Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Degree sum.

Zeitschriftenartikel zum Thema „Degree sum“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Degree sum" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

Boregowda, H. S., und R. B. Jummannaver. „Neighbors degree sum energy of graphs“. Journal of Applied Mathematics and Computing 67, Nr. 1-2 (20.01.2021): 579–603. http://dx.doi.org/10.1007/s12190-020-01480-y.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Liu, Ze-meng, und Li-ming Xiong. „Degree sum conditions for hamiltonian index“. Applied Mathematics-A Journal of Chinese Universities 36, Nr. 3 (September 2021): 403–11. http://dx.doi.org/10.1007/s11766-021-3885-4.

Der volle Inhalt der Quelle
Annotation:
AbstractIn this note, we show a sharp lower bound of $$\min \left\{{\sum\nolimits_{i = 1}^k {{d_G}({u_i}):{u_1}{u_2} \ldots {u_k}}} \right.$$ min { ∑ i = 1 k d G ( u i ) : u 1 u 2 … u k is a path of (2-)connected G on its order such that (k-1)-iterated line graphs Lk−1(G) are hamiltonian.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

MacHale, Desmond. „Degree Sum Deficiency in Finite Groups“. Mathematical Proceedings of the Royal Irish Academy 115A, Nr. 1 (2015): 1–11. http://dx.doi.org/10.1353/mpr.2015.0007.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Flandrin, E., H. A. Jung und H. Li. „Hamiltonism, degree sum and neighborhood intersections“. Discrete Mathematics 90, Nr. 1 (Juni 1991): 41–52. http://dx.doi.org/10.1016/0012-365x(91)90094-i.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Stephen Buckley, Desmond MacHale und Áine Ní Shé. „Degree Sum Deficiency in Finite Groups“. Mathematical Proceedings of the Royal Irish Academy 115A, Nr. 1 (2015): 1. http://dx.doi.org/10.3318/pria.2015.115.6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Mohammed, K. Saleel, und Raji Pilakkat. „Minimum inclusive degree sum dominating set“. Malaya Journal of Matematik 8, Nr. 4 (2020): 1885–89. http://dx.doi.org/10.26637/mjm0804/0091.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Faudree, Jill, Ralph J. Faudree, Ronald J. Gould, Paul Horn und Michael S. Jacobson. „Degree sum and vertex dominating paths“. Journal of Graph Theory 89, Nr. 3 (20.04.2018): 250–65. http://dx.doi.org/10.1002/jgt.22249.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Hu, Zhi-quan, und Feng Tian. „On k-ordered Graphs Involved Degree Sum“. Acta Mathematicae Applicatae Sinica, English Series 19, Nr. 1 (März 2003): 97–106. http://dx.doi.org/10.1007/s10255-003-0085-3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Ferrara, Michael, Michael Jacobson und Jeffrey Powell. „Characterizing degree-sum maximal nonhamiltonian bipartite graphs“. Discrete Mathematics 312, Nr. 2 (Januar 2012): 459–61. http://dx.doi.org/10.1016/j.disc.2011.08.029.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Liu, Jianping, Aimei Yu, Keke Wang und Hong-Jian Lai. „Degree sum and hamiltonian-connected line graphs“. Discrete Mathematics 341, Nr. 5 (Mai 2018): 1363–79. http://dx.doi.org/10.1016/j.disc.2018.02.008.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

B., Basavanagoud, und Chitra E. „Degree square sum equienergetic and hyperenergetic graphs“. Malaya Journal of Matematik 8, Nr. 2 (April 2020): 301–5. http://dx.doi.org/10.26637/mjm0802/0001.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

Sharp, Jonathan. „Sum of the parts; my degree course“. Electronics Education 1995, Nr. 1 (1995): 38–40. http://dx.doi.org/10.1049/ee.1995.0022.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Fan, Genghua, und Chuixiang Zhou. „Degree sum and nowhere-zero 3-flows“. Discrete Mathematics 308, Nr. 24 (Dezember 2008): 6233–40. http://dx.doi.org/10.1016/j.disc.2007.11.045.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

Hu, Zhiquan, und Hao Li. „Weak cycle partition involving degree sum conditions“. Discrete Mathematics 309, Nr. 4 (März 2009): 647–54. http://dx.doi.org/10.1016/j.disc.2007.12.081.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

