Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Deep structures“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Deep structures" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Deep structures"
Nizami Huseyn, Elcin. „ELECTROSTIMULATION OF BRAIN DEEP STRUCTURES IN PARKINSON'S DISEASE“. SCIENTIFIC WORK 70, Nr. 09 (21.09.2021): 14–19. http://dx.doi.org/10.36719/2663-4619/70/14-19.
Der volle Inhalt der QuelleSingh, Arunima. „Deep learning 3D structures“. Nature Methods 17, Nr. 3 (März 2020): 249. http://dx.doi.org/10.1038/s41592-020-0779-y.
Der volle Inhalt der QuelleBowles, Martin L. „Recognizing Deep Structures in Organizations“. Organization Studies 11, Nr. 3 (Juli 1990): 395–412. http://dx.doi.org/10.1177/017084069001100304.
Der volle Inhalt der QuelleZhou, Ding-Xuan. „Deep distributed convolutional neural networks: Universality“. Analysis and Applications 16, Nr. 06 (November 2018): 895–919. http://dx.doi.org/10.1142/s0219530518500124.
Der volle Inhalt der QuellePodoski, Jessica H., Thomas D. Smith, David C. Finnegan, Adam L. LeWinter und Peter J. Gadomski. „UNMANNED AERIAL SYSTEM LIDAR SURVEY OF TWO BREAKWATERS IN THE HAWAIIAN ISLANDS“. Coastal Engineering Proceedings, Nr. 36 (30.12.2018): 23. http://dx.doi.org/10.9753/icce.v36.structures.23.
Der volle Inhalt der QuelleHao, Xing, Guigang Zhang und Shang Ma. „Deep Learning“. International Journal of Semantic Computing 10, Nr. 03 (September 2016): 417–39. http://dx.doi.org/10.1142/s1793351x16500045.
Der volle Inhalt der QuelleEliava, Shalva, Oleg Shekhtman und Mariya Varyukhina. „Microsurgical Angioarchitectonics of Deep Brain Structures and Deep Arterial Anastomoses“. World Neurosurgery 126 (Juni 2019): e1092-e1098. http://dx.doi.org/10.1016/j.wneu.2019.02.213.
Der volle Inhalt der QuelleGooderham, David. „Deep calling unto deep: Pre-oedipal structures in children's texts“. Childrens Literature in Education 25, Nr. 2 (Juni 1994): 113–23. http://dx.doi.org/10.1007/bf02355399.
Der volle Inhalt der QuelleKalygina, V. M., Yu S. Petrova, I. A. Prudaev, O. P. Tolbanov und S. Yu Tsupiy. „Deep centers in TiO2-Si structures“. Semiconductors 49, Nr. 8 (August 2015): 1012–18. http://dx.doi.org/10.1134/s1063782615080102.
Der volle Inhalt der QuelleKasztelanic, Rafał. „Multilevel structures in deep proton lithography“. Journal of Micro/Nanolithography, MEMS, and MOEMS 7, Nr. 1 (01.01.2008): 013006. http://dx.doi.org/10.1117/1.2841721.
Der volle Inhalt der QuelleDissertationen zum Thema "Deep structures"
Lambert, C. P. „Multimodal segmentation of deep cortical structures“. Thesis, University College London (University of London), 2012. http://discovery.ucl.ac.uk/1344055/.
Der volle Inhalt der QuelleXu, Yuan. „Statistical shape analysis for deep brain structures“. Diss., Restricted to subscribing institutions, 2008. http://proquest.umi.com/pqdweb?did=1581917061&sid=11&Fmt=2&clientId=1564&RQT=309&VName=PQD.
Der volle Inhalt der QuelleBillingsley, Richard John. „Deep Learning for Semantic and Syntactic Structures“. Thesis, The University of Sydney, 2014. http://hdl.handle.net/2123/12825.
Der volle Inhalt der QuelleOlowe, Adedayo Christianah. „Corrosion assessment and cathodic protection design parameters for steel structures in deep and ultra deep offshore waters“. Thesis, University of Aberdeen, 2013. http://digitool.abdn.ac.uk:80/webclient/DeliveryManager?pid=201965.
Der volle Inhalt der QuelleGrice, James Robert. „Prediction of extreme wave-structure interactions for multi-columned structures in deep water“. Thesis, University of Oxford, 2013. http://ora.ox.ac.uk/objects/uuid:dd7320c1-7121-4ea7-827f-527af9405e9a.
Der volle Inhalt der QuelleDikdogmus, Halil. „RISER CONCEPTS FOR DEEP WATERS“. Thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for marin teknikk, 2012. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-18528.
Der volle Inhalt der QuelleRomagna, Pinter Patricia. „Reappraising the Numidian system (Miocene, southern Italy) deep-water sandstone fairways confined by tectonised substrate“. Thesis, University of Aberdeen, 2017. http://digitool.abdn.ac.uk:80/webclient/DeliveryManager?pid=238534.
