Dissertationen zum Thema „Defect recombination“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit Top-43 Dissertationen für die Forschung zum Thema "Defect recombination" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Sehen Sie die Dissertationen für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.
Puttisong, Yuttapoom. „Spin-dependent Recombination in GaNAs“. Thesis, Linköping University, Linköping University, Department of Physics, Chemistry and Biology, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-19355.
Der volle Inhalt der QuelleSpin filtering properties of novel GaNAs alloys are reported in this thesis. Spin-dependent recombination (SDR) in GaNAs via a deep paramagnetic defect center is intensively studied. By using the optical orientation photoluminescence (PL) technique, GaNAs is shown to be able to spin filter electrons injected from GaAs, which is a useful functional property for integratition with future electronic devices. The spin filtering ability is found to degrade in narrow GaNAs quantum well (QW) structures which is attributed to (i) acceleration of band-to-band recombination competing with the SDR process and to (ii) faster electron spin relaxation in the narrow QWs. Ga interstitial-related defect centers have been found to be responsible for the SDR process by using the optically detected magnetic resonance (ODMR) technique. The defects are found to be the dominant grown-in defects in GaNAs, commonly formed during both MBE and MOCVD growths. Methods to control the concentration of the Ga interstitials by varying doping, growth parameters and post-growth treatments are also examined.
Thomas, Mélissa. „Origins of Cellular Lethality Resulting From a Defect in Homologous Recombination in Human Cells“. Thesis, université Paris-Saclay, 2021. http://www.theses.fr/2021UPASL027.
Der volle Inhalt der QuelleHomologous recombination (HR) is involved in repairing DNA double strand breaks, and in protecting and restarting stalled or collapsed replication forks. Rad51 and BRCA2 are two key proteins of HR. I have showed that inhibiting HR, as well as over expressing Rad51, is lethal in human cells, although a very few cells still survive the inhibition. Moreover, many cancers carry mutations in an HR gene (BRCA1/2 in breast and ovary cancers) or over express an HR gene. My project aims to identify the mechanisms and the causes behind the lethality triggered by a dysregulation of HR, and to understand how a few cells manage to survive it. I have determined, through FACS and phosphorylated histone H3 labeling (IF), that HR deficient human cells, or those over expressing Rad51, accumulate at the G2/M checkpoint.At the same time, time-lapse microscopy experiments seemed to indicate that the cells died from apoptosis, which was confirmed by data from experiments using Annexin-V as an apoptosis marker and from Western-Blots. Western-Blots showed that the G2/M checkpoint is activated, through analysis of CyclinB1 and of cdk1, and that apoptosis is triggered, through analysis of PARP cleavage. My main working hypothesis was that overexpressing a dominant negative form of Rad51, and possibly also overexpressing Rad51 WT, would lead to replication defects, whose accumulation would in turn lead to an activation of the checkpoint. BrdU incorporation experients and use of the molecular combing technique confirmed this hypothesis : in HR-dysregulated cells, replication speed is slowed down and there are more stalled forks. In-silico analyses have showed that HR-mutated cancers often carry a second mutation in another gene, involved in either the G2/M checkpoint or in restarting stalled replication forks. Based on these analyses and on results from RNAseq experiments performed on FANCD1 patients' fibroblasts, candidate genes have already been listed, confirming the in-silico analysis
Turcu, Mircea Cassian. „Defect energies, band alignments, and charge carrier recombination in polycrystalline Cu(In,Ga)(Se,S)2 alloys“. Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2004. http://nbn-resolving.de/urn:nbn:de:swb:14-1086247686828-95497.
Der volle Inhalt der QuelleTurcu, Mircea Cassian. „Defect energies, band alignments, and charge carrier recombination in polycrystalline Cu(In,Ga)(Se,S)2 alloys“. Doctoral thesis, Technische Universität Dresden, 2003. https://tud.qucosa.de/id/qucosa%3A24342.
Der volle Inhalt der QuelleSantos, Samantha Fonseca dos. „Theoretical and computational studies of dissociative recombination of H₃⁺ with low kinetic energy electrons time-independent and time-dependent approach /“. Orlando, Fla. : University of Central Florida, 2009. http://purl.fcla.edu/fcla/etd/CFE0002668.