Mukungunugwa, Vivian, und Simon Mukwembi. „On eccentric distance sum and minimum degree“. Discrete Applied Mathematics 175 (Oktober 2014): 55–61. http://dx.doi.org/10.1016/j.dam.2014.05.019.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

Ellingham, M. N., Xiaoya Zha und Yi Zhang. „Spanning 2-trails from degree sum conditions“. Journal of Graph Theory 45, Nr. 4 (2004): 298–319. http://dx.doi.org/10.1002/jgt.10162.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

Gurjar, Jeetendra, und Sudhir Raghunath Jog. „Degree Sum Exponent Distance Energy of Some Graphs“. Journal of the Indonesian Mathematical Society 27, Nr. 1 (31.03.2021): 64–74. http://dx.doi.org/10.22342/jims.27.1.931.64-74.

Der volle Inhalt der Quelle
Annotation:
The degree sum exponent distance matrix M(G)of a graph G is a square matrix whose (i,j)-th entry is (di+dj)^ d(ij) whenever i not equal to j, otherwise it is zero, where di is the degree of i-th vertex of G and d(ij)=d(vi,vj) is distance between vi and vj. In this paper, we define degree sum exponent distance energy E(G) as sum of absolute eigenvalues of M(G). Also, we obtain some bounds on the degree sum exponent distance energy of some graphs and deduce direct expressions for some graphs.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

Akka, Danappa G., G. K. Dayanand und Shabbir Ahmed. „EDGE DEGREE WEIGHT SUM OF PRODUCTS, SUM(JOIN) AND CORONA OF THREE GRAPHS“. Far East Journal of Applied Mathematics 90, Nr. 1 (12.03.2015): 1–19. http://dx.doi.org/10.17654/fjamjan2015_001_019.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

Basavanagoud, B., und Chitra E. „Degree Square Sum Polynomial of some Special Graphs“. International Journal of Applied Engineering Research 13, Nr. 19 (15.10.2018): 14060. http://dx.doi.org/10.37622/ijaer/13.19.2018.14060-14078.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

Opie, Greg. „Expansion by Degree: The Sum of All Essays“. New Writing 4, Nr. 2 (15.10.2007): 118–33. http://dx.doi.org/10.2167/new428.0.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

Okamura, Haruko, und Tomoki Yamashita. „Degree Sum Conditions for Cyclability in Bipartite Graphs“. Graphs and Combinatorics 29, Nr. 4 (17.03.2012): 1077–85. http://dx.doi.org/10.1007/s00373-012-1148-0.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

Ota, Katsuhiro. „Cycles through prescribed vertices with large degree sum“. Discrete Mathematics 145, Nr. 1-3 (Oktober 1995): 201–10. http://dx.doi.org/10.1016/0012-365x(94)00036-i.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

Lv, Sheng-xiang, Meng-da Fu und Yan-pei Liu. „Up-embeddability of graphs with new degree-sum“. Acta Mathematicae Applicatae Sinica, English Series 33, Nr. 1 (Februar 2017): 169–74. http://dx.doi.org/10.1007/s10255-017-0647-4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

Chen, Zhi-Hong. „Supereulerian graphs, independent sets, and degree-sum conditions“. Discrete Mathematics 179, Nr. 1-3 (Januar 1998): 73–87. http://dx.doi.org/10.1016/s0012-365x(97)00028-9.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

Malafiejski, Michal, Krzysztof Giaro, Robert Janczewski und Marek Kubale. „Sum Coloring of Bipartite Graphs with Bounded Degree“. Algorithmica 40, Nr. 4 (20.08.2004): 235–44. http://dx.doi.org/10.1007/s00453-004-1111-4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

Yang, Fan, und Xiangwen Li. „Degree sum of 3 independent vertices andZ3-connectivity“. Discrete Mathematics 313, Nr. 21 (November 2013): 2493–505. http://dx.doi.org/10.1016/j.disc.2013.07.009.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

Gould, Ronald J., Kazuhide Hirohata und Ariel Keller. „On vertex-disjoint cycles and degree sum conditions“. Discrete Mathematics 341, Nr. 1 (Januar 2018): 203–12. http://dx.doi.org/10.1016/j.disc.2017.08.030.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

Basavanagoud, B., und Anand P. Barangi. „Degree Sum Polynomial Obtained by Some Graph Operators“. Journal of Computer and Mathematical Sciences 9, Nr. 8 (06.08.2018): 977–1000. http://dx.doi.org/10.29055/jcms/836.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