Der volle Inhalt der QuelleOyallon, Edouard. „Analyzing and introducing structures in deep convolutional neural networks“. Thesis, Paris Sciences et Lettres (ComUE), 2017. http://www.theses.fr/2017PSLEE060.
Der volle Inhalt der QuelleThis thesis studies empirical properties of deep convolutional neural networks, and in particular the Scattering Transform. Indeed, the theoretical analysis of the latter is hard and until now remains a challenge: successive layers of neurons have the ability to produce complex computations, whose nature is still unknown, thanks to learning algorithms whose convergence guarantees are not well understood. However, those neural networks are outstanding tools to tackle a wide variety of difficult tasks, like image classification or more formally statistical prediction. The Scattering Transform is a non-linear mathematical operator whose properties are inspired by convolutional networks. In this work, we apply it to natural images, and obtain competitive accuracies with unsupervised architectures. Cascading a supervised neural networks after the Scattering permits to compete on ImageNet2012, which is the largest dataset of labeled images available. An efficient GPU implementation is provided. Then, this thesis focuses on the properties of layers of neurons at various depths. We show that a progressive dimensionality reduction occurs and we study the numerical properties of the supervised classification when we vary the hyper parameters of the network. Finally, we introduce a new class of convolutional networks, whose linear operators are structured by the symmetry groups of the classification task
Astolfi, Pietro. „Toward the "Deep Learning" of Brain White Matter Structures“. Doctoral thesis, Università degli studi di Trento, 2022. http://hdl.handle.net/11572/337629.
Der volle Inhalt der QuelleYang, Yuzhe S. M. Massachusetts Institute of Technology. „On exploiting structures for deep learning algorithms with matrix estimation“. Thesis, Massachusetts Institute of Technology, 2020. https://hdl.handle.net/1721.1/127319.
Der volle Inhalt der QuelleCataloged from the official PDF of thesis.
Includes bibliographical references (pages 113-118).
Despite recent breakthroughs of deep learning, the intrinsic structures within tasks have not yet been fully explored and exploited for better performance. This thesis proposes to harness the structured properties of deep learning tasks using matrix estimation (ME). Motivated by the theoretical guarantees and appealing results, we apply ME to study the following two important learning problems: 1. Adversarial robustness. Deep neural networks are vulnerable to adversarial attacks. This thesis proposes ME-Net, a defense method that leverages ME. In ME-Net, images are preprocessed using two steps: first pixels are randomly dropped from the image; then, the image is reconstructed using ME. We show that this process destroys the adversarial structure of the noise, while re-enforcing the global structure in the original image. Comparing ME-Net with state-of-the-art defense mechanisms shows that ME-Net consistently outperforms prior techniques, improving robustness against both black-box and white-box attacks. 2. Value-based planning and deep reinforcement learning (RL). This thesis proposes to exploit the underlying low-rank structures of the state-action value function, i.e., Q function. We verify empirically the existence of low-rank Q functions in the context of control and deep RL tasks. As our key contribution, by leveraging ME, we propose a generic framework to exploit the underlying low-rank structure in Q functions. This leads to a more efficient planning procedure for classical control, and additionally, a simple scheme that can be applied to any value-based RL techniques to consistently achieve better performance on "low-rank" tasks. The results of this thesis demonstrate the value of using matrix estimation to capture the internal structures of deep learning tasks, and highlight the benefits of leveraging structure for analyzing and improving modern learning algorithms.
by Yuzhe Yang.
S.M.
S.M. Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science
Bücher zum Thema "Deep structures"
Petersen, Ib Damgaard. Deep structures in international politics. København, Danmark: Institute of Political Studies, University of Copenhagen, 1987.
Den vollen Inhalt der Quelle findenLucerna, Sebastiano, Francesco M. Salpietro, Concetta Alafaci und Francesco Tomasello. In Vivo Atlas of Deep Brain Structures. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-642-56381-2.
Der volle Inhalt der QuellePinto, Pedro, Chang-Yu Ou und Hany Shehata, Hrsg. Innovative Solutions for Deep Foundations and Retaining Structures. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-34190-9.
Der volle Inhalt der QuelleMaccarini, Andrea M. Deep Change and Emergent Structures in Global Society. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-13624-6.
Der volle Inhalt der Quelle1957-, Lucerna S., Hrsg. In vivo atlas of deep brain structures: With 3D reconstructions. Berlin: Springer, 2002.
Den vollen Inhalt der Quelle findenEngineers, Institution of Structural. Design and construction of deep basements including cut-and-cover structures. London: The Institution, 2004.