Der volle Inhalt der QuellePATRIZI, LAURA. „ANALYSIS OF B LYMPHOCYTES IN MOUSE MODEL LIGASE IV WITH HYPOMORPHIC MUTATION IN VDJ RECOMBINATION ASSOCIATED WITH GROWTH DEFECT“. Doctoral thesis, Università degli Studi di Milano, 2010. http://hdl.handle.net/2434/150193.
Der volle Inhalt der QuelleLam, N. D., S. Kim, J. J. Lee, K. R. Choi, M. H. Doan und H. Lim. „Enhanced Luminescence of InGaN / GaN Vertical Light Emitting Diodes with an InGaN Protection Layer“. Thesis, Sumy State University, 2013. http://essuir.sumdu.edu.ua/handle/123456789/35210.
Der volle Inhalt der QuelleTurcu, Mircea C. [Verfasser]. „Defect energies, band alignments, and charge carrier recombination in polycrystalline Cu(In,Ga)(Se,S)2 alloys / Mircea C Turcu“. Aachen : Shaker, 2004. http://d-nb.info/1170529550/34.
Der volle Inhalt der QuelleSteingrube, Silke [Verfasser]. „Recombination models for defects in silicon solar cells / Silke Steingrube“. Hannover : Technische Informationsbibliothek und Universitätsbibliothek Hannover (TIB), 2011. http://d-nb.info/1015460577/34.
Der volle Inhalt der QuelleRUCCI, FRANCESCA. „Murine models of hypomorphic defects of v(d)j recombination“. Doctoral thesis, Università degli Studi di Milano, 2009. http://hdl.handle.net/2434/155853.
Der volle Inhalt der QuelleFerguson, Kyle Akira. „Meiotic defects in infertile men“. Thesis, University of British Columbia, 2008. http://hdl.handle.net/2429/1228.
Der volle Inhalt der QuellePoolton, N. „ODMR studies of recombination emission bands in ZnSe and ZnS“. Thesis, University of Hull, 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.381883.
Der volle Inhalt der QuelleMohindra, Atul. „Defects in homologous recombination repair in mismatch repair-deficient tumour cell lines“. Thesis, University of Sheffield, 2004. http://etheses.whiterose.ac.uk/6062/.
Der volle Inhalt der QuelleBlood, Arabella M. „A study of the electrical properties of defects in silicon“. Thesis, University of Oxford, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.298320.
Der volle Inhalt der QuelleCrichton, James Hugh. „Dissecting the meiotic defects of Tex19.1-/- mouse spermatocytes“. Thesis, University of Edinburgh, 2015. http://hdl.handle.net/1842/21042.
Der volle Inhalt der QuelleWilhelm, Therese. „Homologous recombination protects against mitotic defects and unbalanced chromosome segregation caused by spontaneous replication stress“. Thesis, Paris 11, 2011. http://www.theses.fr/2011PA112059.
Der volle Inhalt der QuelleHR deficient cells show slow replication kinetics, aberrant centrosome number and aneuploidy even in the absence of any exogenous stress (Bertrand P 2003, Daboussi F 2005, 2008, Deng 1999, 2002, Griffin 2000, Kraakman-van der Zwet 2002). Frequency of mitosis with extra centrosomes is elevated and replication kinetics decreased in HR deficient compared to HR proficient cells, in the absence of exogenous stress. Thus the question arose, if replication slowing down in HR deficient cells has direct impact on the appearance of supernumerary centrosomes. Furthermore we wanted to know if this might directly impact chromosome segregation. The results we gained are brought together in the paper “Homologous recombination suppression causes spontaneous mitotic alterations through endogenous replication stress”. By treating our HR proficient cells with 5µM HU we found the perfect concentration to mimic replication dynamics of HR deficient cells in an HR proficient background. This concentration was applied to HR proficient cells. After HU treatment the frequency of mitosis with extra centrosomes was elevated in HR proficient cells. Now they showed the same frequency of mitosis with extra centrosomes, than unchallenged HR deficient cells. We measured the impact of HU treatment on occurrence of anaphase bridges or aberrant mitotic segregation. In the absence of treatment higher frequency of anaphase bridges and aberrant mitotic segregation was detected for HR deficient cells. With 5µM HU the frequency of anaphase bridges and aberrant mitosis could be elevated in HR proficient cells. Now they showed aberrant mitotic features with the same frequency than unchallenged HR deficient cells. A direct