Yamashita, Tomoki. „Degree sum and connectivity conditions for dominating cycles“. Discrete Mathematics 308, Nr. 9 (Mai 2008): 1620–27. http://dx.doi.org/10.1016/j.disc.2007.04.019.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
30

Qiao, Shengning, und Shenggui Zhang. „Degree sum conditions for oriented forests in digraphs“. Discrete Mathematics 309, Nr. 13 (Juli 2009): 4642–45. http://dx.doi.org/10.1016/j.disc.2009.01.023.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
31

Zhang, Xiaoxia, Mingquan Zhan, Rui Xu, Yehong Shao, Xiangwen Li und Hong-Jian Lai. „Degree sum condition for Z3-connectivity in graphs“. Discrete Mathematics 310, Nr. 23 (Dezember 2010): 3390–97. http://dx.doi.org/10.1016/j.disc.2010.08.004.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
32

Fan, Genghua. „Degree sum for a triangle in a graph“. Journal of Graph Theory 12, Nr. 2 (1988): 249–63. http://dx.doi.org/10.1002/jgt.3190120216.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
33

Christopher, A. David. „Remainder sum and quotient sum function“. Discrete Mathematics, Algorithms and Applications 07, Nr. 01 (02.02.2015): 1550001. http://dx.doi.org/10.1142/s1793830915500019.

Der volle Inhalt der Quelle
Annotation:
This paper is concerned with two arithmetical functions namely remainder sum function and quotient sum function which are respectively the sequences A004125 and A006218 in Online Encyclopedia of Integer Sequences. The remainder sum function is defined by [Formula: see text] for every positive integer n, and quotient sum function is defined by [Formula: see text] where q(n, i) is the quotient obtained when n is divided by i. We establish few divisibility properties these functions enjoy and we found their bounds. Furthermore, we define restricted remainder sum function by RA(n) = ∑k∈A n mod k where A is a set of positive integers and we define restricted quotient sum function by QA(n) = ∑k∈A q(n, k). The function QA(n) is found to be a quasi-polynomial of degree one when A is a finite set of positive integers and RA(n) is found to be a periodic function with period ∏a∈A a. Finally, the above defined four functions found to have recurrence relation whose derivation requires few results from integer partition theory.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
34

Wang, Shilin, Zhou Bo und Nenad Trinajstic. „On the sum-connectivity index“. Filomat 25, Nr. 3 (2011): 29–42. http://dx.doi.org/10.2298/fil1103029w.

Der volle Inhalt der Quelle
Annotation:
The sum-connectivity index of a simple graph G is defined in mathematical chemistry as R+(G) = ? uv?E(G)(du+dv)?1/2, where E(G) is the edge set of G and du is the degree of vertex u in G. We give a best possible lower bound for the sum-connectivity index of a graph (a triangle-free graph, respectively) with n vertices and minimum degree at least two and characterize the extremal graphs, where n ? 11.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
35

Chen, Mei, Mei Zhang, Ming Li, Mingwei Leng, Zhichong Yang und Xiaofang Wen. „Detecting communities by suspecting the maximum degree nodes“. International Journal of Modern Physics B 33, Nr. 13 (20.05.2019): 1950133. http://dx.doi.org/10.1142/s0217979219501339.

Der volle Inhalt der Quelle
Annotation:
Detecting the natural communities in a real-world network can uncover its underlying structure and potential function. In this paper, a novel community algorithm SUM is introduced. The fundamental idea of SUM is that a node with relatively low degree stays faithful to its community, because it only has links with nodes in one community, while a node with relatively high degree not only has links with nodes within but also outside its community, and this may cause confusion when detecting communities. Based on this idea, SUM detects communities by suspecting the links of the maximum degree nodes to their neighbors within a community, and relying mainly on the nodes with relatively low degree simultaneously. SUM elegantly defines a similarity which takes into account both the commonality and the rejective degree of two adjacent nodes. After putting similar nodes into one community, SUM generates initial communities by reassigning the maximum degree nodes. Next, SUM assigns nodes without labels to the initial communities, and adjusts the border node to its most linked community. To evaluate the effectiveness of SUM, SUM is compared with seven baselines, including four classical and three state-of-the-art methods on a wide range of complex networks. On the small size networks with ground-truth community structures, results are visually demonstrated, as well as quantitatively measured with ARI, NMI and Modularity. On the relatively large size networks without ground-truth community structures, the performances of these algorithms are evaluated according to Modularity. Experimental results indicate that SUM can effectively determine community structures on small or relatively large size networks with high quality, and also outperforms the compared state-of-the-art methods.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
36

Laib, Ilias, und Nadir Rezzoug. „On a sum over primitive sequences of finite degree“. Mathematica Montisnigri 53 (2022): 26–32. http://dx.doi.org/10.20948/mathmontis-2022-53-4.