Den vollen Inhalt der Quelle findenEngineers, Institution of Structural, Hrsg. Design and construction of deep basements including cut-and-cover structures. London: Institution of Structural Engineers, 2004.
Den vollen Inhalt der Quelle findenInc, BarCharts, Hrsg. Anatomy 2: Includes deep and posterior anatomy plus many new structures. [Boca Raton, Fla.]: BarCharts, Inc., 2005.
Den vollen Inhalt der Quelle findenAndrew St. Lawrence John Wickens. The Trinity and anthropology: The philosophical deep structures of Karl Rahner's theology. Birmingham: University of Birmingham, 1994.
Den vollen Inhalt der Quelle finden1943-, Stecker Michael, Hrsg. Structures in space: Hidden secrets of the deep sky : the Stecker files. New York: Springer, 2000.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Deep structures"
Strenski, Ivan. „Falsifying Deep Structures“. In Religion in Relation, 57–74. London: Palgrave Macmillan UK, 1993. http://dx.doi.org/10.1007/978-1-349-11866-3_4.
Der volle Inhalt der QuelleCaracas, Razvan. „Crystal Structures of Core Materials“. In Deep Earth, 55–68. Hoboken, NJ: John Wiley & Sons, Inc, 2016. http://dx.doi.org/10.1002/9781118992487.ch5.
Der volle Inhalt der QuelleOsipyan, Hasmik, Bosede Iyiade Edwards und Adrian David Cheok. „Neural Network Structures“. In Deep Neural Network Applications, 29–55. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9780429265686-3.
Der volle Inhalt der QuelleWicks, June K., und Thomas S. Duffy. „Crystal Structures of Minerals in the Lower Mantle“. In Deep Earth, 69–87. Hoboken, NJ: John Wiley & Sons, Inc, 2016. http://dx.doi.org/10.1002/9781118992487.ch6.
Der volle Inhalt der QuelleBen-Menahem, Ari. „Deep Principles – Complex Structures“. In Historical Encyclopedia of Natural and Mathematical Sciences, 5081–986. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-68832-7_9.
Der volle Inhalt der QuelleEppelbaum, Lev, Izzy Kutasov und Arkady Pilchin. „Investigating Deep Lithospheric Structures“. In Lecture Notes in Earth System Sciences, 269–391. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-34023-9_6.
Der volle Inhalt der QuelleMcCawley, James D. „On what is Deep about Deep Structures“. In Cognition and the Symbolic Processes, 125–28. London: Routledge, 2024. http://dx.doi.org/10.4324/9781003482833-5.
Der volle Inhalt der QuelleMirtskhulava, Lela. „Deep Learning Applications in Predicting Polymer Properties“. In Advanced Polymer Structures, 161–71. New York: Apple Academic Press, 2023. http://dx.doi.org/10.1201/9781003352181-16.
Der volle Inhalt der QuelleJishun, Ren, Jiang Chunfa, Zhang Zhengkun und Qin Deyu. „Deep Fractures and Deep-Seated Structures in China“. In Geotectonic Evolution of China, 126–66. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/978-3-642-61574-0_5.
Der volle Inhalt der QuelleBédaride, Paul, und Claire Gardent. „Deep Semantics for Dependency Structures“. In Computational Linguistics and Intelligent Text Processing, 277–88. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-19400-9_22.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Deep structures"
Chikersal, Prerna, Maria Tomprou, Young Ji Kim, Anita Williams Woolley und Laura Dabbish. „Deep Structures of Collaboration“. In CSCW '17: Computer Supported Cooperative Work and Social Computing. New York, NY, USA: ACM, 2017. http://dx.doi.org/10.1145/2998181.2998250.
Der volle Inhalt der QuelleGAWRONSKI, W., B. BIENKIEWICZ und R. HILL. „Wind-induced dynamics of the deep space network antennas“. In 33rd Structures, Structural Dynamics and Materials Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1992. http://dx.doi.org/10.2514/6.1992-2458.
Der volle Inhalt der QuelleScalise, Carmen, und Kevin Fitzpatrick. „Chicago Deep Tunnel Design and Construction“. In Structures Congress 2012. Reston, VA: American Society of Civil Engineers, 2012. http://dx.doi.org/10.1061/9780784412367.132.
Der volle Inhalt der QuelleHan, Jie, und Ken Akins. „Use of Geogrid-Reinforced and Pile-Supported Earth Structures“. In International Deep Foundations Congress 2002. Reston, VA: American Society of Civil Engineers, 2002. http://dx.doi.org/10.1061/40601(256)48.
Der volle Inhalt der QuelleBirrcher, David, Robin Tuchscherer, Matthew Huizinga und Oguzhan Bayrak. „Depth Effect in Reinforced Concrete Deep Beams“. In Structures Congress 2009. Reston, VA: American Society of Civil Engineers, 2009. http://dx.doi.org/10.1061/41031(341)175.
Der volle Inhalt der QuelleBi, Zhnegfa, und Xinming Wu. „Implicit structural modeling of geological structures with deep learning“. In First International Meeting for Applied Geoscience & Energy. Society of Exploration Geophysicists, 2021. http://dx.doi.org/10.1190/segam2021-3583427.1.
Der volle Inhalt der QuellePhoon, Kok-Kwang, und Fred H. Kulhawy. „Drilled Shaft Design for Transmission Structures Using LRFD and MRFD“. In International Deep Foundations Congress 2002. Reston, VA: American Society of Civil Engineers, 2002. http://dx.doi.org/10.1061/40601(256)70.
Der volle Inhalt der QuelleWu, Xiong-Jian, und W. G. Price. „The Behaviour of Shallow Draft Offshore Structures and Service Vessels in Deeper Water“. In Development In Deep Waters. RINA, 1986. http://dx.doi.org/10.3940/rina.ddw.1986.17.
Der volle Inhalt der QuelleBouadi, Hakim, Eric Green und Narendra Gosain. „Evaluation and Repair of a Deep Transfer Girder“. In Structures Congress 2005. Reston, VA: American Society of Civil Engineers, 2005. http://dx.doi.org/10.1061/40753(171)255.
Der volle Inhalt der QuelleTomaszkiewicz, Karolina, und Tomasz Owerko. „Deep machine learning in bridge structures durability analysis“. In 5th Joint International Symposium on Deformation Monitoring. Valencia: Editorial de la Universitat Politècnica de València, 2022. http://dx.doi.org/10.4995/jisdm2022.2022.13884.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Deep structures"
Harris, L. B., P. Adiban und E. Gloaguen. The role of enigmatic deep crustal and upper mantle structures on Au and magmatic Ni-Cu-PGE-Cr mineralization in the Superior Province. Natural Resources Canada/CMSS/Information Management, 2021. http://dx.doi.org/10.4095/328984.
Der volle Inhalt der QuelleClay, C. S. Acoustic Reverberation in Wedge Structures at the Transitions from Deep to Shallow Water. Fort Belvoir, VA: Defense Technical Information Center, August 1997. http://dx.doi.org/10.21236/ada328801.
Der volle Inhalt der QuelleVIGIL, MANUEL GILBERT. Design of Largest Shaped Charge: Generation of Very Large Diameter, Deep Holes in Rock and Concrete Structures. Office of Scientific and Technical Information (OSTI), April 2003. http://dx.doi.org/10.2172/810682.
Der volle Inhalt der QuelleBernau, Jeremiah A., Charles G. Oviatt, Donald L. Clark und Brenda B. Bowen. Sediment Logs Compiled From the Great Salt Lake Desert, Western Utah, With a Focus on the Bonneville Salt Flats Area. Utah Geological Survey, Juni 2023. http://dx.doi.org/10.34191/ofr-754.
Der volle Inhalt der QuelleVito, L. F. Di, G. Mannucci, G. Demofonti, G. Cumino, A. Izquierdo, F. Daguerre, H. Quintanille und M. Tivelli. CGX-00-003 Tenaris Double Joint for Deep Water Applications Subjected to Large Cyclic Plastic Strains. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), August 1994. http://dx.doi.org/10.55274/r0011808.
Der volle Inhalt der QuelleBourhrous, Amal, Shivan Fazil und Dylan O’Driscoll. Post-conflict Reconstruction in the Nineveh Plains of Iraq: Agriculture, Cultural Practices and Social Cohesion. Stockholm International Peace Research Institute, November 2022. http://dx.doi.org/10.55163/raep9560.
Der volle Inhalt der QuelleNg, Andrew Y., und Christopher D. Manning. Discovery of Deep Structure from Unlabeled Data. Fort Belvoir, VA: Defense Technical Information Center, November 2014. http://dx.doi.org/10.21236/ada614158.
Der volle Inhalt der QuelleHeaney, Kevin. Spatial Structure of Deep Water Acoustic Propagation. Fort Belvoir, VA: Defense Technical Information Center, September 2008. http://dx.doi.org/10.21236/ada533364.
Der volle Inhalt der QuelleDafoe, L. T., K. Dickie und G. L. Williams. Stratigraphy of western Baffin Bay: a review of existing knowledge and some new insights. Natural Resources Canada/CMSS/Information Management, 2022. http://dx.doi.org/10.4095/321846.
Der volle Inhalt der QuelleCopeland, Ronald, und James Lewis. Technical assessment of the Old, Mississippi, Atchafalaya, and Red (OMAR) Rivers: Mississippi River HEC-6T model. Engineer Research and Development Center (U.S.), August 2022. http://dx.doi.org/10.21079/11681/45160.
Der volle Inhalt der Quelle