link between abnormal replication kinetics and aberrant centrosomes might be unreplicated or damaged DNA, that enter mitosis. Unreplicated or blocked DNA might harbour ss DNA bound RPA. Thus we counted G2/M cells with RPA foci. Indeed the fraction of cells that harbour more than 5 RPA foci was elevated in Brca2 deficient in comparison to Brca2 proficient cells. In conclusion we propose a direct link between delayed replication, supernumerary centrosomes and aberrant chromosome segregation in unchallenged HR deficient cells. If we mimicked replication kinetics of HR deficient cells in an HR proficient background, we also mimicked frequency of mitosis with extra centrosome number and aberrant chromosome segregation. Furthermore we investigated the causes of replication slowing down in HR deficient cells. It can be hypothesized that endogenous oxidative stress is implicated in spontaneous fork arrest. In HR proficient cells, reactivation of stalled replication forks and therefore normal replication progression is assured. This favours balanced chromosome segregation, diploidy and genetic stability.In HR deficient cells, replication fork blockage might be detrimental as the main restart mechanism for blocked forks is absent. Prolonged fork blockage or DSB’s arising by fork collapse or resolution of blocked replication forks might activate signalling pathways. However cells are not arrested in cell cycle progression, suggesting that a threshold should be reached to activate cell cycle arrest. Endogenous stress is not sufficient high to reach this threshold. Replication is genome wide slowed down. In this context, the activation of cryptic origins compensates at least partly the slow replication velocity. However, because cells were not arrested in cell cycle progression, some blocked replication forks and damaged or unreplicated DNA regions might persist until G2/M phase and affect centrosome duplication and chromosome segregation. Multipolar centrosomes cause multipolar spindles and favour unbalanced chromosome segregation leading to aneuploidy, genetic instability and cancer development
Ghosh, Michael. „Defekte im Bodenbereich blockerstarrten Solar-Siliziums“. Doctoral thesis, Technische Universitaet Bergakademie Freiberg Universitaetsbibliothek "Georgius Agricola", 2010. http://nbn-resolving.de/urn:nbn:de:bsz:105-qucosa-38493.
Der volle Inhalt der QuelleLORENZON, MONICA. „ROLE OF NONRADIATIVE SURFACE DEFECTS ON EXCITON RECOMBINATION PROCESSES IN SEMICONDUCTOR COLLOIDAL NANOSTRUCTURES“. Doctoral thesis, Università degli Studi di Milano-Bicocca, 2018. http://hdl.handle.net/10281/199095.
Der volle Inhalt der QuelleThe main research theme of my PhD has been the spectroscopic investigation of colloidal semiconductor nanocrystals (NCs), with a focus on the correlation between their surfaces and their photophysics, and was conducted by means of spectroelectrochemistry (SEC) and optical spectroscopy under controlled atmosphere. Specifically, I aimed to understand and model the NCs behavior in a changing oxidative/reducting environment, with the ultimate goal to implement their use as active material in optical oxygen pressure sensors. The high surface-to-volume ratio typical of NCs causes their photoluminescence (PL) efficiency to be strongly affected by a broad distribution of surface defect states. If captured by a surface trap, a photogenerated electron (or hole) becomes unavailable for the radiative recombination, thus lowering the overall PL efficiency of the NCs. By means of SEC, an electrochemical (EC) potential can be applied to a thin film of NCs deposited onto a transparent and conductive substrate, whose PL is excited and collected via dedicated instruments for either continuous or time-resolved measurements. The application of a negative EC potential corresponds to raising the Fermi level of the NCs, thus gradually filling the surface defects and activating their hole-trapping capability. The PL intensity is thus determined by the competition between the quenching effect of hole withdrawal and the brightening effect of suppressed electron trapping. For each material system I performed side-by-side SEC