Der volle Inhalt der Quelle
Annotation:
A sequence of strictly positive integers is said to be primitive if none of its terms divides the others and is said to be homogeneous if the number of prime factors of its terms counted with multiplicity is constant. In this paper, we construct primitive sequences A of degree d, for which the Erdős’s analogous conjecture for translated sums is not satisfied.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
37

Nicholson, Emlee W., und Bing Wei. „Degree Sum Condition for k-ordered Hamiltonian Connected Graphs“. Graphs and Combinatorics 31, Nr. 3 (24.12.2013): 743–55. http://dx.doi.org/10.1007/s00373-013-1393-x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
38

Elliott, Bradley, Ronald J. Gould und Kazuhide Hirohata. „On Degree Sum Conditions and Vertex-Disjoint Chorded Cycles“. Graphs and Combinatorics 36, Nr. 6 (21.09.2020): 1927–45. http://dx.doi.org/10.1007/s00373-020-02227-z.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
39

Yan, Jin, Shaohua Zhang, Yanyan Ren und Junqing Cai. „Degree sum conditions on two disjoint cycles in graphs“. Information Processing Letters 138 (Oktober 2018): 7–11. http://dx.doi.org/10.1016/j.ipl.2018.05.004.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
40

Jiao, Zhihui, Hong Wang und Jin Yan. „Disjoint cycles in graphs with distance degree sum conditions“. Discrete Mathematics 340, Nr. 6 (Juni 2017): 1203–9. http://dx.doi.org/10.1016/j.disc.2017.01.013.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
41

Chen, Guantao, Shuya Chiba, Ronald J. Gould, Xiaofeng Gu, Akira Saito, Masao Tsugaki und Tomoki Yamashita. „Spanning bipartite graphs with high degree sum in graphs“. Discrete Mathematics 343, Nr. 2 (Februar 2020): 111663. http://dx.doi.org/10.1016/j.disc.2019.111663.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
42

Chen, Guantao, und Michael S. Jacobson. „Degree Sum Conditions for Hamiltonicity on k-Partite Graphs“. Graphs and Combinatorics 13, Nr. 4 (Dezember 1997): 325–43. http://dx.doi.org/10.1007/bf03353011.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
43

Hua, Hongbo, Hongzhuan Wang und Xiaolan Hu. „On eccentric distance sum and degree distance of graphs“. Discrete Applied Mathematics 250 (Dezember 2018): 262–75. http://dx.doi.org/10.1016/j.dam.2018.04.011.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
44

Coll, Vincent E., Colton Magnant und Pouria Salehi Nowbandegani. „Degree sum and graph linkage with prescribed path lengths“. Discrete Applied Mathematics 257 (März 2019): 85–94. http://dx.doi.org/10.1016/j.dam.2018.09.008.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
45

Jiong-Sheng, Li, und Song Zi-Xia. „The smallest degree sum that yields potentiallyPk-graphical sequences“. Journal of Graph Theory 29, Nr. 2 (Oktober 1998): 63–72. http://dx.doi.org/10.1002/(sici)1097-0118(199810)29:2<63::aid-jgt2>3.0.co;2-a.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
46

Beierle, Christof, Alex Biryukov und Aleksei Udovenko. „On degree-d zero-sum sets of full rank“. Cryptography and Communications 12, Nr. 4 (19.11.2019): 685–710. http://dx.doi.org/10.1007/s12095-019-00415-0.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
47

DAI, Guowei. „Degree sum and restricted {P2,P5}-factor in graphs“. Proceedings of the Romanian Academy, Series A: Mathematics, Physics, Technical Sciences, Information Science 24, Nr. 2 (28.06.2023): 105–11. http://dx.doi.org/10.59277/pra-ser.a.24.2.01.

