFMS/UEPB/UFAL Project, field notes, participant observation, audios and photos. We elaborated a didactic proposal with eighteen activities, divided into four parts, which encouraged the students to reflect, justify, prove and demonstrate. The proposal application was carried out in July 2015 with High School 2nd year students of a public school in the town of Areia, Paraíba. For such, the students organized themselves in couples and one trio and the data collection happened in three moments. In the first moment we applied the essay, revised angles, triangles and theorems with the students and worked GeoGebra application with them. In the second moment we applied Parts I and II of the proposal with eight activities on Pythagoras Theorem and three activities on Sum of the Internal Angles of a Triangle Theorem, respectively. In the third moment we applied Part III, with two questions on External Angle Theorem and Part IV, with five question to be worked with the GeoGebra application on Pythagoras Theorem and Sum of the Internal Angles of a Triangle Theorem. In our research work we analyzed the work developed by the trio of students, once they were great in responding all the questions/activities. We analyzed Activity 8 of Part I, Activity 1 and 2 of Part II and all Activities of Part IV, totalizing in eight questions. We used the triangulation method for our study case and, firstly, we traced the profiles of the trio in relation to Mathematical Proof and Demonstration. Then we investigated the geometric thinking and the mathematical proof and demonstration used by the trio of students in the pencil and paper and GeoGebra environments. For such, we used discussions around the level of geometrical thinking proposed by Parzysz (2006) and the type of proofs proposed by Balacheff (2000) and Nasser and Tinoco (2003). From our research results we could conclude that the trio of students could not develop the justifications or proofs, once they did not understand what are mathematical proof and demonstration are, in their essays they understand mathematical proofs as bimestrial evaluations applied by the mathematics teacher. Moreover, the mathematical proofs performed by these students were in accordance with naive empiricism, pragmatic proof (Balacheff, 2000) and graphic justification (Nassar and Tinoco, 2003). In this way, when we observed the students geometrical thinking (Parzysz, 2006) we noted that it fits into two levels of the non-axiomatic Geometry: the Concrete Geomety (G0) and the Spatio-Graphique Geometry (G1), once these students used drawings to justify their affirmations, as the validation of the affirmation was done by the trio. We believe that if in Mathematic classes the teachers contemplate mathematical proof and demonstration, respecting the level of education, the degree of knowledge and maturity of the students, they could strongly contribute to the process of teaching and learning Mathematics and geometrical thinking, once the students would be led to reflect, justify, prove and demonstrate their ideas.
Nossa pesquisa investigou que tipo de provas, demonstrações matemáticas e nível de pensamento geométrico de alunos do 2º Ano do Ensino Médio podem ocorrer a partir de uma proposta didática nos ambientes lápis e papel e GeoGebra. Como pesquisa qualitativa, e estudo de caso, utilizamos como instrumentos redação com o tema Provas e Demonstrações Matemáticas, proposta didática desenvolvida por uma equipe de cinco pessoas que trabalhou de forma colaborativa inserida no Projeto CAPES/OBEDUC/UFMS/UEPB/UFAL Edital 2012, notas de campo, observação participante, gravações em áudio e fotos. Elaboramos uma proposta didática com 18 atividades, dividida em quatro partes, que incentivam alunos a refletirem, justificarem, provarem e demonstrarem. A aplicação dessa proposta se deu em julho de 2015 aos alunos do 2º Ano do Ensino Médio de uma escola pública na cidade de Areia, Paraíba. Para isso, os alunos se agruparam em duplas e um trio e a coleta dos dados se deu em três momentos. No primeiro momento, aplicamos a redação, revisamos com os alunos ângulos, triângulos e teoremas e trabalhamos com eles o aplicativo GeoGebra. No segundo momento, aplicamos as Partes I e II da proposta com 8 atividades sobre Teorema de Pitágoras e 3 atividades sobre Teorema da Soma dos Ângulos Internos de um Triângulo, respectivamente. No terceiro momento, aplicamos a Parte III, com 2 questões sobre o Teorema do Ângulo Externo e a Parte IV, com 5 