measurements and spectroscopic experiments under controlled atmosphere, and eventually demonstrated different types of optical oxygen pressure sensors, also called pressure-sensitive paints (PSPs), i.e, all-optical probes for monitoring oxygen flows in the vicinity of complex or miniaturized surfaces. They typically consist in a porous binder embedding an oxygen sensitive chromophore, whose PL intensity changes accordingly to the oxygen partial pressure. By employing cesium lead bromide (CsPbBr3) perovskite NCs, I realized an all-inorganic alternative to traditional organic PSPs, based on the increase of their PL intensity under reduced oxygen pressure. This approach relies on the disappearance of the signal in presence of oxygen, which means it may not represent the best approach when high oxygen concentrations (for instance, at atmospheric pressure) need to be detected. In this thesis, I demonstrated how to overcome this issue by realizing a novel-concept, inorganic ‘reverse’ PSP, with cadmium selenide (CdSe) nanoplatelets (NPLs) as active material, since their PL intensity increases with the oxygen concentration. Although the SEC and optical measurements under controlled atmosphere allowed me to understand and model the unusual benefit of an oxidative environment on CdSe NPLs, the PSPs based on them share with the perovskite-based sensors the major drawback of providing a radiometric oxygen detection only, that is, the measurement solely relies on a change in the PL intensity of the chromophore. The PL, however, can also change as a result of a temperature variation or UV-induced degradation. In my work, I introduced a significant improvement by employing dual-emitting, core/shell cadmium selenide/cadmium sulfide (CdSe/CdS) NCs that are capable of simultaneously sustaining core and shell excitons, whose radiative recombination leads to two-color (red and green) luminescence under low-intensity power excitation. Importantly, the two emissive channels exhibit opposite responses to the oxygen pressure, which allowed me to realize an intrinsically calibrated ratiometric PSP whose sensitivity is significantly enhanced with respect to traditional reference-sensor pairs, both in ensemble and at the single particle level.
Amaku, Afi. „A study of the electrical properties of point and extended defects in silicon“. Thesis, University of Oxford, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.339355.
Der volle Inhalt der QuelleLuo, Yandi. „Development of new buffer layers and rapid annealing process for efficient Sb₂Se₃ thin-film solar cells“. Electronic Thesis or Diss., Université de Rennes (2023-....), 2024. http://www.theses.fr/2024URENS039.
Der volle Inhalt der QuelleIn this thesis, heterojunction interface behavior, grain growth process and alternative buffer layer of Sb₂Se₃ based solar cells were investigated. The absorber quality and the band alignment are identified as key parameters for reducing defect density and for facilitating the separation and the transport of photogenerated charge carriers. A strategy of Al³⁺ doping into the CdS buffer layer was introduced in Sb₂Se₃ solar cells. The band alignment and the interface quality have been significantly improved. A “spike-like” structure was obtained for the best device with an efficiency of 8.41%. Secondly, a rapid thermal annealing process has also been developed and optimized in order to improve the quality of Sb₂Se₃ absorber film with reduced defect density. The efficiency of the Sb₂Se₃ solar cells is increased to 9.03%. In addition, we have tried to replace the toxic CdS buffer layer with an environmentally friendly ZnSnO film with moreover a wider band gap. An interesting power conversion efficiency of 3.44% was achieved for the Cd-free Sb₂Se₃ thin-film solar cells
Pang, Shu Koon. „Investigation of recombination lifetime and defects in magnetic czochralski silicon for high efficiency solar cells“. Diss., Georgia Institute of Technology, 1993. http://hdl.handle.net/1853/13554.
Der volle Inhalt der QuelleJiang, Xianwu. „Hydrocarbon molecules databases for waste treatment applications“. Thesis, université Paris-Saclay, 2020. http://www.theses.fr/2020UPAST039.
