Zeitschriftenartikel zum Thema „Deepfake Detection“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Deepfake Detection" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.
Yasrab, Robail, Wanqi Jiang und Adnan Riaz. „Fighting Deepfakes Using Body Language Analysis“. Forecasting 3, Nr. 2 (28.04.2021): 303–21. http://dx.doi.org/10.3390/forecast3020020.
Der volle Inhalt der QuelleNiveditha, Zohaib Hasan Princy, Saurabh Sharma, Vishal Paranjape und Abhishek Singh. „Review of Deep Learning Techniques for Deepfake Image Detection“. International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering 11, Nr. 02 (25.02.2022): 1–14. http://dx.doi.org/10.15662/ijareeie.2022.1102021.
Der volle Inhalt der QuelleSunkari, Venkateswarlu, und Ayyagari Sri Nagesh. „Artificial intelligence for deepfake detection: systematic review and impact analysis“. IAES International Journal of Artificial Intelligence (IJ-AI) 13, Nr. 4 (01.12.2024): 3786. http://dx.doi.org/10.11591/ijai.v13.i4.pp3786-3792.
Der volle Inhalt der QuelleBattula Thirumaleshwari Devi, Et al. „A Comprehensive Survey on Deepfake Methods: Generation, Detection, and Applications“. International Journal on Recent and Innovation Trends in Computing and Communication 11, Nr. 9 (30.10.2023): 654–78. http://dx.doi.org/10.17762/ijritcc.v11i9.8857.
Der volle Inhalt der QuelleLad, Sumit. „Adversarial Approaches to Deepfake Detection: A Theoretical Framework for Robust Defense“. Journal of Artificial Intelligence General science (JAIGS) ISSN:3006-4023 6, Nr. 1 (21.09.2024): 46–58. http://dx.doi.org/10.60087/jaigs.v6i1.225.
Der volle Inhalt der QuelleKrueger, Natalie, Mounika Vanamala und Rushit Dave. „Recent Advancements in the Field of Deepfake Detection“. International Journal of Computer Science and Information Technology 15, Nr. 4 (27.08.2023): 01–11. http://dx.doi.org/10.5121/ijcsit.2023.15401.
Der volle Inhalt der QuelleKawabe, Akihisa, Ryuto Haga, Yoichi Tomioka, Jungpil Shin und Yuichi Okuyama. „A Dynamic Ensemble Selection of Deepfake Detectors Specialized for Individual Face Parts“. Electronics 12, Nr. 18 (18.09.2023): 3932. http://dx.doi.org/10.3390/electronics12183932.
Der volle Inhalt der QuelleRaza, Ali, Kashif Munir und Mubarak Almutairi. „A Novel Deep Learning Approach for Deepfake Image Detection“. Applied Sciences 12, Nr. 19 (29.09.2022): 9820. http://dx.doi.org/10.3390/app12199820.
Der volle Inhalt der QuelleSingh, Preeti, Khyati Chaudhary, Gopal Chaudhary, Manju Khari und Bharat Rawal. „A Machine Learning Approach to Detecting Deepfake Videos: An Investigation of Feature Extraction Techniques“. Journal of Cybersecurity and Information Management 9, Nr. 2 (2022): 42–50. http://dx.doi.org/10.54216/jcim.090204.
Der volle Inhalt der QuelleQureshi, Shavez Mushtaq, Atif Saeed, Sultan H. Almotiri, Farooq Ahmad und Mohammed A. Al Ghamdi. „Deepfake forensics: a survey of digital forensic methods for multimodal deepfake identification on social media“. PeerJ Computer Science 10 (27.05.2024): e2037. http://dx.doi.org/10.7717/peerj-cs.2037.
Der volle Inhalt der QuelleRajagopal, Tendral, Velayutham Chandrashekaran und Vignesh Ilango. „Unmasking the Deepfake Infocalypse: Debunking Manufactured Misinformation with a Prototype Model in the AI Era “Seeing and hearing, no longer believing.”“. Journal of Communication and Management 2, Nr. 04 (18.12.2023): 230–37. http://dx.doi.org/10.58966/jcm2023243.
Der volle Inhalt der QuelleSingh, Parminder. „A Survey of Deepfake Detection Methods: Innovations, Accuracy, and Future Directions“. INTERANTIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT 08, Nr. 008 (09.08.2024): 1–12. http://dx.doi.org/10.55041/ijsrem37000.
Der volle Inhalt der QuelleSingh, Dr Viomesh, Bhavesh Agone, Aryan More, Aryan Mengawade, Atharva Deshmukh und Atharva Badgujar. „SAVANA- A Robust Framework for Deepfake Video Detection and Hybrid Double Paraphrasing with Probabilistic Analysis Approach for AI Text Detection“. International Journal for Research in Applied Science and Engineering Technology 12, Nr. 11 (30.11.2024): 2074–83. http://dx.doi.org/10.22214/ijraset.2024.65526.
Der volle Inhalt der QuelleJagdale, Anushka, Vanshika Kubde, Rahul Kortikar, Prof Aparna V. Mote und Prof Nitisha Rajgure. „DeepFake Image Detection: Fake Image Detection using CNNs and GANs Algorithm“. INTERANTIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT 08, Nr. 11 (10.11.2024): 1–6. http://dx.doi.org/10.55041/ijsrem38628.
Der volle Inhalt der QuelleLee, Eun-Gi, Isack Lee und Seok-Bong Yoo. „ClueCatcher: Catching Domain-Wise Independent Clues for Deepfake Detection“. Mathematics 11, Nr. 18 (17.09.2023): 3952. http://dx.doi.org/10.3390/math11183952.
Der volle Inhalt der QuelleGuarnera, Luca, Oliver Giudice, Francesco Guarnera, Alessandro Ortis, Giovanni Puglisi, Antonino Paratore, Linh M. Q. Bui et al. „The Face Deepfake Detection Challenge“. Journal of Imaging 8, Nr. 10 (28.09.2022): 263. http://dx.doi.org/10.3390/jimaging8100263.
Der volle Inhalt der QuelleK. D.V.N.Vaishnavi, L. Hima Bindu, M. Sathvika, K. Udaya Lakshmi, M. Harini und N. Ashok. „Deep learning approaches for robust deep fake detection“. World Journal of Advanced Research and Reviews 21, Nr. 3 (30.03.2023): 2283–89. http://dx.doi.org/10.30574/wjarr.2024.21.3.0889.
Der volle Inhalt der QuelleA. Abu-Ein, Ashraf, Obaida M. Al-Hazaimeh, Alaa M. Dawood und Andraws I. Swidan. „Analysis of the current state of deepfake techniques-creation and detection methods“. Indonesian Journal of Electrical Engineering and Computer Science 28, Nr. 3 (07.10.2022): 1659. http://dx.doi.org/10.11591/ijeecs.v28.i3.pp1659-1667.
Der volle Inhalt der QuelleShahzad, Hina Fatima, Furqan Rustam, Emmanuel Soriano Flores, Juan Luís Vidal Mazón, Isabel de la Torre Diez und Imran Ashraf. „A Review of Image Processing Techniques for Deepfakes“. Sensors 22, Nr. 12 (16.06.2022): 4556. http://dx.doi.org/10.3390/s22124556.
Der volle Inhalt der QuelleAL-KHAZRAJI, Samer Hussain, Hassan Hadi SALEH, Adil Ibrahim KHALID und Israa Adnan MISHKHAL. „Impact of Deepfake Technology on Social Media: Detection, Misinformation and Societal Implications“. Eurasia Proceedings of Science Technology Engineering and Mathematics 23 (16.10.2023): 429–41. http://dx.doi.org/10.55549/epstem.1371792.
Der volle Inhalt der QuelleSharma, Ankita. „RESILIENCE OF NETWORK PROTOCOLS TO DEEPFAKE DETECTION TRAFFIC“. International Research Journal of Computer Science 09, Nr. 08 (31.08.2022): 342–47. http://dx.doi.org/10.26562/irjcs.2022.v0908.36.
Der volle Inhalt der QuelleGupta, Gourav, Kiran Raja, Manish Gupta, Tony Jan, Scott Thompson Whiteside und Mukesh Prasad. „A Comprehensive Review of DeepFake Detection Using Advanced Machine Learning and Fusion Methods“. Electronics 13, Nr. 1 (25.12.2023): 95. http://dx.doi.org/10.3390/electronics13010095.
Der volle Inhalt der QuelleKumari, Prerna, und Vikas Kumar. „Deepfake Detection“. International Journal of Science and Research (IJSR) 13, Nr. 6 (05.06.2024): 356–58. http://dx.doi.org/10.21275/sr24606012528.
Der volle Inhalt der QuelleS, Mrs Prajwal. „DeepFake Image Detection“. INTERANTIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT 08, Nr. 04 (06.04.2024): 1–5. http://dx.doi.org/10.55041/ijsrem30215.
Der volle Inhalt der QuelleLaw Kian Seng, NORMAISHARAH MAMAT, Hafiza Abas und Wan Noor Hamiza Wan Ali. „AI Integrity Solutions for Deepfake Identification and Prevention“. Open International Journal of Informatics 12, Nr. 1 (28.06.2024): 35–46. http://dx.doi.org/10.11113/oiji2024.12n1.297.
Der volle Inhalt der QuelleP. Kamakshi Thai, Sathvik Kalige, Sai Nikhil Ediga und Lokesh Chougoni. „A survey on deepfake detection through deep learning“. World Journal of Advanced Research and Reviews 21, Nr. 3 (30.03.2023): 2214–17. http://dx.doi.org/10.30574/wjarr.2024.21.3.0946.
Der volle Inhalt der QuelleGadgilwar, Jitesh, Kunal Rahangdale, Om Jaiswal, Parag Asare, Pratik Adekar und Prof Leela Bitla. „Exploring Deepfakes - Creation Techniques, Detection Strategies, and Emerging Challenges: A Survey“. International Journal for Research in Applied Science and Engineering Technology 11, Nr. 3 (31.03.2023): 1491–95. http://dx.doi.org/10.22214/ijraset.2023.49681.
Der volle Inhalt der QuelleKaraköse, Mehmet, İsmail İlhan, Hasan Yetiş und Serhat Ataş. „A New Approach for Deepfake Detection with the Choquet Fuzzy Integral“. Applied Sciences 14, Nr. 16 (16.08.2024): 7216. http://dx.doi.org/10.3390/app14167216.
Der volle Inhalt der QuelleKhormali, Aminollah, und Jiann-Shiun Yuan. „ADD: Attention-Based DeepFake Detection Approach“. Big Data and Cognitive Computing 5, Nr. 4 (27.09.2021): 49. http://dx.doi.org/10.3390/bdcc5040049.
Der volle Inhalt der QuelleTipper, Sarah, Hany F. Atlam und Harjinder Singh Lallie. „An Investigation into the Utilisation of CNN with LSTM for Video Deepfake Detection“. Applied Sciences 14, Nr. 21 (25.10.2024): 9754. http://dx.doi.org/10.3390/app14219754.
Der volle Inhalt der QuelleAkhtar, Zahid. „Deepfakes Generation and Detection: A Short Survey“. Journal of Imaging 9, Nr. 1 (13.01.2023): 18. http://dx.doi.org/10.3390/jimaging9010018.
Der volle Inhalt der QuelleKapoor, Tushar. „Deepfake Audio Detection System“. International Journal for Research in Applied Science and Engineering Technology 12, Nr. 5 (31.05.2024): 984–89. http://dx.doi.org/10.22214/ijraset.2024.61718.
Der volle Inhalt der QuelleShad, Hasin Shahed, Md Mashfiq Rizvee, Nishat Tasnim Roza, S. M. Ahsanul Hoq, Mohammad Monirujjaman Khan, Arjun Singh, Atef Zaguia und Sami Bourouis. „Comparative Analysis of Deepfake Image Detection Method Using Convolutional Neural Network“. Computational Intelligence and Neuroscience 2021 (16.12.2021): 1–18. http://dx.doi.org/10.1155/2021/3111676.
Der volle Inhalt der QuelleEmaley, Aman Kumar. „Discerning Deception: A Face-Centric Deepfake Detection Approach with ResNeXt-50 and LSTMs“. International Journal for Research in Applied Science and Engineering Technology 12, Nr. 4 (30.04.2024): 5075–83. http://dx.doi.org/10.22214/ijraset.2024.61186.
Der volle Inhalt der QuelleNoreen, Iram, Muhammad Shahid Muneer und Saira Gillani. „Deepfake attack prevention using steganography GANs“. PeerJ Computer Science 8 (20.10.2022): e1125. http://dx.doi.org/10.7717/peerj-cs.1125.
Der volle Inhalt der QuelleGodulla, Alexander, Christian P. Hoffmann und Daniel Seibert. „Dealing with deepfakes – an interdisciplinary examination of the state of research and implications for communication studies“. Studies in Communication and Media 10, Nr. 1 (2021): 72–96. http://dx.doi.org/10.5771/2192-4007-2021-1-72.
Der volle Inhalt der QuelleK, Mr Gopi. „Deep Fake Detection using Deep Learning“. INTERANTIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT 08, Nr. 05 (06.05.2024): 1–5. http://dx.doi.org/10.55041/ijsrem33196.
Der volle Inhalt der QuelleDr. Sheshang Degadwala und Vishal Manishbhai Patel. „Advancements in Deepfake Detection : A Review of Emerging Techniques and Technologies“. International Journal of Scientific Research in Computer Science, Engineering and Information Technology 10, Nr. 5 (05.09.2024): 127–39. http://dx.doi.org/10.32628/cseit24105811.