questões à serem trabalhadas no aplicativo GeoGebra sobre o Teorema de Pitágoras e Teorema da Soma dos Ângulos Internos de um Triângulo. Em nossa pesquisa analisamos o trabalho desenvolvido pelo trio de alunos, uma vez que foram ricos na tentativa de r esponder a todas as perguntas/atividades. Analisamos a Atividade 8 da Parte I, as Atividades 1 e 2 da Parte II e todas as Atividades da Parte IV, totalizando em 8 questões. Utilizamos o método de triangulação de dados para nosso estudo de caso e, primeiramente, traçamos o perfil do trio de alunos com relação às Provas e Demonstrações Matemáticas. Em seguida, investigamos o pensamento geométrico e as provas e demonstrações matemáticas utilizadas pelo trio de alunos nos ambientes lápis e papel e GeoGebra. Para isso, utilizamos as discussões sobre os níveis do pensamento geométrico propostos por Parzysz (2006) e tipos de provas propostos por Balacheff (2000) e Nasser e Tinoco (2003). A partir de nossos resultados pudemos concluir que o trio de alunos não conseguiu desenvolver suas justificativas nem provas, uma vez que não entendem o que vem a ser provas e demonstrações matemáticas, e em suas redações percebemos que estes alunos tratam provas matemáticas como as avaliações aplicadas bimestralmente pelo professor de Matemática. Além disso, as provas matemáticas realizadas por estes alunos se enquadram no empirismo ingênuo, prova pragmática (Balacheff, 2000) e justificativa gráfica (Nasser e Tinoco, 2003). Dessa forma, quando observamos o pensamento geométrico (Parzysz, 2006) destes alunos, notamos que se enquadra nos dois níveis da Geometria não axiomática: a Geometria Concreta (G0) e a Geometria Spatio-Graphique (G1), uma vez que estes alunos se utilizam de desenhos para justificar suas afirmações, como também a validação das afirmações foi feita pela percepção do trio. Acreditamos que se nas aulas de Matemática os professores contemplassem provas e demonstrações matemáticas, respeitando o nível de escolaridade, o grau de conhecimento e a maturidade dos alunos, contribuiriam fortemente para o processo de ensino e aprendizagem da Matemática e do pensamento geométrico, uma vez que os alunos seriam levados a refletir, justificar, provar e demonstrar suas ideias.
Alves, Luís Filipe Carneiro Gomes. „O papel da exemplificação instrumental pelo professor nas aulas de oboé“. Master's thesis, 2017. http://hdl.handle.net/1822/45179.
Der volle Inhalt der QuelleO presente relatório dimana do Estágio Profissional realizado no Conservatório de Música Calouste Gulbenkian de Braga, no âmbito do Mestrado em Ensino de Música da Universidade do Minho, e explana a conceção, o desenvolvimento e a avaliação do Plano de Intervenção, implementado ao longo do ano letivo 2015/2016. A nível empírico verifica-se que a exemplificação instrumental é amplamente utilizada pelos professores de instrumento e exibe elevado estatuto face a outras estratégias didáticas utilizadas no ensino especializado de música. Todavia, poucos estudos exploram a sua aplicação e o seu papel concreto na aprendizagem de um instrumento musical. Assim, a estruturação deste projeto de intervenção e investigação pretendeu verificar o potencial didático da exemplificação instrumental pelo professor nas aulas de Oboé, tendo em conta variáveis como: graus de ensino, repertório e conteúdos programáticos. Neste sentido, foi realizada uma investigação-ação envolvendo alunos do 1º e 2º ciclos e do Ensino Secundário. Os dados obtidos foram recolhidos através dos registos de observação, narrativas profissionais e de aprendizagem, focus group e inquérito por questionário. A partir dos resultados obtidos conclui-se que a exemplificação instrumental é uma estratégia didática eficiente e transversal a todos os graus de ensino implicados no estudo, ainda que se tenha constatado a necessidade de utilização mais frequente e de mais tipos de exemplificação em graus mais avançados, sobretudo nos “estudos” e “peças”, uma vez que nos graus iniciais há, por tradição, maior preocupação com a leitura e não com o som, o que origina mais explicações verbais. Os elementos-chave desta estratégia parecem estar relacionados com a modelação/imitação e com a motivação. Não obstante, devido à dimensão particular do contexto educativo onde se realizou o estágio e ao número diminuto de intervenientes no estudo, parece importante contextualizar os resultados obtidos e, se possível, aprofundar a investigação realizada através de novos estudos comparativos e longitudinais.