Der volle Inhalt der Quelle
Annotation:
"For a graph $G$, a spanning subgraph $F$ of $G$ is called a $\{P_2,P_5\}$-factor if every component of $F$ is isomorphic to $P_2$ or $P_5$, where $P_i$ denotes the path of order $i$. A graph $G$ is called a $(\{P_2,P_5\},k)$-factor critical graph if $G-V'$ contains a $\{P_2,P_5\}$-factor for any $V'\subseteq V(G)$ with $|V'|=k$. A graph $G$ is called a $(\{P_2,P_5\},m)$-factor deleted graph if $G-E'$ has a $\{P_2,P_5\}$-factor for any $E'\subseteq E(G)$ with $|E'|=m$. The degree sum of $G$ is defined by $$\sigma_{r+1}(G)=\min_{X\subseteq V(G)}\Big\{\sum_{x\in X}d_G(x): X~\mathrm{is~an~independent~set~of}~r+1~\mathrm{vertices}\Big\}.$$ In this paper, using degree sum conditions, we demonstrate that (i) $G$ is a $(\{P_2,P_5\},k)$-factor critical graph if $\sigma_{r+1}(G)>\frac{(3n+4k-2)(r+1)}{7}$ and $\kappa(G)\geq k+r$; (ii) $G$ is a $(\{P_2,P_5\},m)$-factor deleted graph if $\sigma_{r+1}(G)>\frac{(3n+2m-2)(r+1)}{7}$ and $\kappa(G)\geq\frac{5m}{4}+r$."
APA, Harvard, Vancouver, ISO und andere Zitierweisen
48

Molina, Edil D., Paul Bosch, José M. Sigarreta und Eva Tourís. „On the variable inverse sum deg index“. Mathematical Biosciences and Engineering 20, Nr. 5 (2023): 8800–8813. http://dx.doi.org/10.3934/mbe.2023387.

Der volle Inhalt der Quelle
Annotation:
<abstract><p>Several important topological indices studied in mathematical chemistry are expressed in the following way $ \sum_{uv \in E(G)} F(d_u, d_v) $, where $ F $ is a two variable function that satisfies the condition $ F(x, y) = F(y, x) $, $ uv $ denotes an edge of the graph $ G $ and $ d_u $ is the degree of the vertex $ u $. Among them, the variable inverse sum deg index $ IS\!D_a $, with $ F(d_u, d_v) = 1/(d_u^a+d_v^a) $, was found to have several applications. In this paper, we solve some problems posed by Vukičević <sup>[<xref ref-type="bibr" rid="b1">1</xref>]</sup>, and we characterize graphs with maximum and minimum values of the $ IS\!D_a $ index, for $ a &lt; 0 $, in the following sets of graphs with $ n $ vertices: graphs with fixed minimum degree, connected graphs with fixed minimum degree, graphs with fixed maximum degree, and connected graphs with fixed maximum degree. Also, we performed a QSPR analysis to test the predictive power of this index for some physicochemical properties of polyaromatic hydrocarbons.</p></abstract>
APA, Harvard, Vancouver, ISO und andere Zitierweisen
49

Revankar, D. S., Jaishri B. Veeragoudar und M. M. Patil. „On the degree sum energy of total transformation graphs of regular graphs“. Journal of Information & Optimization Sciences 44, Nr. 2 (2023): 217–29. http://dx.doi.org/10.47974/jios-1220.

Der volle Inhalt der Quelle
Annotation:
The energy E(G) of a graph G is the sum of absolute values of the eigenvalues of the adjacency matrix of G. This definition of energy was motivated by the large number of results for the Huckel molecular orbital total π-electron energy. Motivated by E(G), The degree sum energy EDS(G) of a simple connected graph G is defined by sum of the absolute values of all eigenvalues of degree sum matrix. In this paper, we obtain spectra and degree sum energy of the total transformation graph Gxyz of a r-regular graph.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
50

GILLOT, VALÉRIE, und PHILIPPE LANGEVIN. „ESTIMATION OF SOME EXPONENTIAL SUM BY MEANS OF q-DEGREE“. Glasgow Mathematical Journal 52, Nr. 2 (29.03.2010): 315–24. http://dx.doi.org/10.1017/s0017089510000017.

Der volle Inhalt der Quelle
Annotation:
AbstractIn this paper, we improve results of Gillot, Kumar and Moreno to estimate some exponential sums by means of q-degrees. The method consists in applying suitable elementary transformations to see an exponential sum over a finite field as an exponential sum over a product of subfields in order to apply Deligne bound. In particular, we obtain new results on the spectral amplitude of some monomials.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie