Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „DeepSORT“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "DeepSORT" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "DeepSORT"
Zhang, Limin, Jie Jiang, Wei Fang und Kai Liu. „Real TimeDetection and Tracking Method of Pilot’sHeadPositionBased on MTCNN-DeepSORT“. Journal of Physics: Conference Series 1682 (November 2020): 012025. http://dx.doi.org/10.1088/1742-6596/1682/1/012025.
Der volle Inhalt der QuelleWang, An, Xiaohong Cao, Lei Lu, Xinjing Zhou und Xuecheng Sun. „Design of Efficient Human Head Statistics System in the Large-Angle Overlooking Scene“. Electronics 10, Nr. 15 (31.07.2021): 1851. http://dx.doi.org/10.3390/electronics10151851.
Der volle Inhalt der QuelleLiu, Chieh-Min, und Jyh-Ching Juang. „Estimation of Lane-Level Traffic Flow Using a Deep Learning Technique“. Applied Sciences 11, Nr. 12 (17.06.2021): 5619. http://dx.doi.org/10.3390/app11125619.
Der volle Inhalt der QuelleLiu, Xin, und Zhanyue Zhang. „A Vision-Based Target Detection, Tracking, and Positioning Algorithm for Unmanned Aerial Vehicle“. Wireless Communications and Mobile Computing 2021 (10.04.2021): 1–12. http://dx.doi.org/10.1155/2021/5565589.
Der volle Inhalt der QuelleShin, Minchan, und Nammee Moon. „Indoor Distance Measurement System COPS (COVID-19 Prevention System)“. Sustainability 13, Nr. 9 (23.04.2021): 4738. http://dx.doi.org/10.3390/su13094738.
Der volle Inhalt der QuelleHuang, Wei, Xiaoshu Zhou, Mingchao Dong und Huaiyu Xu. „Multiple objects tracking in the UAV system based on hierarchical deep high-resolution network“. Multimedia Tools and Applications 80, Nr. 9 (19.01.2021): 13911–29. http://dx.doi.org/10.1007/s11042-020-10427-1.
Der volle Inhalt der QuelleYoshimori, Atsushi, und Jürgen Bajorath. „Deep SAR matrix: SAR matrix expansion for advanced analog design using deep learning architectures“. Future Drug Discovery 2, Nr. 2 (01.04.2020): FDD36. http://dx.doi.org/10.4155/fdd-2020-0005.
Der volle Inhalt der QuelleGuo, Bin, Ziqi Wang, Pei Wang, Tong Xin, Daqing Zhang und Zhiwen Yu. „DeepStore: Understanding Customer Behaviors in Unmanned Stores“. IT Professional 22, Nr. 3 (01.05.2020): 55–63. http://dx.doi.org/10.1109/mitp.2019.2928272.
Der volle Inhalt der QuelleChen, Jin-Bor, Huai-Shuo Yang, Sin-Hua Moi, Li-Yeh Chuang und Cheng-Hong Yang. „Identification of mortality-risk-related missense variant for renal clear cell carcinoma using deep learning“. Therapeutic Advances in Chronic Disease 12 (Januar 2021): 204062232199262. http://dx.doi.org/10.1177/2040622321992624.
Der volle Inhalt der QuelleYoshimori, Atsushi, Huabin Hu und Jürgen Bajorath. „Adapting the DeepSARM approach for dual-target ligand design“. Journal of Computer-Aided Molecular Design 35, Nr. 5 (13.03.2021): 587–600. http://dx.doi.org/10.1007/s10822-021-00379-5.
Der volle Inhalt der QuelleDissertationen zum Thema "DeepSORT"
Ali, Hani, und Pontus Sunnergren. „Scenanalys - Övervakning och modellering“. Thesis, Högskolan i Halmstad, Akademin för informationsteknologi, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:hh:diva-45036.
Der volle Inhalt der QuelleAutonomous vehicles can decrease traffic congestion and reduce the amount of traffic related accidents. As there will be millions of autonomous vehicles in the future, a better understanding of the environment will be required. This project aims to create an external automated traffic system that can detect and track 3D objects within a complex traffic situation to later send these objects’ behavior for a larger-scale project that manages to 3D model the traffic situation. The project utilizes Tensorflow framework and YOLOv3 algorithm. The project also utilizes a camera to record traffic situations and a Linux operated computer. Using methods commonly used to create an automated traffic management system was evaluated. The final results show that the system is relatively unstable and can sometimes fail to recognize certain objects. If more images are used for the training process, a more robust and much more reliable system could be developed using a similar methodology.
Ferreira, Ellen Cristina. „Fluxo de potência ótimo multiobjetivo com restrições de segurança e variáveis discretas“. Universidade de São Paulo, 2018. http://www.teses.usp.br/teses/disponiveis/18/18154/tde-06072018-112756/.
Der volle Inhalt der QuelleThe goal of the present work is to investigate and develop continuous and discrete optimization strategies for SCOPF problems, also taking into account control variables related to in-phase transformers, capacitor banks and shunt reactors. Multiobjective optimization model is formulated under a weighted sum criteria whose objectives are the minimization of active power losses and an additional term that yields a greater reactive support to the system. Controls associated with taps and shunts are modeled either as fixed quantities, or continuous and discrete variables, in which case auxiliary functions of polynomial and sinusoidal types are applied for discretization purposes. The complete model is solved via EPSO and DEEPSO metaheuristics. Routines coded in Matlab were applied to the IEEE 14,30, 57, 118 and 300-bus test systems, where the method was validated in terms of diversity and quality of solutions and computational complexity. The results demonstrate the robustness of the model and solution approaches and uphold it as an effective support tool for the decision-making process in Power Systems Security Analysis, maximizing preventive actions in order to avoid insecure operating conditions.