The current report describes the conception, development and evaluation of a Pedagogical Intervention Plan implemented at Calouste Gulbenkian Music Conservatory of Braga throughout the Academic Year of 2015-2016 as part of the Practicum of the Master’s degree in Music Education of the University of Minho. From an empirical point of view, teacher’s demonstrations in instrumental lessons enjoy a privileged status as they have been widely adopted in detriment of other strategies in specialized music education. Despite the evident preference for this method, there are very few studies exploring both its clear role and actual implementation in the process of teaching a musical instrument. The awareness of this lack draw, indeed, the need to structure this research and pedagogical project in a way which might check the true potential of the music instrument demonstration by the teacher in Oboe lessons. For this purpose several variables were studied: level of knowledge, repertoire and syllabi. Having this in mind, an action research project took place, involving students of the 1st and 2nd cycles and of the Secondary level. Data has been collected through observation of Pedagogical Practice, learning narratives, professional narratives, focus group, and a questionnaire. The results obtained show that music demonstration in instrumental lessons is an efficient and transversal didactic strategy for students of all levels involved in the project. Despite its effectiveness on all student levels, it became clear that demonstrations are more frequent in more advanced degrees and mostly used in “studies” and “pieces”. This can be easily understood if we consider that in the early stages of music education, the focus usually lies more on reading rather than on sound, which explains a more theoretical or verbal approach by the teacher. The key-elements of this strategy seem to be linked to modeling/imitation as well as to motivation; despite this - and due to both the peculiar dimension of the educational context where the practicum took place and the not so abundant number of participants in the study – further study and interpretation of the results as well as comparative and longitudinal research are needed.
Bücher zum Thema "Demonstrativní panel"
Center, Langley Research, Hrsg. High capacity demonstration of honeycomb panel heat pipes. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1989.
Den vollen Inhalt der Quelle findenCenter, Langley Research, Hrsg. High capacity demonstration of honecomb panel heat pipes. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1989.
Den vollen Inhalt der Quelle findenWauters, W. Manufacture of a Sound and Heat Insulating Panel by Using Regenerated Raw Materials: Demonstration Project. European Communities / Union (EUR-OP/OOPEC/OPOCE), 1989.
Den vollen Inhalt der Quelle findenNew York State Energy Research and Development Authority., Geneva (N.Y.). Marsh Creek Wastewater Treatment Plant., Parkson Corporation und O'Brien & Gere., Hrsg. Demonstration of membrane aeration panels: City of Geneva Wastewater Treatment Plant : final report. Albany: The Authority, 1995.
Den vollen Inhalt der Quelle findenJones, Sam, und Ricardo Santos. Updating great expectations: The effect of peer salary information on own-earnings forecasts. UNU-WIDER, 2020. http://dx.doi.org/10.35188/unu-wider/2020/895-5.
Der volle Inhalt der QuelleGelfand, Michele J., Chi-yue Chiu und Ying-yi Hong, Hrsg. Handbook of Advances in Culture and Psychology, Volume 7. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780190879228.001.0001.
Der volle Inhalt der QuelleBuchteile zum Thema "Demonstrativní panel"
Langdon, Jonathan. „An unfractured line: an academic tale of self-reflective social movement learning in the Nova Scotia anti-fracking movement“. In Environmental Justice, Popular Struggle and Community Development, 83–100. Policy Press, 2019. http://dx.doi.org/10.1332/policypress/9781447350835.003.0006.
Der volle Inhalt der QuelleBaker, Andy, Barry Ames und Lúcio Rennó. „Clientelism as the Purchase of Social Influence“. In Persuasive Peers, 187–206. Princeton University Press, 2020. http://dx.doi.org/10.23943/princeton/9780691205779.003.0007.
Der volle Inhalt der QuelleQian, Yingyi. „Regional Decentralization and Fiscal Incentives: Federalism, Chinese Style“. In How Reform Worked in China. The MIT Press, 2017. http://dx.doi.org/10.7551/mitpress/9780262534246.003.0010.
Der volle Inhalt der QuelleRakow, Donald A., Meghan Z. Gough und Sharon A. Lee. „A Look at the Future of Public Gardens“. In Public Gardens and Livable Cities, 156–60. Cornell University Press, 2020. http://dx.doi.org/10.7591/cornell/9781501702594.003.0008.
Der volle Inhalt der QuelleFox, Michael H. „Global Climate Change: Real or Myth?“ In Why We Need Nuclear Power. Oxford University Press, 2014. http://dx.doi.org/10.1093/oso/9780199344574.003.0006.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Demonstrativní panel"
Martins, João, João Paulo Barraca, Diogo Gomes und Rui L. Aguiar. „Demonstrating the AMazING panel“. In the seventh ACM international workshop. New York, New York, USA: ACM Press, 2012. http://dx.doi.org/10.1145/2348688.2348709.
Der volle Inhalt der QuelleTanzer, H. J., M. R. Cerza und J. B. Hall. „High Capacity Demonstration of Honeycomb Panel Heat Pipes“. In SAE Aerospace Technology Conference and Exposition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1986. http://dx.doi.org/10.4271/861833.
Der volle Inhalt der QuelleConrardy, C., T. D. Huang, D. Harwig, P. Dong, L. Kvidahl, N. Evans und A. Treaster. „Practical Welding Techniques to Minimize Distortion in Lightweight Ship Structures“. In SNAME Maritime Convention. SNAME, 2005. http://dx.doi.org/10.5957/smc-2005-p27.