Der volle Inhalt der QuelleIn this thesis, we investigate the vibronic (de-) excitation and dissociative recombination of CH+ by low-energy electron impact. We first develop a theoretical approach for the electron-impact vibronic (de-) excitation of CH+. In this approach, the fixed-nuclear R-matrix method is employed to compute electron-ion scattering matrices in the Born-Oppenheimer approximation. A vibronic frame transformation and the closedchannel elimination procedure in a spirit of molecular quantum defect theory are employed to construct an energy-dependent scattering matrix describing interactions between vibronic channels of the target ion induced by the incident electron. The obtained scattering matrix accounts for Rydberg series of vibronic resonances in the collisional spectrum. Cross sections for vibronic excitation for different combinations of initial and final vibronic states are computed. A good agreement between electronic-excitation cross sections, obtained using the quantum defect theory and in a direct R-matrix calculation, demonstrates that the present approach provides a reliable tool for determination of vibronic (de-) excitation cross sections for targets with low-energy electronic resonances. Such targets were difficult to treat theoretically using earlier methods. Within the same framework applied for the vibronic (de-) excitations, we further compute the cross section for low-energy dissociative recombination of CH+ coupling the outgoing-wave basis function defined by complex absorbing potential. The contribution of the three lowest X 1Σ +, a 3Π and A 1Π ionic states and the Rydberg series converging to those states are taken into account. The obtained DR cross sections are quantitatively in good agreement with the experimental measurements and exhibit a resonanc feature analogous to the experimental cross-section curve. The origination of the prominant resonances in the computed results are analyzed through computing the DR probabilities for the partial waves of the incident electron. The d-type partial waves including dσ, dπ and dδ are found considerably contributing to the DR of the ground-state CH+. This may explain the discrepancies observed between thoery and experiment in the preceeding studies
Ringel, S. A. „Growth and process induced defects and recombination mechanisms in AIGaAs/GaAs and CdZnx Te/CdS photovoltaic device structures“. Diss., Georgia Institute of Technology, 1991. http://hdl.handle.net/1853/13330.
Der volle Inhalt der QuelleČeponis, Tomas. „Radiation technologies for optimization of Si device parameters and techniques for control of radiation defects“. Doctoral thesis, Lithuanian Academic Libraries Network (LABT), 2012. http://vddb.laba.lt/obj/LT-eLABa-0001:E.02~2012~D_20121001_093158-64168.
Der volle Inhalt der QuelleAukštųjų energijų fizikos eksperimentuose plačiai taikomi puslaidininkiniai pin struktūros dalelių detektoriai jonizuojančiosioms dalelėms registruoti. Radiacinė spinduliuotė sukuria defektus medžiagoje ir neigiamai įtakoja detektorių parametrus, todėl būtina charakterizuoti apšvitintus detektorius ieškant būdų, kaip juos patobulinti. Apšvitintų detektorių charakterizavimui taikomi volt-amperinių, volt-faradinių būdingųjų dydžių matavimai ir analizė, giliųjų lygmenų talpinė bei šiluma skatinamų srovių spektroskopija. Tačiau stipriai apšvitintuose detektoriuose, kai defektų koncentracija viršija legirantų koncentraciją bei išauga nuotėkio srovė, šie metodai negali būti taikomi siekiant korektiškai įvertinti radiacinių defektų parametrus. Šiame darbe buvo sukurti modeliai, apibūdinantys slinkties sroves, tekančias detektoriuje dėl elektrinio lauko persiskirstymo keičiantis išorinei įtampai arba elektriniame lauke judant injektuotam krūviui. Šie modeliai buvo pritaikyti naujų metodikų sukūrimui, kurios įgalina įvertinti krūvio pernašos, pagavimo, rekombinacijos/generacijos parametrus stipriai apšvitintuose detektoriuose po apšvitos. Sukurti metodai buvo pritaikyti defektų spektroskopijai ir skersinei žvalgai sluoksninėse struktūrose bei defektų evoliucijos tyrimams apšvitos metu. Disertacijoje pateikti ir aptarti apšvitintų detektorių ir apšvitos metu pasireiškiančios parametrų kaitos rezultatai. Elektronikos grandynuose plačiai naudojami galios pin struktūros diodai, kurie... [toliau žr. visą tekstą]
Raška, Michal. „Diagnostika PN přechodu křemíkových vysokonapěťových usměrňovacích diod pomocí šumu mikroplazmatu“. Doctoral thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2009. http://www.nusl.cz/ntk/nusl-233496.
Der volle Inhalt der QuelleČeponis, Tomas. „Radiacinės Si prietaisų parametrų optimizavimo ir radiacinių defektų kontrolės technologijos“. Doctoral thesis, Lithuanian Academic Libraries Network (LABT), 2012. http://vddb.laba.lt/obj/LT-eLABa-0001:E.02~2012~D_20121001_093138-74555.