Der volle Inhalt der QuelleNaitali, Amal, Mohammed Ridouani, Fatima Salahdine und Naima Kaabouch. „Deepfake Attacks: Generation, Detection, Datasets, Challenges, and Research Directions“. Computers 12, Nr. 10 (23.10.2023): 216. http://dx.doi.org/10.3390/computers12100216.
Der volle Inhalt der QuelleBorade, Shwetambari, Nilakshi Jain, Bhavesh Patel, Vineet Kumar, Mustansir Godhrawala, Shubham Kolaskar, Yash Nagare, Pratham Shah und Jayan Shah. „ResNet50 DeepFake Detector: Unmasking Reality“. Indian Journal Of Science And Technology 17, Nr. 13 (25.03.2024): 1263–71. http://dx.doi.org/10.17485/ijst/v17i13.285.
Der volle Inhalt der QuelleSalvi, Davide, Honggu Liu, Sara Mandelli, Paolo Bestagini, Wenbo Zhou, Weiming Zhang und Stefano Tubaro. „A Robust Approach to Multimodal Deepfake Detection“. Journal of Imaging 9, Nr. 6 (19.06.2023): 122. http://dx.doi.org/10.3390/jimaging9060122.
Der volle Inhalt der QuelleAl Waro'i, Muhammad Nur Abdul Latif. „False Reality: Deepfakes in Terrorist Propaganda and Recruitment“. Security Intelligence Terrorism Journal (SITJ) 1, Nr. 1 (14.08.2024): 41–59. http://dx.doi.org/10.70710/sitj.v1i1.5.
Der volle Inhalt der QuelleSameer, Sameer. „Integrating Deep Learning Architecture with Pufferfish Optimization Algorithm for Real-Time Deepfake Video Detection and Classification Model“. Fusion: Practice and Applications 18, Nr. 1 (2025): 288–303. https://doi.org/10.54216/fpa.180120.
Der volle Inhalt der QuelleRobert Wolański und Karol Jędrasiak. „Audio-Video Analysis Method of Public Speaking Videos to Detect Deepfake Threat“. SAFETY & FIRE TECHNOLOGY 62, Nr. 2 (29.12.2023): 172–80. http://dx.doi.org/10.12845/sft.62.2.2023.10.
Der volle Inhalt der QuelleAlanazi, Fatimah, Gary Ushaw und Graham Morgan. „Improving Detection of DeepFakes through Facial Region Analysis in Images“. Electronics 13, Nr. 1 (28.12.2023): 126. http://dx.doi.org/10.3390/electronics13010126.
Der volle Inhalt der QuelleJiang, Jianguo, Boquan Li, Baole Wei, Gang Li, Chao Liu, Weiqing Huang, Meimei Li und Min Yu. „FakeFilter: A cross-distribution Deepfake detection system with domain adaptation“. Journal of Computer Security 29, Nr. 4 (18.06.2021): 403–21. http://dx.doi.org/10.3233/jcs-200124.
Der volle Inhalt der QuelleKumar, Naresh, und Ankit Kundu. „SecureVision: Advanced Cybersecurity Deepfake Detection with Big Data Analytics“. Sensors 24, Nr. 19 (29.09.2024): 6300. http://dx.doi.org/10.3390/s24196300.
Der volle Inhalt der QuelleLim, Suk-Young, Dong-Kyu Chae und Sang-Chul Lee. „Detecting Deepfake Voice Using Explainable Deep Learning Techniques“. Applied Sciences 12, Nr. 8 (13.04.2022): 3926. http://dx.doi.org/10.3390/app12083926.
Der volle Inhalt der QuelleAl-Adwan, Aryaf, Hadeel Alazzam, Noor Al-Anbaki und Eman Alduweib. „Detection of Deepfake Media Using a Hybrid CNN–RNN Model and Particle Swarm Optimization (PSO) Algorithm“. Computers 13, Nr. 4 (15.04.2024): 99. http://dx.doi.org/10.3390/computers13040099.
Der volle Inhalt der QuelleYavuzkilic, Semih, Abdulkadir Sengur, Zahid Akhtar und Kamran Siddique. „Spotting Deepfakes and Face Manipulations by Fusing Features from Multi-Stream CNNs Models“. Symmetry 13, Nr. 8 (26.07.2021): 1352. http://dx.doi.org/10.3390/sym13081352.
Der volle Inhalt der Quelle