Der volle Inhalt der QuelleKoohang, Alex, Tom Seymour, Robert Skovira und Gary DeLorenzo. „Panel Discussion: Challenges of Open Educational Resources“. In InSITE 2007: Informing Science + IT Education Conference. Informing Science Institute, 2007. http://dx.doi.org/10.28945/3050.
Der volle Inhalt der QuelleLilly, Jared, Bethany Hansen, Ryan Lotz, Darren Hartl, Thomas Cognata, Priscilla Nizio und Connor Joyce. „Development and Experimental Demonstration of a Shape Memory Alloy-Based Adaptive Two-Phase Radiator for Space Applications“. In ASME 2020 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/smasis2020-2361.
Der volle Inhalt der QuelleDanko, Matus, Michal Taraba, Juraj Adamec, Branislav Hanko und Peter Drgona. „CAN BUS demonstration panel and its visualization using modular instrumentation“. In 2018 ELEKTRO. IEEE, 2018. http://dx.doi.org/10.1109/elektro.2018.8398281.
Der volle Inhalt der QuelleKim, Dowan, Seokbong Park, Mina Heo, Daeyeon Choi und Hyunchul Jung. „Demonstration of Fine Pitch RDL in Fanout Panel Level Packaging“. In 2021 IEEE 71st Electronic Components and Technology Conference (ECTC). IEEE, 2021. http://dx.doi.org/10.1109/ectc32696.2021.00175.
Der volle Inhalt der QuelleTawara, Yuzuru, Shinji Hara, Kazuo Koga und Kenji Tsuji. „Application of Cloud Chambers for Heuristic Comprehension of Radiation“. In 2013 21st International Conference on Nuclear Engineering. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/icone21-16909.
Der volle Inhalt der QuelleShimomura, Yutaro, Takuya Shimada, Ryuya Kirihara und Takeshi Kumaki. „Live Demonstration: Development of LED-Based Stego-Panel for New Smartphone Usage“. In 2020 IEEE International Symposium on Circuits and Systems (ISCAS). IEEE, 2020. http://dx.doi.org/10.1109/iscas45731.2020.9181264.
Der volle Inhalt der QuelleFreimuth, Justin M., und Ming Ma. „Oil Tanker Cargo Hold Structural Optimization Using Ultimate Limit States“. In SNAME Maritime Convention. SNAME, 2014. http://dx.doi.org/10.5957/smc-2014-t40.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Demonstrativní panel"
McCarthy, A. Demonstration model circuit panel for silicon-on-insulator microelectronics and flat-panel 1994 LDRD final report 94-FS-041. Office of Scientific and Technical Information (OSTI), September 1995. http://dx.doi.org/10.2172/120880.
Der volle Inhalt der QuelleAlan E. Bland. Ash-Based Building Panels Production and Demonstration of Aerock Decking Building Product. Office of Scientific and Technical Information (OSTI), Juni 2007. http://dx.doi.org/10.2172/910142.
Der volle Inhalt der QuelleMATERIALS SYSTEMS INC CONCORD MA. Manufacturing Demonstration Of Large 1-3 Piezoelectric Ceramic/Polymer Composite Panels Using Ceramic Injection Molding. Fort Belvoir, VA: Defense Technical Information Center, September 1994. http://dx.doi.org/10.21236/ada294555.
Der volle Inhalt der QuelleRichman, Eric E. New Technology Demonstration Program - Results of an Attempted Field Test of Multi-Layer Light Polarizing Panels in an Office Space. Office of Scientific and Technical Information (OSTI), Juni 2001. http://dx.doi.org/10.2172/965725.
Der volle Inhalt der QuelleRichman, Eric E. New Technology Demonstration Program - Results of an Attempted Field Test of Multi-Layer Light Polarizing Panels in an Office Space. Office of Scientific and Technical Information (OSTI), Juni 2001. http://dx.doi.org/10.2172/782080.
Der volle Inhalt der QuelleKung, S. C., und R. J. Kleisley. Full-scale demonstration of low-NO{sub x} cell{trademark} burner retrofit: Addendum to long-term testing report, September 1994 outage: Examination of corrosion test panel and UT survey in DP&L Unit {number_sign}4. Office of Scientific and Technical Information (OSTI), Juni 1995. http://dx.doi.org/10.2172/367096.
Der volle Inhalt der QuelleDemonstration of membrane aeration panels: City of Geneva Wastewater Treatment Plant. Final report. Office of Scientific and Technical Information (OSTI), Januar 1995. http://dx.doi.org/10.2172/26393.
Der volle Inhalt der Quelle