Der volle Inhalt der QuelleIn high energy physics experiments the semiconductor particle detectors of pin structure are commonly employed for tracking of the ionising particles. However, ionising radiation creates defects and consequently affects the parameters of particle detectors. Therefore, it is necessary to characterize irradiated detectors and search for the new approaches on how to suppress or control the degradation process. Measurements of current-voltage, capacitance-voltage characteristics as well as deep level transient spectroscopy, thermally stimulated currents spectroscopy are employed for the characterization of irradiated particle detectors. At high irradiation fluences when defects concentration exceeds that of dopants, a generation current increases and, thus, the above mentioned techniques can not be applied for the correct evaluation of defect parameters. In this work, models describing displacement currents in detectors due to redistribution of electric field determined by variations of external voltage or a moving charge in electric field are discussed. These models were applied for creation of the advanced techniques which allow evaluating of charge transport, trapping and recombination/generation parameters in heavily irradiated detectors after irradiation. These techniques were applied for the spectroscopy of deep levels associated with defects, for cross-sectional scans within layered junction structures as well as for examination of defects evolution during irradiation. In... [to full text]
Kreßner-Kiel, Denise. „Wechselwirkung von Kupfer mit ausgedehnten Defekten in multikristallinem Silicium und Einfluss auf die Rekombinationseigenschaften“. Doctoral thesis, Technische Universitaet Bergakademie Freiberg Universitaetsbibliothek "Georgius Agricola", 2017. http://nbn-resolving.de/urn:nbn:de:bsz:105-qucosa-229212.
Der volle Inhalt der QuelleAversa, Pierfrancesco. „Primary Defects in Halide Perovskites : Effect on Stability and Performance for Photovoltaic Applications Effect of organic PCBM Electron transport Layers on natural and post-irradiation ageing of optical absorption and emission in methyl ammonium lead triiodide spin –coated on p-i-n Solar Sell Substrates Effect of organic PCBM Electron transport Layers on natural and post-irradiation ageing of optical absorption and emission in triple cation lead mixed halide perovskite spin –coated on p-i-n Solar Sell Substrates Electron Irradiation Induced Ageing Effects on Radiative Recombination Properties of methylammonium lead triiodide layers on p-i-n solar cell substrates Electron Irradiation Induced Ageing Effects on Methylammonium Lead Triiodide Based p-i-n Solar Cells Electron Irradiation Induced Ageing Effects on Radiative Recombination Properties of Quadruple Cation Organic-Inorganic Perovskite Layers“. Thesis, Institut polytechnique de Paris, 2020. http://www.theses.fr/2020IPPAX050.
Der volle Inhalt der QuelleDuring the last eleven years, Hybrid Organic Inorganic Perovskites (HOIPs) materials have emerged as an exciting topic of research for potential application in solar cell technologies due to their outstanding optoelectronic properties and processing advantages. However, HOIPs materials suffer from several drawbacks with, in peculiar, their lack of stability under operational conditions (light, bias, environment…). To improve this stability is one of the biggest challenges to be addressed before commercialization. The general formula for HOIPs is (A1,A2,A3,A4)Pb(X1,X2)3, where the A sites can be occupied by a distribution of 1 to 4 metallic/organic cations and X sites with halide anions. The role of native vacancy defects has been questioned as a possible cause for HOIPs solar cells degradation. The aim of this work is to understand the defect role in long term stability of HOIPs materials for photovoltaics. For this reason, primary defects were introduced in a controlled way via high energy electron irradiation (1MeV) in sets of layers and solar cells (SCs) fabricated using various HOIPs compounds. Those include the photovoltaic HOIPs prototype, MAPbI3 (A1PbX13), and emergent triple or quadruple cation mixed halide HOIPs, (CsMAFA)Pb(I1-xBrx)3 (A3PbX23) or (GACsMAFA)Pb(I1-yBry)3 (A4PbX23). The HOIPs layers are fabricated according to the same procedure as the HOIPs active SC layers and, subsequently, treated in similar conditions. For A1PbX13 and A3PbX23, the solar cells are of the p-i-n structure with organic hole and electron transport layer (HTL/ETL). The HOIPs layers are deposited on the glass/ITO/HTL (PEDOT:PSS) substrate without or with the top ETL layer (PCBM). For A4PbX23, the solar cells are of the n-i-p type with inorganic ETL (TiO2) and organic HTL (Spiro-OMeTAD) layers. The layers are directly deposited on glass without the ETL layer.Positron Annihilation Spectroscopy (PAS) gives direct evidence for native vacancy-type defects and irradiation induced ones in layers of each HOIP compound. The