Vigo, João Pedro Antunes. „NEWEPSO - New developments and testing of EPSO and DEEPSO“. Dissertação, 2016. https://repositorio-aberto.up.pt/handle/10216/85203.
Der volle Inhalt der QuelleLoureiro, Fábio Manuel Soares. „Development and Testing of the Meta-Heuristic Hybrid DEEPSO“. Dissertação, 2014. https://repositorio-aberto.up.pt/handle/10216/73472.
Der volle Inhalt der QuelleVigo, João Pedro Antunes. „NEWEPSO - New developments and testing of EPSO and DEEPSO“. Master's thesis, 2016. https://repositorio-aberto.up.pt/handle/10216/85203.
Der volle Inhalt der QuelleLoureiro, Fábio Manuel Soares. „Development and Testing of the Meta-Heuristic Hybrid DEEPSO“. Master's thesis, 2014. https://repositorio-aberto.up.pt/handle/10216/73472.
Der volle Inhalt der QuelleBuchteile zum Thema "DeepSORT"
Mondal, Debnath, und Sanjay Paul. „Study on Cyclic Response of Dry Uniform Soil Deposit Using Shake Table Tests and DEEPSOIL Program“. In Lecture Notes in Civil Engineering, 357–71. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-33-6564-3_31.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "DeepSORT"
Azhar, Muhamad Izham Hadi, Fadhlan Hafizhelmi Kamaru Zaman, Nooritawati Md Tahir und Habibah Hashim. „People Tracking System Using DeepSORT“. In 2020 10th IEEE International Conference on Control System, Computing and Engineering (ICCSCE). IEEE, 2020. http://dx.doi.org/10.1109/iccsce50387.2020.9204956.
Der volle Inhalt der QuelleHost, Kristina, Marina Ivašić-Kos und Miran Pobar. „Tracking Handball Players with the DeepSORT Algorithm“. In 9th International Conference on Pattern Recognition Applications and Methods. SCITEPRESS - Science and Technology Publications, 2020. http://dx.doi.org/10.5220/0009177605930599.
Der volle Inhalt der QuelleBin Zuraimi, Muhammad Azhad, und Fadhlan Hafizhelmi Kamaru Zaman. „Vehicle Detection and Tracking using YOLO and DeepSORT“. In 2021 IEEE 11th IEEE Symposium on Computer Applications & Industrial Electronics (ISCAIE). IEEE, 2021. http://dx.doi.org/10.1109/iscaie51753.2021.9431784.
Der volle Inhalt der QuelleJindal, Rajni, Aditya Panwar, Nishant Sharma und Aman Rai. „Object Tracking in a Zone using DeepSORT, YOLOv4 and TensorFlow“. In 2021 2nd International Conference for Emerging Technology (INCET). IEEE, 2021. http://dx.doi.org/10.1109/incet51464.2021.9456443.
Der volle Inhalt der QuelleDoan, Thanh-Nghi, und Minh-Tuyen Truong. „Real-time vehicle detection and counting based on YOLO and DeepSORT“. In 2020 12th International Conference on Knowledge and Systems Engineering (KSE). IEEE, 2020. http://dx.doi.org/10.1109/kse50997.2020.9287483.
Der volle Inhalt der QuelleZhang, Xu, Xiangyang Hao, Songlin Liu, Junqiang Wang, Jiwei Xu und Jun Hu. „Multi-target tracking of surveillance video with differential YOLO and DeepSort“. In Eleventh International Conference on Digital Image Processing, herausgegeben von Xudong Jiang und Jenq-Neng Hwang. SPIE, 2019. http://dx.doi.org/10.1117/12.2540269.
Der volle Inhalt der QuelleKumar, Shailender, Vishal, Pranav Sharma und Nitin Pal. „Object tracking and counting in a zone using YOLOv4, DeepSORT and TensorFlow“. In 2021 International Conference on Artificial Intelligence and Smart Systems (ICAIS). IEEE, 2021. http://dx.doi.org/10.1109/icais50930.2021.9395971.
Der volle Inhalt der QuelleRavikiran, Manikandan, Yuichi Nonaka und Nestor Mariyasagayam. „A Sensitivity Analysis (and Practitioners’ Guide to) of DeepSORT for Low Frame Rate Video“. In 2020 IEEE International Conference on Big Data (Big Data). IEEE, 2020. http://dx.doi.org/10.1109/bigdata50022.2020.9378112.
Der volle Inhalt der QuelleNayak, Avik, Haiquan Chen, Xiaojun Ruan und Jinsong Ouyang. „DeepSpot“. In SIGSPATIAL '19: 27th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems. New York, NY, USA: ACM, 2019. http://dx.doi.org/10.1145/3356473.3365187.
Der volle Inhalt der QuelleMailthody, Vikram Sharma, Zaid Qureshi, Weixin Liang, Ziyan Feng, Simon Garcia de Gonzalo, Youjie Li, Hubertus Franke, Jinjun Xiong, Jian Huang und Wen-mei Hwu. „DeepStore“. In MICRO '52: The 52nd Annual IEEE/ACM International Symposium on Microarchitecture. New York, NY, USA: ACM, 2019. http://dx.doi.org/10.1145/3352460.3358320.
Der volle Inhalt der Quelle