energy dependence of absorbance shows that natural and after irradiation ageing generates different defect populations in each HOIP compound. These populations strikingly also differ depending on the absence or presence of the top ETL layer for the A1PbX13 and A3PbX23 compounds. The defect populations evolve over ageing duration as long as 3 months. The prominent effects of ageing include (i) band gap modification, (ii) tailing of conduction/valence band extrema and (iii) optical absorption via deep subgap electronic levels. Illumination effects under laser also vary with ageing for each HOIP compound. Asymmetric photoluminescence (PL) peaks in each compound under continuous laser illumination reflect that radiative emission involves Gaussian emission rays with energy, FWHM and height evolving with illumination time. The emission transitions involve shallow localized electronic levels in A3PbX23 and A4PbX23 and resonant ones in A1PbX13. These electronic levels are attributed to specifically illumination-induced defect populations. Natural and after irradiation ageing result in PL decay lifetime spectra resolved into one or two exponential decay components. The decay components number and lifetime are strongly affected by the initial production of irradiation defects and HOIPs composition. Such effects last over 3 months at least in A4PbX23. The p-i-n solar cells exhibit most striking irradiation ageing induced photovoltaics performance. The External Quantum Efficiency (EQE versus photon energy) and the photovoltaic performance (I-V under illumination) of the irradiated solar cells have higher values than those in the reference SCs after 6 to 12 months of ageing. This gives evidence that defect engineering via high energy electron irradiation has a potential for providing innovative processing pathways to enhance the long-term stability of HOIPs photovoltaic performance
Valloggia, Sylvie. „SPECTROSCOPIE DE PHOTOLUMINESCENCE LOCALE DANS LES SEMICONDUCTEURS MASSIFS (Si, InP) ET LES PUITS QUANTIQUES (GaAs/GaAlAs)“. Grenoble 2 : ANRT, 1988. http://catalogue.bnf.fr/ark:/12148/cb37619041b.
Der volle Inhalt der QuelleAit, Saada Anissia. „Mécanismes par lesquels la recombinaison homologue prévient les défauts mitotiques induits par le stress réplicatif“. Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLS167/document.
Der volle Inhalt der QuelleAt each cell cycle, cells undertaking the DNA replication process face several sources of replication stress (RS) compromising the progression of the replicating forks and threatening both chromosome duplication fidelity and their correct segregation during mitosis. Replication stresses emerged as a major source of genetic instability and cancer development. Several mechanisms, among which homologous recombination (HR), operate to buffer the deleterious effects of RS. HR acts as an escort to fork progression and prevents mitotic defects. Nonetheless, the molecular connection between replication stress and mitotic defects remains elusive. A conditional replication fork barrier (RFB) acting in a polar manner was developed in the lab to terminally-arrest fork progression. In this system, HR functions handling replication stress can be assessed independently of its well-known function in double strand break repair. The work described here aims to understanding the mechanism that HR performs to ensure genetic stability in response to replication stress. In general, blocked replication forks can be rescued either by fork convergence or by active HR-mediated fork restart. However, in absence of Rad51 recombinase or it loader Rad52, a single activated RFB is sufficient to induce mitotic abnormalities including anaphase bridges. The involvement of HR factors in fork protection was explored at the molecular and cellular levels. It turns out that terminally-arrested forks are extensively resected by the Exo1 nuclease in the absence of Rad51/Rad52. Interestingly, the excess of ssDNA accumulation at the fork triggers sister chromatid non-disjunction in mitosis despite the arrival of an uncorrupted converging fork to rescue replication. Thus, unprotected replication forks are prone to pathological termination threatening chromosome segregation. HR being involved in fork protection and restart, the use of a Rad51 mutant showed that these two functions are genetically separable. Indeed, protected forks unable to restart by HR do not show any pathological termination. Thus, beyond their ability to restart inactivated forks, HR factors ensure replication completion by maintaining the forks in a suitable conformation for a fusion with the converging fork. Overall, these results shed light on the molecular events engaged by RH to ensure genome stability in response to replication stress
Bell, Abigail. „Photoluminescence of wurtzite GaN and its related alloys grown by MBE“. Thesis, University of Nottingham, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.325734.
Der volle Inhalt der QuelleAndreev, Alexey. „Šumová spektroskopie detektorů záření“. Doctoral thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2008. http://www.nusl.cz/ntk/nusl-233425.
Der volle Inhalt der QuelleDavies, Matthew John. „Optical studies of InGaN/GaN quantum well structures“. Thesis, University of Manchester, 2014. https://www.research.manchester.ac.uk/portal/en/theses/optical-studies-of-ingangan-quantum-well-structures(f6c6e59b-8366-44aa-b149-9338d3f03dc0).html.
Der volle Inhalt der QuelleTurcu, Mircea Cassian [Verfasser]. „Defect energies, band alignments, and charge carrier recombination in polycrystalline Cu(In,Ga)(Se,S)2 alloys / von Mircea Cassian Turcu“. 2004. http://d-nb.info/971826161/34.
Der volle Inhalt der QuelleHvizdoš, Dávid. „Modelování disociační rekombinace lehkých iontů“. Doctoral thesis, 2021. http://www.nusl.cz/ntk/nusl-447466.
Der volle Inhalt der QuelleLin, Yang-You, und 林沇佑. „The Impact on Photovoltaic Efficiency with Regards to Defect Densities of Amorphous Silicon Layers and Carrier Recombination Velocity at Interfaces in a Heterojunction Solar Cell Using Silvaco ATLAS“. Thesis, 2010. http://ndltd.ncl.edu.tw/handle/15593378593498140236.
Der volle Inhalt der Quelle大葉大學
電機工程學系
98
This study involves the novel heterojunction with intrinsic thin layer (HIT) solar cell structure. Combining the advantages of both crystalline silicon and amorphous silicon, a new structure of silicon-based solar cell was proposed - the heterojunction with an intrinsic thin layer (HIT) solar cell. It has high stability and large light absorption coefficient. It is manufactured under low temperature deposit process, which results in a low cost thin film HIT solar cell with high conversion efficiency. The influence of various layer materials and interfaces on the performance of n-type c-Si based bifacial HIT solar cell has been investigated by using the Silvaco TCAD simulation software. Accordingly, the design optimization of HIT solar cell was proven.
Sun, Chang. „Recombination Activity of Metal-related and Boron-oxygen Defects in Crystalline Silicon“. Phd thesis, 2017. http://hdl.handle.net/1885/122920.
Der volle Inhalt der QuelleSio, Hang Cheong. „Carrier Recombination in Multicrystalline Silicon: A Study using Photoluminescence Imaging“. Phd thesis, 2015. http://hdl.handle.net/1885/101930.
Der volle Inhalt der QuelleGhosh, Michael. „Defekte im Bodenbereich blockerstarrten Solar-Siliziums: Identifikation, Verteilung und elektrischer Einfluss“. Doctoral thesis, 2008. https://tubaf.qucosa.de/id/qucosa%3A22729.
Der volle Inhalt der Quelle„Efficiency-Limiting Recombination Mechanisms in High-Quality Crystalline Silicon for Solar Cells“. Doctoral diss., 2018. http://hdl.handle.net/2286/R.I.51599.
Der volle Inhalt der QuelleDissertation/Thesis
Doctoral Dissertation Materials Science and Engineering 2018
Koppe, Tristan. „Untersuchungen zum Lumineszenzverhalten des Aluminiumnitrids und der Aufbau einer Kurzzeit-Lumineszenz-Spektroskopie-Apparatur“. Doctoral thesis, 2017. http://hdl.handle.net/11858/00-1735-0000-0023-3E9D-F.
Der volle Inhalt der QuelleCutler, Geoffrey Lloyd. „CHARACTERIZING VALPROIC ACID-INDUCED DNA DOUBLE STRAND BREAK REPAIR“. Thesis, 2012. http://hdl.handle.net/1974/7597.
Der volle Inhalt der QuelleThesis (Master, Pharmacology & Toxicology) -- Queen's University, 2012-10-15 11:06:30.613
Kreßner-Kiel, Denise. „Wechselwirkung von Kupfer mit ausgedehnten Defekten in multikristallinem Silicium und Einfluss auf die Rekombinationseigenschaften“. Doctoral thesis, 2015. https://tubaf.qucosa.de/id/qucosa%3A23162.
Der volle Inhalt der Quelle